Theory of Computer Games: An A.I. Oriented Introduction

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

A.I. and game playing

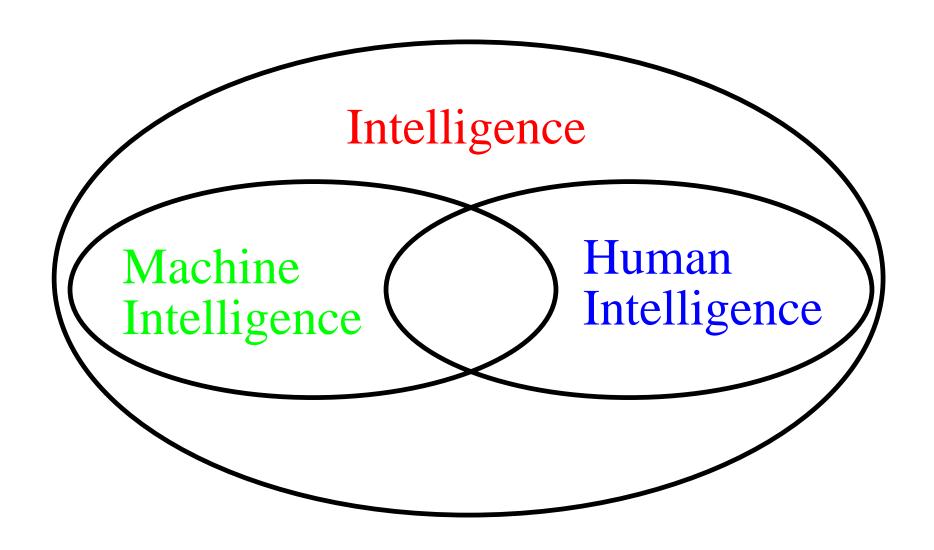
Patrick Henry Winston 1984.

- Artificial Intelligence (A.I.) is the study of ideas that enable computers to be intelligent.
- One central goal of A.I. is to make computers more useful (to human beings).
- Another central goal is to understand the principles that make intelligence possible.
 - ▶ Making computers intelligent helps us understand intelligence.
 - ▶ Intelligent computers are more useful computers.

Elaine Rich 1983.

- Intelligence requires *knowledge*.
- Games hold an inexplicable fascination for many people, and the notion that computers might play games has existed at least as long as computers.
- Reasons why games appeared to be a good domain in which to explore machine intelligence.
 - ▶ They provide a structured task in which it is very easy to measure success or failure.
 - ▶ They did not obviously require large amount of knowledge.

Intelligence – Turing Test


- How to define intelligence?
 - Very difficult to formally define "intelligence."
 - Imitation of human behaviors.

The Turing test

- If a machine is intelligent, then it cannot be distinguished from a human.
 - ▶ Use this feature to filter out computer agents for online systems or online games.
 - ▶ CAPTCHA: Completely Automated Public Turing test to tell Computers and Humans Apart
 - ▶ It is a good test if designed "intelligently" to distinguish between human and non-human.
- Loebner Prize Contest Yearly.

Problems:

- Are all human behaviors intelligent?
- Can human perform every possible intelligent behavior?
- Human intelligence =? = Intelligence.

Shifting goals

- From Artificial Intelligence to Machine Intelligence.
 - Lots of things can be done by either human and machines.
 - Something maybe better be done by machines.
 - Some other things maybe better be done by human.
 - Try to get the best out of every possible worlds!
- From imitation of human behaviors to doing intelligent behaviors.
- From general-purpose intelligence to domain-dependent Expert Systems.
- From solving games, to understand intelligence, and then to have fun.
 - ▶ Recreational
 - ▶ Educational

Early ages: The Maelzel's Chess Automaton

- Late 18th century.
 - The Turk.
 - Invented by a Hungarian named Von Kempelen (\sim 1770).
 - Chess-playing "machine."
 - ▶ Operated by a concealed human chess-master.
 - "Arguments" made by the famous writer Edgar Allen Poe in "Maelzel's Chess Player".
 - ▶ It is as easy to design a machine which will invariably win as one which wins occasionally.
 - **▶** Since the Automaton was not invincible it was therefore operated by a human.
 - Burned in a fire at an USA museum (year 1854).
 - "Recently" (year 2003) reconstructed in California, USA.

Early ages: Endgame chess-playing machine

1912

- Made by Torres y Quevedo.
 - ▶ El Ajedrecista (The Chess Player)
 - ▶ Debut during the Paris World Fair of 1914
- Plays an endgame of king and rook against king.
- The machine played the side with king and rook and would force checkmate in a few moves however its human opponent played.
- An explicit set of rules are known for such an endgame.
- Very advanced automata for that period of time.

Early ages: China

- Not much materials can be found (by me)!
 - Some automatic machines in a human form for entertainments.
 - Not much for playing "games".
- Shen, Kuo, (沈括 夢溪筆談) (~ 1086)
 - Analyzed the state space of the game Go.
 卷十八
 小說:唐僧一行曾算棋局都數,凡若干局盡之。余嘗思之,此固易耳,但數多,非世間名數 可能言之,今略舉大數。凡方二路,用四子,可變一萬九千三局。方四路,用九子,可變一萬九千三局。方五路,加子,可變四千三百四萬六千七百二十一局。方五路,加土,四十二百四十二十四萬,即是局之大數。 其法:初一路可變三局,一黑、一白、一空。自後不以橫直,但增一子,即三因之。凡三百六十一增,皆三因之,即是都局數。 加工以自「法」相乘,得一百三十五兆八百五十一萬七千一百變,以上,以上,以下乘下,因為上位;又副置之,以下乘下,如一「法」,亦得上數。有數法可求,唯此法最徑捷。只

五次乘,便盡三百六十一路。千變萬化,不出此數,棋之局盡矣。

History (1/3)

- Computer games are studied by the founding fathers of Computer Science
 - J. von Neumann, 1928, "Math. Annalen"
 - C.E. Shannon, 1950, Computer Chess paper
 - Arthur Samuel began his 25-year quest to build a strong checkersplaying program at 1952
 - Alan Turing, 1953, chapter 25 of the book "Faster than thought", entitled "Digital Computers Applied to Games"
 - ▶ A human "simulation" of a chess algorithm given in the paper.
- Computer games are also studied by great names of Computer Science who may not seem to have a major contribution in the area of Computer games or A.I.
 - D. E. Knuth (1979)
 - K. Thompson (1983)
 - B. Liskov (2008)
 - J. Pearl (2012)

History (2/3)

- Early days: A.I. was plagued by over-optimistic predictions.
 - Mini-Max game tree search
 - Alpha-Beta pruning
- 1970's and 1980's.
 - Concentrated on Western chess.
 - Brute-force approach.
 - ▶ The CHESS series of programs by the Northwestern University: CHESS 1.0 (1968), ..., CHESS 4.9 (1980)
 - Theoretical breakthrough: Analysis of Alpha-Beta pruning by Knuth and Moore at 1975.
 - Building faster search engines.
 - Chess-playing hardware.
- Early 1980's until 1990's.
 - Advances in theory of heuristic searches.
 - ▶ Scout, NegaScout, Proof number search
 - ▶ Search enhancements such as null moves and singular extensions
 - ▶ Machine learning

History (3/3)

- 1990's until now
 - Witness a series of dramatic computer successes against the best of humanity.
 - ▶ CHINOOK, checkers, 1994.
 - ▶ DEEP BLUE, chess, 1997.
 - ▶ LOGISTELLO, Othello, 1997.
 - Parallelization.
 - A "new" search technique based on Monte Carlo simulation (\sim 1993).
 - ▶ Computer Go: about 1 dan in the year 2010 and improve steadily since then.
 - ▶ The program Zen beat a 9-dan professional master at March 17, 2012.
 - ▶ First game: five stone handicap and won by 11 points.
 - ▶ Second game: four stones handicap and won by 20 points.
 - ▶ Try to find applications in other games.

Taxonomy of games

- According to number of players
 - Single player games: puzzles
 - Two-player games
 - Multi-player games
- According to state information obtained by each player:
 - Perfect-information games: all players have all the information they need to make a correct decision.
 - Imperfect-information games: some information is only available to selected players, for example you cannot see the opponent's cards in Poker.
- According to rules of games known in advance:
 - Complete information games: the "rules" of the game are fully known by all players in advance.
 - Incomplete-information games: partial rules are not given in advance for some players.
- According to whether players can fully control the playing of the game:
 - Stochastic games: there is an element of chance such as dice rolls.
 - Deterministic games: the players have a full control over the games.

Computational complexities of games

- Single-player games are often called puzzles.
 - They have a single decision maker.
 - They are enjoyable to play.
 - A puzzle should have a solution which
 - ▶ is aesthetically pleasing;
 - ▶ gives the user satisfaction in reaching it.
 - Many puzzles are proven to be NP-complete.
 - ▶ 24 puzzles including Light Up, Minesweeper, Solitaire and Tetris are NP-complete [G. Kendall et al. 2008].
- Many 2-player games are either PSPACE-complete or EXPTIME-complete.
 - Othello is PSPACE-complete, and Checkers and Chess are EXPTIME-complete [E.D. Demaine & R.A. Hearn 2001].

New frontiers

- Traditional games: using paper and pencil, board, cards, and stones.
- Interactive computer games
 - Text-based interface during early days.
 - 2-D graphics during the 1980's with the advance of personal computers.
 - 3-D graphics with sound and special effects today.
- Human with the helps of computer software and hardware.
- On-line games: players compete against other humans or computer agents.
- Challenges:
 - Better user interface: such as Wii and holographic display.
 - Developing realistic characters.
 - ▶ So far very primitive: simple rule-based systems and finite-state machines.
 - ▶ Need researches in "human intelligence."
 - Educational purpose.
- Physical games played by machines: RoboCup.

Concluding remarks

- Arthur Samuel, 1960.
 - Programming computers to play games is but one stage in the development of an understanding of the methods which must be employed for the machine simulation of intellectual behavior.
 - As we progress in this understanding it seems reasonable to assume that these newer techniques will be applied to real-life situations with increasing frequency, and the effort devoted to games ... will decrease.
 - Perhaps we have not yet reached this turning point, and we may still have much to learn from the study of games.

References and further readings

- * J. Schaeffer and H. J. van den Herik. Games, computers, and artificial intelligence. $Artificial\ Intelligence$, 134:1–7, 2002.
- Jonathan Schaeffer. The games computers (and people) play. Advances in Computers, 52:190–268, 2000.
- E. Demaine and R. A. Hearn. Playing games with algorithms: Algorithmic combinatorial game theory. Technical report, Massachusetts Institute of Technology, USA, 2001. http://arxiv.org/abs/cs.CC/0106019, last revised 22 April 2008.
- G. Kendall, A. Parkes, and K. Spoerer. A survey of NP-complete puzzles. International Computer Game Association (ICGA) Journal, 31(1):13–34, 2008.