Alpha-Beta Pruning: Algorithm and Analysis

Tsan-sheng Hsu

徐讚昇

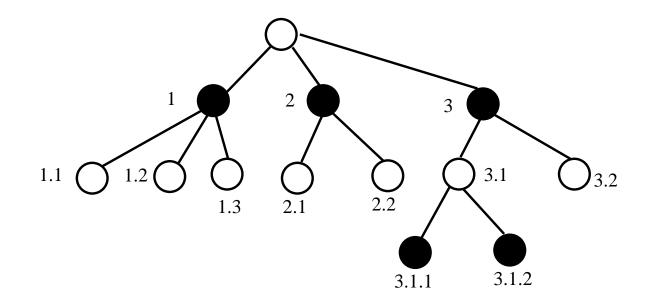
tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Introduction

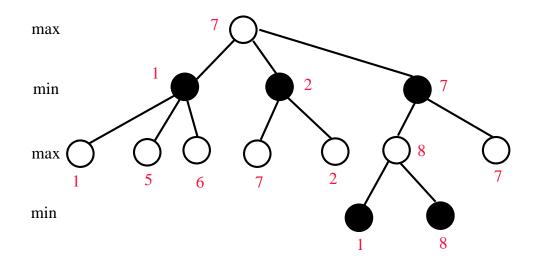
- Alpha-beta pruning is the standard searching procedure used for 2-person perfect-information zero sum games.
- Definitions:
 - A position p.
 - The value of a position p, $f(p), \mbox{ is a numerical value computed from evaluating <math display="inline">p.$
 - ▷ Value is computed from the root player's point of view.
 - ▷ Positive values mean in favor of the root player.
 - ▷ Negative values mean in favor of the opponent.
 - ▷ Since it is a zero sum game, thus from the opponent's point of view, the value can be assigned -f(p).
 - A terminal position: a position whose value can be know.
 - \triangleright A position where win/loss/draw can be concluded.
 - ▶ A position where some constraints are met.
 - A position p has b legal moves p_1, p_2, \ldots, p_b .

Tree node numbering



- From the root, number a node in a search tree by a sequence of integers $a_1.a_2.a_3.a_4\cdots$
 - Meaning from the root, you first take the a_1 th branch, then the a_2 th branch, and then the a_3 th branch, and then the a_4 th branch \cdots
 - The root is specified as an empty sequence.
 - The depth of a node is the length of the sequence of integers specifying it.
- This is called "Dewey decimal system."

Mini-max formulation



Mini-max formulation:

 $F'(p) = \begin{cases} f(p) & \text{if } b = 0\\ max\{G'(p_1), \dots, G'(p_b)\} & \text{if } b > 0 \end{cases}$

$$G'(p) = \begin{cases} f(p) & \text{if } b = 0\\ \min\{F'(p_1), \dots, F'(p_b)\} & \text{if } b > 0 \end{cases}$$

- An indirect recursive formula!
- Equivalent to AND-OR logic.

Algorithm: Mini-max

Algorithm F'(position p) // max node

- determine the successor positions p_1, \ldots, p_b
- if b = 0, then return f(p) else begin

$$\triangleright m := -\infty$$

$$\triangleright$$
 for $i := 1$ to b do

$$\triangleright \qquad t := G'(p_i)$$

- \triangleright if t > m then m := t // find max value
- end; return m

Algorithm G'(position p) // min node

- determine the successor positions p_1, \ldots, p_b
- if b = 0, then return f(p) else begin

$$\begin{array}{l} \triangleright \ m := \infty \\ \flat \ \textbf{for} \ i := 1 \ \textbf{to} \ b \ \textbf{do} \\ \flat \ \ t := F'(p_i) \end{array}$$

- \triangleright if t < m then m := t // find min value
- end; return m

• A brute-force method to try all possibilities!

Mini-max: revised (1/2)

Algorithm F'(position p) // max node

- determine the successor positions p_1, \ldots, p_b
- if b = 0 // a terminal node

```
or depth reaches the cutoff threshold // from iterative deepening or time is running up // from timing control
```

or some other constraints are met // add knowledge here

then return f(p)// current board value else begin

```
\triangleright m := -\infty // \text{ initial value}
```

- \triangleright for i := 1 to b do // try each child
- ▶ begin

$$\triangleright \qquad t := G'(p_i)$$

$$\triangleright$$
 if $t > m$ then $m := t //$ find max value

 \triangleright end

end

• return m

Mini-max: revised (2/2)

Algorithm G'(position p) // min node

- determine the successor positions p_1, \ldots, p_b
- if b = 0 // a terminal node

```
or depth reaches the cutoff threshold // from iterative deepening
or time is running up // from timing control
```

or some other constraints are met // add knowledge here

then return f(p)// current board value else begin

```
\triangleright m := \infty // initial value
```

- \triangleright for i := 1 to b do // try each child
- ▶ begin

$$\triangleright$$
 $t := F'(p_i)$

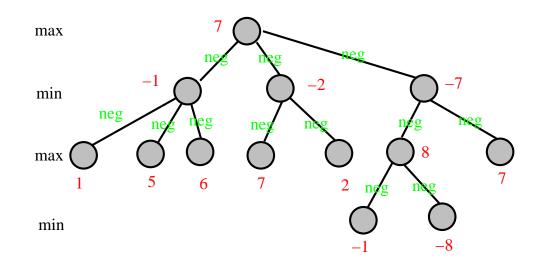
$$\triangleright$$
 if $t < m$ then $m := t //$ find min value

 \triangleright end

end

• return m

Nega-max formulation



Nega-max formulation:

Let F(p) be the greatest possible value achievable from position p against the optimal defensive strategy.

$$F(p) = \begin{cases} h(p) & \text{if } b = 0\\ max\{-F(p_1), \dots, -F(p_b)\} & \text{if } b > 0 \end{cases}$$

 \triangleright

$$h(p) = \begin{cases} f(p) & \text{if depth of } p \text{ is } 0 \text{ or even} \\ -f(p) & \text{if depth of } p \text{ is odd} \end{cases}$$

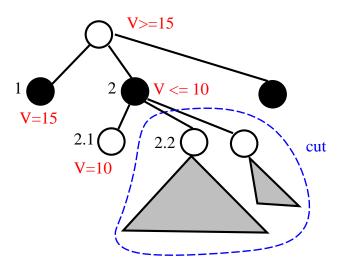
Algorithm: Nega-max

- Algorithm F(position p)
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0 // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return h(p) else
 - begin
 - $\triangleright m := -\infty$
 - \triangleright for i := 1 to b do
 - ▶ begin
 - \triangleright $t := -F(p_i)$ // recursive call, the returned value is negated
 - \triangleright if t > m then m := t // always find a max value
 - \triangleright end
 - end
 - return m
- Also a brute-force method to try all possibilities, but with a simpler code.

Intuition for improvements

- Branch-and-bound: using information you have so far to cut or prune branches.
 - A branch is cut means we do not need to search it anymore.
 - If you know for sure the value of your result is more than x and the current search result for this branch so far can give you no more than x,
 - ▶ then there is no need to search this branch any further.
- Two types of approaches
 - Exact algorithms: through mathematical proof, it is guaranteed that the branches pruned won't contain the solution.
 - ▷ Alpha-beta pruning: reinvented by several researchers in the 1950's and 1960's.
 - \triangleright Scout.
 - $\triangleright \cdots$
 - Approximated heuristics: with a high probability that the solution won't be contained in the branches pruned.
 - ▶ Obtain a good estimation on the remaining cost.
 - Cut a branch when it is in a very bad position and there is little hope to gain back the advantage.

Alpha cut-off

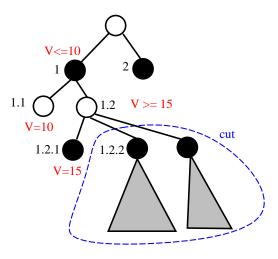


Alpha cut-off:

• On a max node

- ▶ Assume you have finished exploring the branch at 1 and obtained the best value from it as bound.
- \triangleright You now search the branch at 2 by first searching the branch at 2.1.
- ▷ Assume branch at 2.1 returns a value that is \leq bound.
- ▶ Then no need to evaluate the branch at 2.2 and all later branches of 2, if any, at all.
- ▷ The best possible value for the branch at 2 must be \leq bound.
- ▶ Hence we should take value returned from the branch at 1 as the best possible solution.

Beta cut-off



Beta cut-off: On a min node

- ▷ Assume you have finished exploring the branch at 1.1 and obtained the best value from it as bound.
- ▶ You now search the branches at 1.2 by first exploring the branch at 1.2.1.
- \triangleright Assume the branch at 1.2.1 returns a value that is \geq bound.
- ▶ Then no need to evaluate the branch at 1.2.2 and all later branches of 1.2, if any, at all.
- \triangleright The best possible value for the branch at 1.2 is \geq bound.
- ▶ Hence we should take value returned from the branch at 1.1 as the best possible solution.

Deep alpha cut-off

For alpha cut-off:

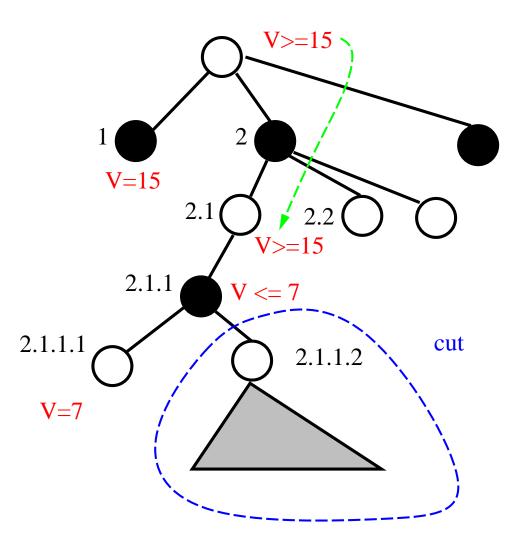
- ▷ For a min node u, the branch of its ancestor (e.g., elder brother of its parent) produces a lower bound V_l .
- \triangleright The first branch of u produces an upper bound V_u for v.
- ▷ If $V_l \ge V_u$, then there is no need to evaluate the second branch and all later branches, of u.

Deep alpha cut-off:

- ▷ Def: For a node u in a tree and a positive integer g, Ancestor(g, u) is the direct ancestor of u by tracing the parent's link g times.
- ▷ When the lower bound V_l is produced at and propagated from *u*'s great grand parent, i.e., Ancestor(3,*u*), or any Ancestor(2*i* + 1,*u*), *i* ≥ 1.
- ▷ When an upper bound V_u is returned from the a branch of u and $V_l \ge V_u$, then there is no need to evaluate all later branches of u.

• We can find similar properties for deep beta cut-off.

Illustration — Deep alpha cut-off



Ideas for refinements

During searching, maintain two values *alpha* and *beta* so that

- *alpha* is the current lower bound of the possible returned value;
- *beta* is the current upper bound of the possible returned value.
- If during searching, we know for sure *alpha > beta*, then there is no need to search any more in this branch.
 - The returned value cannot be in this branch.
 - Backtrack until it is the case $alpha \leq beta$.
- The two values *alpha* and *beta* are called the ranges of the current search window.
 - These values are dynamic.
 - Initially, alpha is $-\infty$ and beta is ∞ .

Alpha-beta pruning algorithm: Mini-Max

Algorithm F2'(position p, value alpha, value beta) // max node

- determine the successor positions p_1, \ldots, p_b
- if b = 0, then return f(p) else begin
 - \triangleright m := alpha
 - \triangleright for i := 1 to b do
 - \triangleright $t := G2'(p_i, m, beta)$
 - $\triangleright \qquad \text{if } t > m \text{ then } m := t$
 - \triangleright if $m \ge beta$ then return(m) // beta cut off
- end; return m

Algorithm G2'(position p, value alpha, value beta) // min node

- determine the successor positions p_1, \ldots, p_b
- if b = 0, then return f(p) else begin
 - \triangleright m := beta
 - \triangleright for i := 1 to b do
 - \triangleright $t := F2'(p_i, alpha, m)$
 - $\triangleright \quad \text{ if } t < m \text{ then } m := t$
 - \triangleright if $m \leq alpha$ then return(m) // alpha cut off
- end; return m

Example

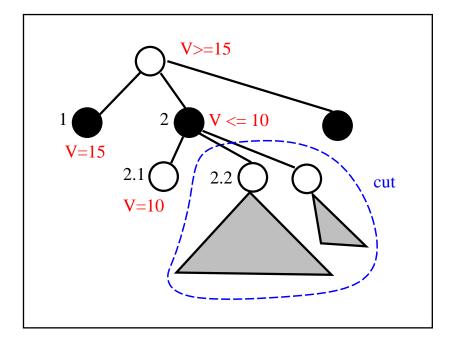
Initial call: $F2'(root, -\infty, \infty)$

- $m = -\infty$
- call G2' (node 1, $-\infty$, ∞)

it is a terminal node
return value 15

- t = 15;
 - \triangleright since t > m, m is now 15
- call G2' (node 2,15, ∞)
 - \triangleright call F2'(node 2.1,15, ∞)
 - ▶ it is a terminal node; return 10
 - $\triangleright t = 10; \text{ since } t < \infty, m \text{ is now} \\ 10$
 - ▷ alpha is 15, m is 10, so we have an alpha cut off
 - $\triangleright no need to call$ F2'(node 2.2,15,10)

 $\triangleright \cdots$



Alpha-beta pruning algorithm: Nega-max

- Algorithm F2(position p, value alpha, value beta)
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0 // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return h(p) else
 - begin

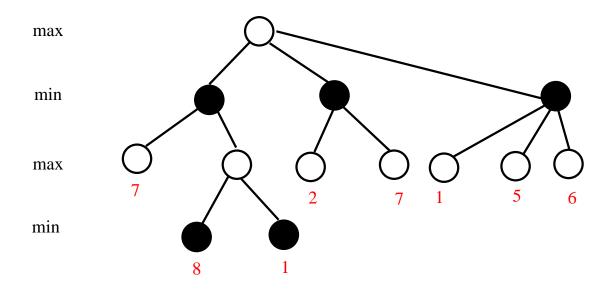
$$\triangleright$$
 $m := alpha$

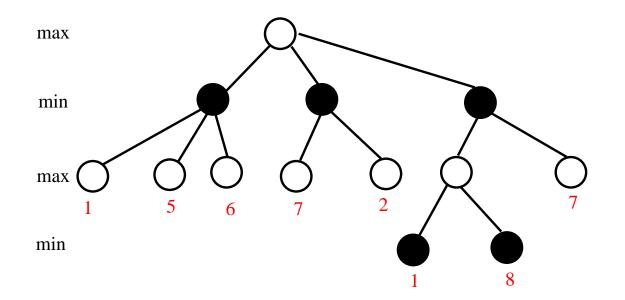
- \triangleright for i := 1 to b do
- ▶ begin

$$\triangleright$$
 $t := -F2(p_i, -beta, -m)$

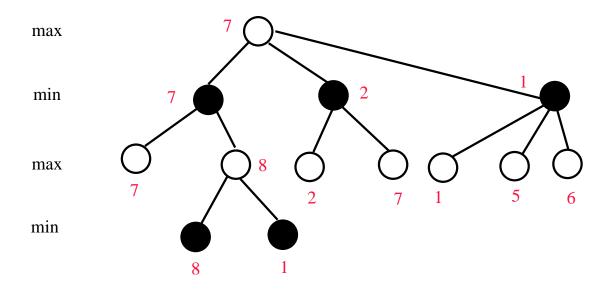
- $\triangleright \qquad \text{if } t > m \ \text{then } m := t$
- \triangleright if $m \ge beta$ then return(m) // cut off
- \triangleright end
- end
- return m

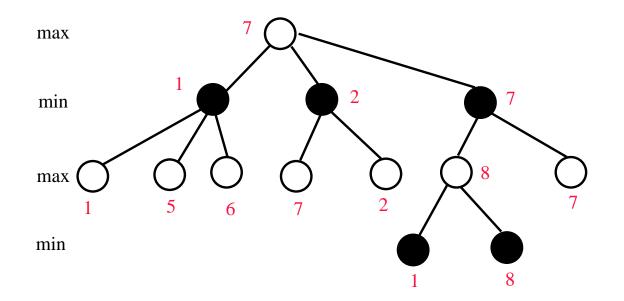
Examples (1/4)



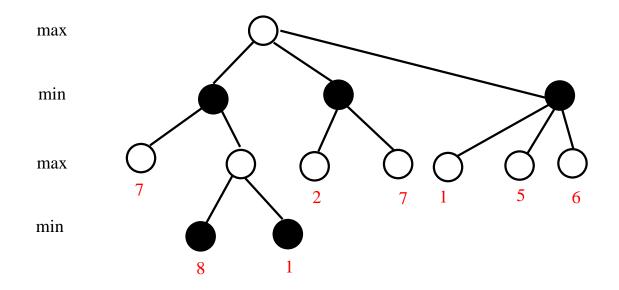


Examples (2/4)

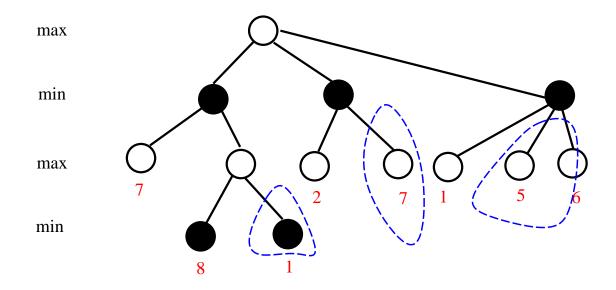




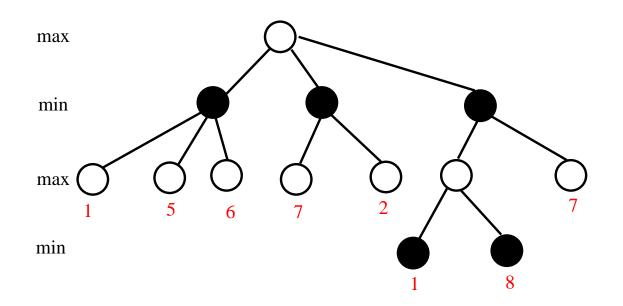
Examples (3/4)



Examples (3/4)



Examples (4/4)



Lessons from the previous examples

- It looks like for the same tree, different move orderings give very different cut branches.
- It looks like if a node can evaluate a child with the best possible outcome earlier, then it can decide to cut earlier.
 - For a min node, this means to evaluate the child branch that gives the lowest value first.
 - For a max node, this means to evaluate the child branch that gives the highest value first.

• Q: In the best possible scenario, how many nodes are cut?

Analysis of a possible best case

Definitions:

- A path in a search tree is a sequence of numbers indicating the branches selected in each level using the Dewey decimal system.
- A position is denoted as a path $a_1.a_2.\cdots.a_\ell$ from the root.
- A position $a_1.a_2.\cdots.a_\ell$ is critical if

```
\triangleright a_i = 1 for all even values of i or
```

```
\triangleright a_i = 1 for all odd values of i.
```

- Note: as a special case, the root is critical.
- Examples:
 - ▷ 2.1.4.1.2, 1.3.1.5.1.2, 1.1.1.2.1.1.1.3 and 1.1 are critical
 - \triangleright 1.2.1.1.2 is not critical

Perfect-ordering tree

• A perfect-ordering tree:

$$F(a_1.\cdots.a_\ell) = \begin{cases} h(a_1.\cdots.a_\ell) & \text{if } a_1.\cdots.a_\ell \text{ is a terminal} \\ -F(a_1.\cdots.a_\ell.1) & \text{otherwise} \end{cases}$$

• The first successor of every non-terminal position gives the best possible value.

Theorem 1

- Theorem 1: F2 examines precisely the critical positions of a perfect-ordering tree.
- Proof sketch:
 - Classify the critical positions, a.k.a. nodes.
 - > You must evaluate the first branch from the root to the bottom.
 - ▶ Alpha cut off happens at odd-depth nodes as soon as the first branch of this node is evaluated.
 - Beta cut off happens at even-depth nodes as soon as the first branch of this node is evaluated.
 - For each type of nodes, try to associate them with the types of pruning occurred.

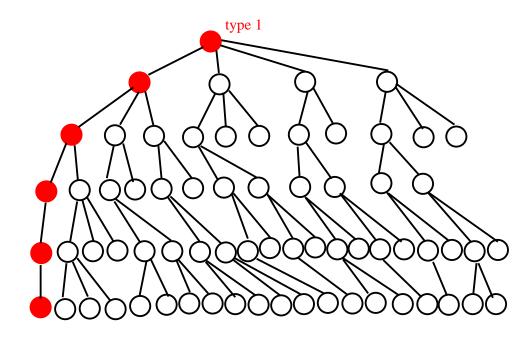
Types of nodes

- Classification of critical positions $a_1.a_2. \cdots .a_j. \cdots .a_\ell$ where j is the least index, if exists, such that $a_j \neq 1$ and ℓ is the last index.
 - Def: let $IS1(a_i)$ be a boolean function so that it is 0 if it is not the value 1 and it is 1 if it is.
 - \triangleright We call this IS1 parity of a number.
 - If j exists and $\ell > j$, then
 - ▷ $a_{j+1} = 1$ because this position is critical and thus the *IS*1 parities of a_j and a_{j+1} are different.
 - Since this position is critical, if $a_j \neq 1$, then $a_h = 1$ for any h such that h j is odd.
- We now classify critical nodes into 3 types.

Type 1 nodes

• type 1: the root, or a node with all the a_i are 1;

- This means *j* does not exist.
- Nodes on the leftmost branch.
- The leftmost child of a type 1 node except the root.



Type 2 nodes

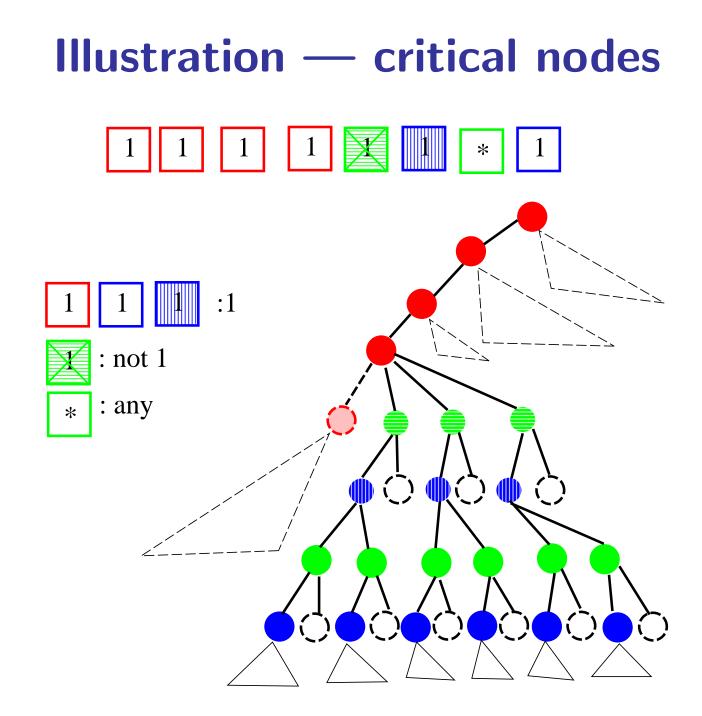
- Classification of critical positions $a_1.a_2. \cdots .a_j. \cdots .a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.
- type 2: ℓj is zero or even;
 - type 2.1: $\ell j = 0$.
 - \triangleright It is in the form of $1.1.1.....1.1.a_{\ell}$ and $a_{\ell} \neq 1$.
 - ▷ The non-leftmost children of a type 1 node.
 - type 2.2: $\ell j > 0$ and is even.
 - \triangleright It is in the form of $1.1....1.a_j.1.a_{j+2}....a_{\ell-2}.1.a_{\ell}$.
 - ▷ Note, we will show $1.1....1.a_j.1.a_{j+2}....a_{\ell-2}.1$ is a type 3 node later.
 - ▷ All of the children of a type 3 node.

Type 3 nodes

- Classification of critical positions $a_1.a_2. \cdots .a_j. \cdots .a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.
- type 3: ℓj is odd;
 - type 3.1: $\ell = j + 1$.
 - \triangleright It is of the form $1.1....1.a_j.1$
 - ▷ The leftmost child of a type 2.1 node.
 - type 3.2: $\ell > j + 1$.
 - ▷ It is of the form $1.1.....1.a_j.1.a_{j+2}.1......1.a_{\ell-1}.1$
 - \triangleright The leftmost child of a type 2.2 node.

Comments

- Nodes of the same have common properties.
- These properties can be used in solving other problems.
 - Efficient parallel processing.
- Main techniques used: you cannot have two consecutive non-1 numbers in the ID of a critical node.

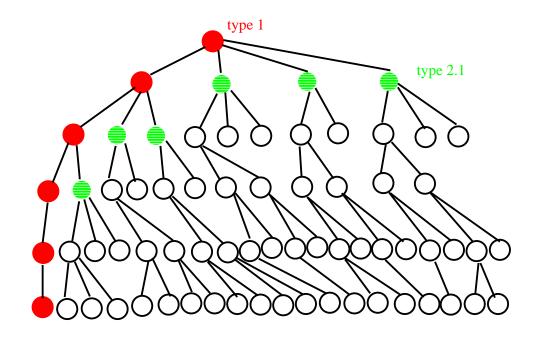


Type 2.1 nodes

- Classification of critical positions $a_1.a_2. \cdots .a_j. \cdots .a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.
- type 2: ℓj is zero or even;

• type 2.1:
$$\ell - j = 0$$
.

- ▷ Then $\ell = j$.
- ▷ It is in the form of $1.1.1....1.a_{\ell}$ and $a_{\ell} \neq 1$.
- ▷ The non-leftmost children of a type 1 node.

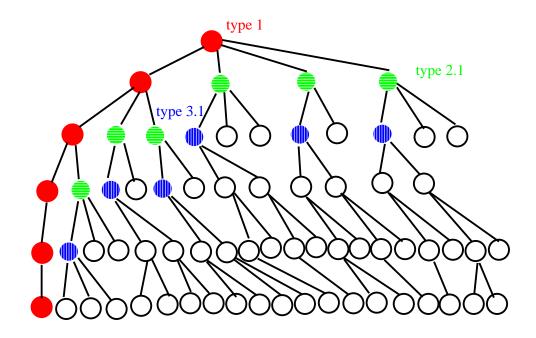


Type 3.1 nodes

• Classification of critical positions $a_1.a_2. \cdots .a_j. \cdots .a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

• type 3:
$$\ell - j$$
 is odd;

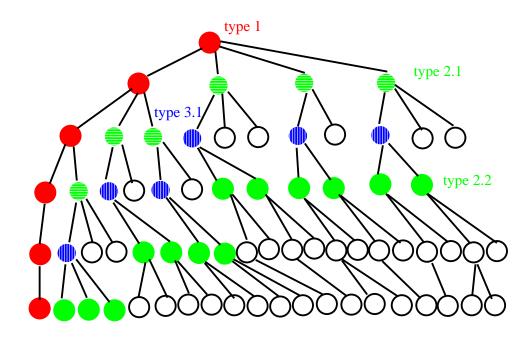
- type 3.1: $\ell = j + 1$.
 - \triangleright It is of the form $1.1....1.a_j.1$ and $a_\ell \neq 1$.
 - ▷ The leftmost child of a type 2.1 node.



Type 2.2 nodes

- Classification of critical positions $a_1.a_2. \cdots .a_j. \cdots .a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.
- type 2: ℓj is zero or even;
 - type 2.2: $\ell j > 0$ and is even.
 - ▷ The *IS*1 parties of a_j and a_{j+1} are different. ⇒ Since $a_j \neq 1$, $a_{j+1} = 1$.
 - $\triangleright \ (\ell 1) j \text{ is odd:} \\ \Longrightarrow \text{The } IS1 \text{ parties of } a_{\ell-1} \text{ and } a_j \text{ are different.} \\ \Longrightarrow \text{Since } a_j \neq 1, a_{\ell-1} = 1.$
 - \triangleright It is in the form of $1.1.....1.a_j.1.a_{j+2}.....a_{\ell-2}.1.a_\ell$.
 - ▷ Note, we will show $1.1....1.a_j.1.a_{j+2}....a_{\ell-2}.1$ is a type 3 node later.
 - \triangleright All of the children of a type 3 node.

Type 2.2 nodes



Type 3.2 nodes

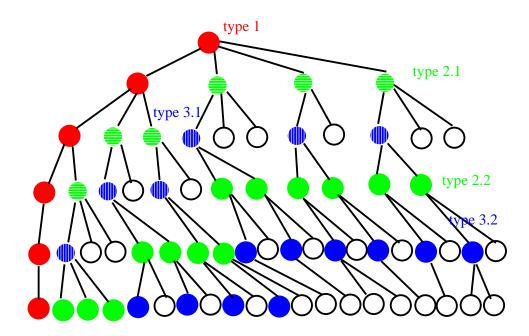
• Classification of critical positions $a_1.a_2. \cdots .a_j. \cdots .a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

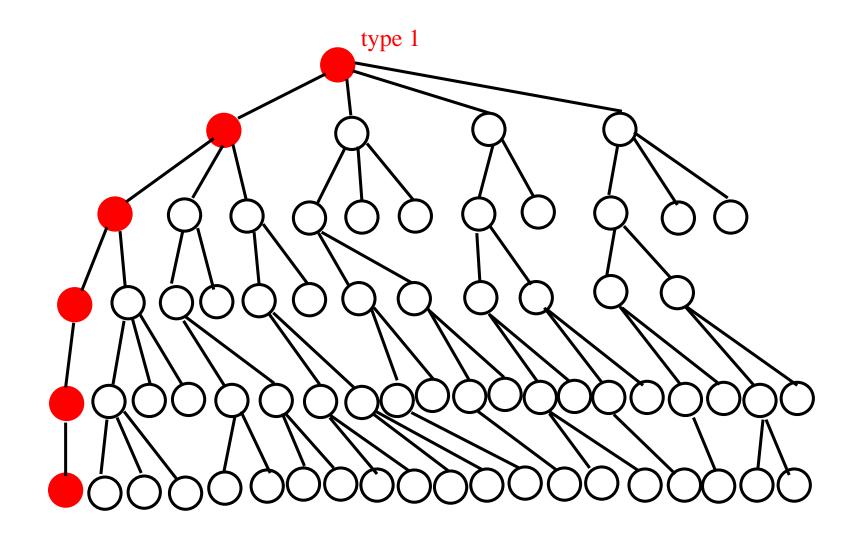
• type 3: $\ell - j$ is odd;

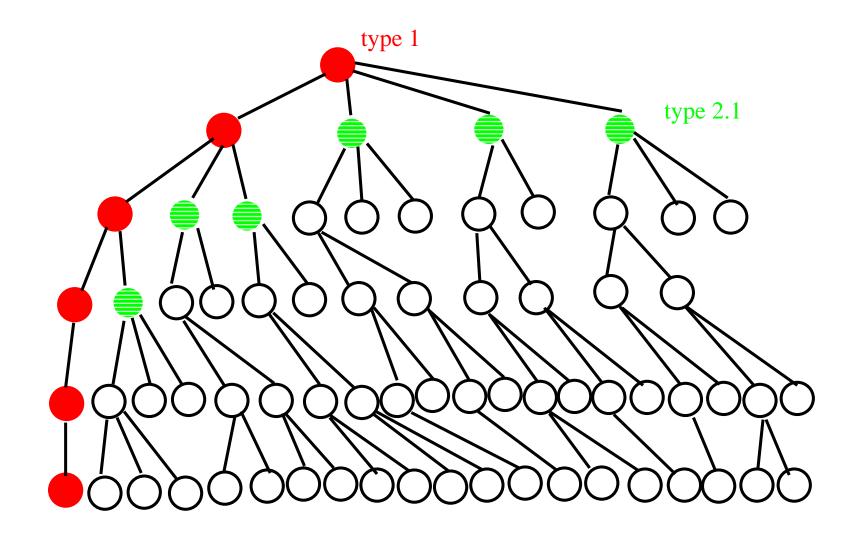
•
$$a_j \neq 1$$
 and $\ell - j$ is odd

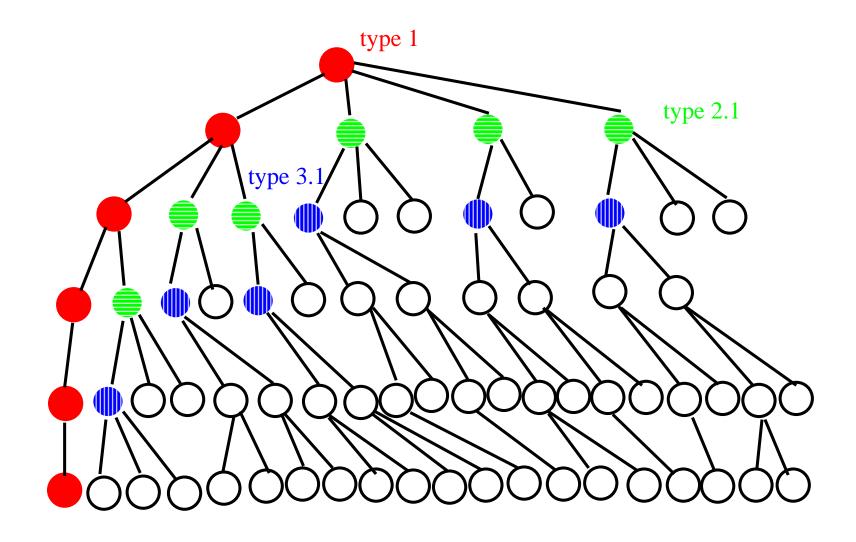
- ▷ Since this position is critical, the *IS*1 parities of a_j and a_ℓ are different. $\implies a_\ell = 1$ $\implies a_{j+1} = 1$
- It is in the form of
 - \triangleright 1.1......1. a_j .1. a_{j+2} .1.....1. $a_{\ell-1}$.1.
- The leftmost child of a type 2 node.
- type 3.1: $\ell = j + 1$.
 - \triangleright It is of the form $1.1....1.a_j.1$
 - ▷ The leftmost child of a type 2.1 node.
- type 3.2: $\ell > j + 1$.
 - ▷ It is of the form $1.1....1.a_j.1.a_{j+2}.1....1.a_{\ell-1}.1$
 - ▷ The leftmost child of a type 2.2 node.

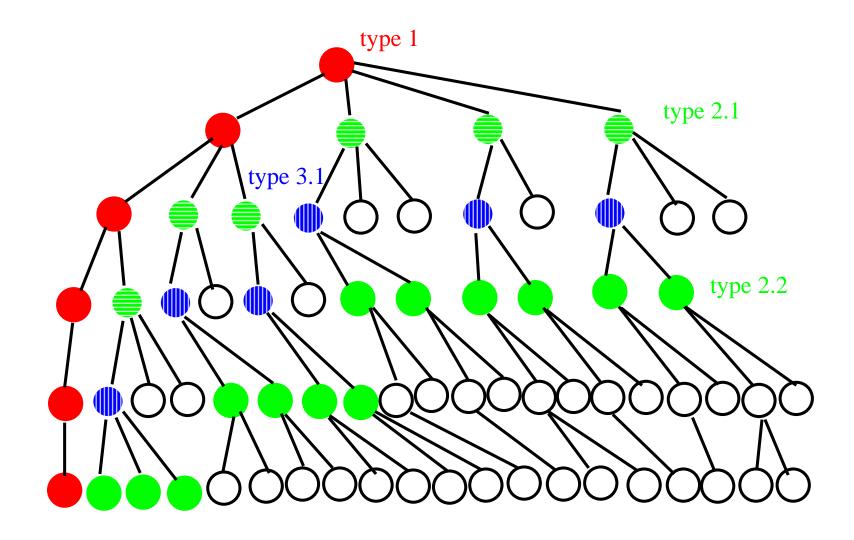
Type 3.2 nodes

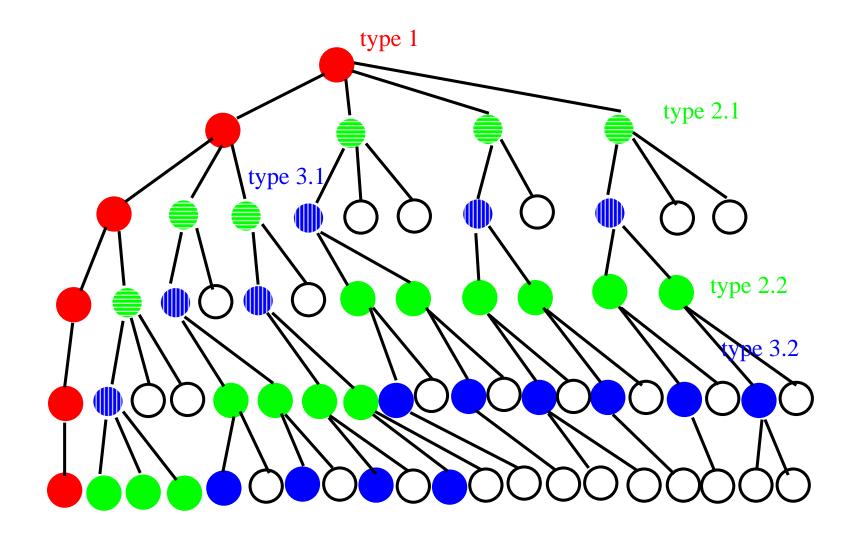


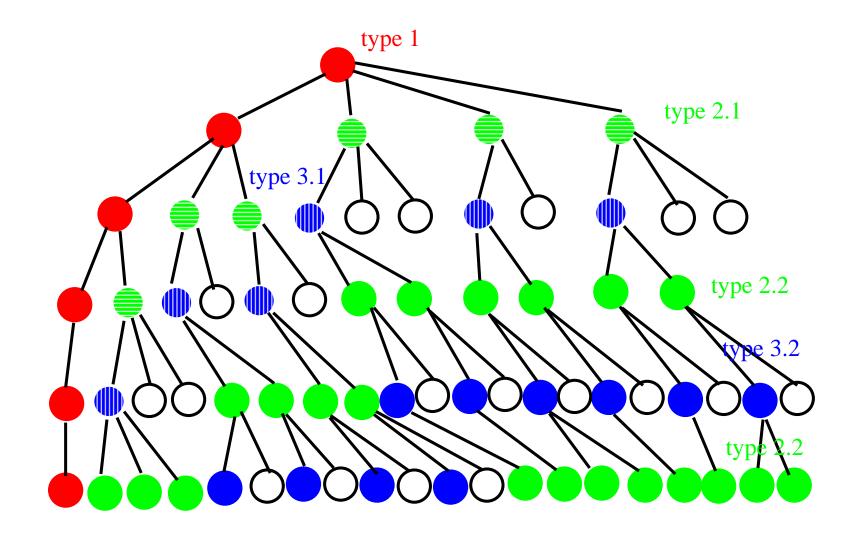












Proof sketch for Theorem 1

Properties (invariants)

- A type 1 position p is examined by calling $F2(p, -\infty, \infty)$
 - \triangleright *p*'s first successor p_1 is of type 1
 - $\triangleright F(p) = -F(p_1) \neq \pm \infty$
 - \triangleright p's other successors p_2, \ldots, p_b are of type 2
 - $\triangleright p_i, i > 1$, are examined by calling $F2(p_i, -\infty, F(p_1))$

• A type 2 position p is examined by calling $F2(p,-\infty,beta)$ where $-\infty < beta \leq F(p)$

- \triangleright *p*'s first successor p_1 is of type 3
- $\triangleright F(p) = -F(p_1)$
- \triangleright *p*'s other successors p_2, \ldots, p_b are not examined
- A type 3 position p is examined by calling $F2(p, alpha, \infty)$ where $\infty > alpha \geq F(p)$
 - \triangleright p's successors p_1, \ldots, p_b are of type 2
 - ▷ they are examined by calling $F2(p_1, -\infty, -alpha)$, $F2(p_2, -\infty, -\max\{m_1, alpha\}), \ldots, F2(p_i, -\infty, -\max\{m_{i-1}, alpha\})$ where $m_i = F2(p_i, -\infty, -\max\{m_{i-1}, alpha\})$

Using an inductive argument to prove all and also only critical positions are examined.

Analysis: best case

- Corollary 1: Assume each position has exactly b successors
 - The number of positions examined by the alpha-beta procedure on level i is exactly

 $b^{\lceil i/2 \rceil} + b^{\lfloor i/2 \rfloor} - 1.$

Proof:

- There are $b^{\lfloor i/2 \rfloor}$ sequences of the form $a_1 \cdots a_i$ with $1 \le a_i \le b$ for all i such that $a_i = 1$ for all odd values of i.
- There are $b^{\lceil i/2 \rceil}$ sequences of the form $a_1 \cdots a_i$ with $1 \le a_i \le b$ for all i such that $a_i = 1$ for all even values of i.
- We subtract $\mathbf{1}$ for the sequence $1.1. \cdots .1.1$ which are counted twice.
- Total number of nodes visited is

$$\sum_{i=0}^{\ell} b^{\lceil i/2 \rceil} + b^{\lfloor i/2 \rfloor} - 1.$$

Analysis: average case

- Assumptions: Let a random game tree be generated in such a way that
 - each position on level j has probability q_j of being nonterminal
 - has an average of b_j successors
- Properties of the above random game tree
 - Expected number of positions on level ℓ is $b_0 \cdot b_1 \cdots b_{\ell-1}$
 - Expected number of positions on level ℓ examined by an alpha-beta procedure assumed the random game tree is perfectly ordered is

$$b_0q_1b_2q_3\cdots b_{\ell-2}q_{\ell-1} + q_0b_1q_2b_3\cdots q_{\ell-2}b_{\ell-1} - q_0q_1\cdots q_{\ell-1}$$
if ℓ is even;

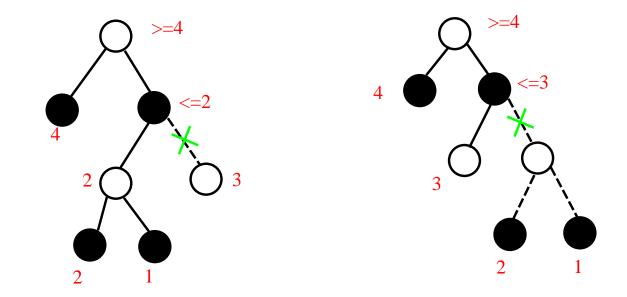
 $b_0q_1b_2q_3\cdots q_{\ell-2}b_{\ell-1} + q_0b_1q_2b_3\cdots b_{\ell-2}q_{\ell-1} - q_0q_1\cdots q_{\ell-1}$ if ℓ is odd

Proof sketch:

- If x is the expected number of positions of a certain type on level j, then xb_j is the expected number of successors of these positions, and xq_j is the expected number of "numbered 1" successors.
- The above numbers equal to those of Corollary 1 when $q_j = 1$ and $b_j = b$ for $0 \le j < \ell$.

Perfect ordering is not always best

- Intuitively, we may "think" alpha-beta pruning would be most effective when a game tree is perfectly ordered.
 - That is, when the first successor of every position is the best possible move.
 - This is not always the case!



Truly optimum order of game trees traversal is not obvious.

When is a branch pruned?

- Assume a node r has two children u and v with u being visited before v using some move ordering.
 - Further assume *u* produced a new bound *bound*.
- Assume node v has a child w.
 - If the value new returned from w can cause a range conflict with bound, then branches of v later than w are cut.
- This means as long as the "relative" ordering of u and v are good enough, then we can have some cut-off.
 - There is no need for r to have the best move ordering.

Theorem 2

- Theorem 2: Alpha-beta pruning is optimum in the following sense:
 - Given any game tree and any algorithm which computes the value of the root position, there is a way to permute the tree

▷ by reordering successor positions if necessary;

- so that every terminal position examined by the alpha-beta method under this permutation is examined by the given algorithm.
- Furthermore if the value of the root is not ∞ or $-\infty$, the alpha-beta procedure examines precisely the positions which are critical under this permutation.

Variations of alpha-beta search

- Initially, to search a tree with the root r by calling $F2(r, -\infty, +\infty)$.
 - What does it mean to search a tree with the root r by calling F2(r, alpha, beta)?
 - \triangleright To search the tree rooted at r requiring that the returned value to be within alpha and beta.

In an alpha-beta search with a pre-assigned window [alpha, beta]:

- Failed-high means it returns a value that is larger than or equal to its upper bound beta.
- Failed-low means it returns a value that is smaller than or equal to its lower bound alpha.

Variations:

- Brute force Nega-Max version: F
 - ▷ Always finds the correct answer according to the Nega-Max formula.
- Fail hard alpha-beta cut (Nega-Max) version: F2
- Fail soft alpha-beta cut (Nega-Max) version: F3

Fail hard version

• Original version.

Algorithm F2(position p, value alpha, value beta)

- determine the successor positions p_1, \ldots, p_b
- if b = 0 // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening or time is running up // from timing control
 - or some other constraints are met // add knowledge here
- then return h(p) else
- begin
 - \triangleright m := alpha // hard initial value
 - \triangleright for i := 1 to b do
 - ▶ begin

$$\triangleright \quad t := -F2(p_i, -beta, -m)$$

- \triangleright if t > m then m := t // the returned value is "used"
- \triangleright if $m \ge beta$ then return(m) // cut off
- \triangleright end
- end
- return m

Properties and comments

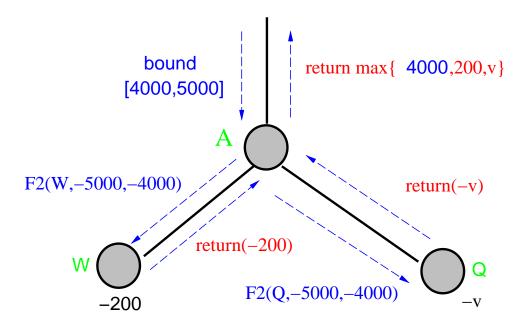
Properties:

- alpha < beta
- F2(p, alpha, beta) = alpha if $F(p) \le alpha$
- F2(p, alpha, beta) = F(p) if alpha < F(p) < beta
- F2(p, alpha, beta) = beta if $F(p) \ge beta$
- $F2(p, -\infty, +\infty) = F(p)$

Comments:

- F2(p, alpha, beta): find the best possible value according to a nega-max formula for the position p with the constraints that
 - ▷ If F(p) is less than the lower bound alpha, then F2(p, alpha, beta)returns with a value alpha from a terminal position whose value is $\leq alpha$.
 - ▷ If F(p) is more than the upper bound beta, then F2(p, alpha, beta)returns with value beta from a terminal terminal position whose value is \geq beta.
- The meanings of *alpha* and *beta* during searching:
 - \triangleright For a max node: the current best value is at least alpha.
 - ▶ For a min node: the current best value is at most beta.
- F2 always finds a value that is within alpha and beta.
 - ▶ The bounds are hard, i.e., cannot be violated.

Fail hard version: Example



As long as the value of the leaf node W is less than the current alpha value, the returned value of A will be at least the returned value of W.

Fail soft version

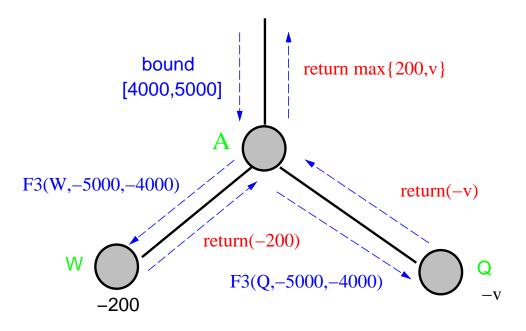
- Algorithm F3(position p, value alpha, value beta)
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0 // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return h(p) else
 - begin
 - $\triangleright m := -\infty // \text{ soft initial value}$
 - \triangleright for i := 1 to b do
 - ▶ begin
 - $\triangleright \quad t := -F3(p_i, -beta, -\max\{m, alpha\})$
 - \triangleright if t > m then m := t // the returned value is "used"
 - $\triangleright \quad \text{if } m \geq beta \text{ then } return(m) // \text{ cut off}$
 - \triangleright end
 - end
 - return m

Properties and comments

Properties:

- alpha < beta
- $F3(p, alpha, beta) \leq alpha$ if $F(p) \leq F3(p, alpha, beta) \leq alpha$
- F3(p, alpha, beta) = F(p) if alpha < F(p) < beta
- $F3(p, alpha, beta) \ge beta$ if $F(p) \ge F3(p, alpha, beta) \ge beta$
- $F3(p, -\infty, +\infty) = F(p)$
- F3 finds a "better" value when the value is out of the search window.
 - Better means a tighter bound.
 - ▷ The bounds are soft, i.e., can be violated.
 - When it fails high, F3 normally returns a value that is higher than that of F2.
 - \triangleright Never higher than that of F!
 - When it fails low, F3 normally returns a value that is lower than that of F2.
 - \triangleright Never lower than that of F!

Fail soft version: Example

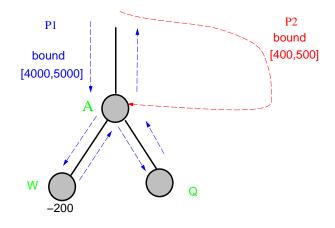


- Let the value of the leaf node W be u.
- If u < alpha, then the branch at W will have a returned value of at least u.

Comparisons between F2 and F3

- Both versions find the corrected value v if v is within the window [alpha, beta].
- Both versions scan the same set of nodes during searching.
 - ▶ If the returned value of a subtree is decided by a cut, then F2 and F3 return the same value.
- F3 provides more information when the true value is out of the pre-assigned search window.
 - Can provide a feeling on how bad or good the game tree is.
 - Use this "better" value to guide searching later on.
- F3 saves about 7% of time than that of F2 when a transposition table is used to save and re-use searched results [Fishburn 1983].
 - A transposition table is a data structure to record the results of previous searched results.
 - The entries of a transposition table can be efficiently accessed, i.e., read and write, during searching.
 - Need an efficient addressing scheme, e.g., hash, to translate between a position and its address.

F2 and F3: Example (1/2)

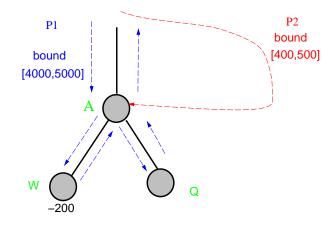


- Assume the node A can be reached from the starting position using path P_1 and path P_2 .
 - If W is visited first along P_1 with a bound of $\left[4000,5000\right]$, and returns a value of 200, then

 \triangleright the returned value of W, 200, is stored into the transposition table.

• If A is visited again along P_2 with a bound of [400, 500], then a better value of previously stored value of W helps to decide whether the subtree rooted at W needs to be searched again.

F2 and F3: Example (2/2)



Fail soft version has a chance to record a better value to be used later when this position is revisited.

• If A is visited again along P_2 with a bound of [400, 500], then

▷ it does not need to be searched again, since the previous stored value of W is -200.

• However, if the value of W is 450, then it needs to be searched again.

• The fail hard version does not store the returned value of W after its first visit since this value is less than alpha.

Questions

- What move ordering is good?
 - It may not be good to search the best possible move first.
 - It maybe better to cut off a branch with more nodes first.
- How about the case when the tree is not uniform?
- What is the effect of using iterative-deepening alpha-beta cut off?
- How about the case for searching a game graph instead of a game tree?
 - Can some nodes be visited more than once?

References and further readings

- * D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. *Artificial Intelligence*, 6:293–326, 1975.
- * John P. Fishburn. Another optimization of alpha-beta search. SIGART Bull., (84):37–38, 1983.
- J. Pearl. The solution for the branching factor of the alpha-beta pruning algorithm and its optimality. Communications of ACM, 25(8):559–564, 1982.