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Introduction

Alpha-beta pruning is the standard searching procedure used
for 2-person perfect-information zero sum games.
Definitions:
• A position p.
• The value of a position p, f(p), is a numerical value computed from

evaluating p.
. Value is computed from the root player’s point of view.
. Positive values mean in favor of the root player.
. Negative values mean in favor of the opponent.
. Since it is a zero sum game, thus from the opponent’s point of view,

the value can be assigned −f(p).
• A terminal position: a position whose value can be know.

. A position where win/loss/draw can be concluded.

. A position where some constraints are met.

• A position p has b legal moves p1, p2, . . . , pb.
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Tree node numbering

1 2 3

1.1 1.2

1.3 2.1 2.2

3.1 3.2

3.1.1 3.1.2

From the root, number a node in a search tree by a sequence
of integers a1.a2.a3.a4 · · ·
• Meaning from the root, you first take the a1th branch, then the a2th

branch, and then the a3th branch, and then the a4th branch · · ·
• The root is specified as an empty sequence.
• The depth of a node is the length of the sequence of integers specifying

it.

This is called “Dewey decimal system.”
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Mini-max formulation
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Mini-max formulation:
•

F ′(p) =

{
f(p) if b = 0
max{G′(p1), . . . , G′(pb)} if b > 0

•

G′(p) =

{
f(p) if b = 0
min{F ′(p1), . . . , F ′(pb)} if b > 0

• An indirect recursive formula!
• Equivalent to AND-OR logic.
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Algorithm: Mini-max

Algorithm F ′(position p) // max node
• determine the successor positions p1, . . . , pb
• if b = 0, then return f(p) else begin

. m := −∞

. for i := 1 to b do

. t := G′(pi)

. if t > m then m := t // find max value

• end; return m

Algorithm G′(position p) // min node
• determine the successor positions p1, . . . , pb
• if b = 0, then return f(p) else begin

. m :=∞

. for i := 1 to b do

. t := F ′(pi)

. if t < m then m := t // find min value

• end; return m

A brute-force method to try all possibilities!
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Mini-max: revised (1/2)

Algorithm F ′(position p) // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth reaches the cutoff threshold // from iterative deepening
or time is running up // from timing control
or some other constraints are met // add knowledge here

then return f(p)// current board value
else begin

. m := −∞ // initial value

. for i := 1 to b do // try each child

. begin

. t := G′(pi)

. if t > m then m := t // find max value

. end

end
• return m
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Mini-max: revised (2/2)

Algorithm G′(position p) // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth reaches the cutoff threshold // from iterative deepening
or time is running up // from timing control
or some other constraints are met // add knowledge here

then return f(p)// current board value
else begin

. m :=∞ // initial value

. for i := 1 to b do // try each child

. begin

. t := F ′(pi)

. if t < m then m := t // find min value

. end

end
• return m
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Nega-max formulation
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Nega-max formulation:
Let F (p) be the greatest possible value achievable from position
p against the optimal defensive strategy.
•

F (p) =

{
h(p) if b = 0
max{−F (p1), . . . ,−F (pb)} if b > 0

.

h(p) =

{
f(p) if depth of p is 0 or even
−f(p) if depth of p is odd
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Algorithm: Nega-max

Algorithm F (position p)
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth reaches the cutoff threshold // from iterative deepening
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

. m := −∞

. for i := 1 to b do

. begin

. t := −F (pi) // recursive call, the returned value is negated

. if t > m then m := t // always find a max value

. end

• end
• return m

Also a brute-force method to try all possibilities, but with a
simpler code.
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Intuition for improvements

Branch-and-bound: using information you have so far to cut or
prune branches.
• A branch is cut means we do not need to search it anymore.
• If you know for sure the value of your result is more than x

and the current search result for this branch so far can give you no
more than x,

. then there is no need to search this branch any further.

Two types of approaches
• Exact algorithms: through mathematical proof, it is guaranteed that

the branches pruned won’t contain the solution.
. Alpha-beta pruning: reinvented by several researchers in the 1950’s

and 1960’s.
. Scout.
. · · ·

• Approximated heuristics: with a high probability that the solution won’t
be contained in the branches pruned.

. Obtain a good estimation on the remaining cost.

. Cut a branch when it is in a very bad position and there is little hope
to gain back the advantage.
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Alpha cut-off

1 2

2.1 2.2

V=15

V=10

V <= 10

cut

V>=15

Alpha cut-off:
• On a max node

. Assume you have finished exploring the branch at 1 and obtained the
best value from it as bound.

. You now search the branch at 2 by first searching the branch at 2.1.

. Assume branch at 2.1 returns a value that is ≤ bound.

. Then no need to evaluate the branch at 2.2 and all later branches of 2,
if any, at all.

. The best possible value for the branch at 2 must be ≤ bound.

. Hence we should take value returned from the branch at 1 as the best
possible solution.
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Beta cut-off

1 2

V=15

V=10 cut

V >= 151.1 1.2

1.2.1 1.2.2

V<=10

Beta cut-off:
• On a min node

. Assume you have finished exploring the branch at 1.1 and obtained the
best value from it as bound.

. You now search the branches at 1.2 by first exploring the branch at
1.2.1.

. Assume the branch at 1.2.1 returns a value that is ≥ bound.

. Then no need to evaluate the branch at 1.2.2 and all later branches of
1.2, if any, at all.

. The best possible value for the branch at 1.2 is ≥ bound.

. Hence we should take value returned from the branch at 1.1 as the best
possible solution.
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Deep alpha cut-off

For alpha cut-off:
. For a min node u, the branch of its ancestor (e.g., elder brother of its parent)

produces a lower bound Vl.
. The first branch of u produces an upper bound Vu for v.
. If Vl ≥ Vu, then there is no need to evaluate the second branch and all later

branches, of u.

Deep alpha cut-off:
. Def: For a node u in a tree and a positive integer g, Ancestor(g, u) is the

direct ancestor of u by tracing the parent’s link g times.
. When the lower bound Vl is produced at and propagated from u’s great grand

parent, i.e., Ancestor(3,u), or any Ancestor(2i+ 1,u), i ≥ 1.
. When an upper bound Vu is returned from the a branch of u and Vl ≥ Vu,

then there is no need to evaluate all later branches of u.

We can find similar properties for deep beta cut-off.
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Illustration — Deep alpha cut-off

1 2

2.1 2.2

V=15

cut

V>=15

2.1.1

2.1.1.1 2.1.1.2

V=7

V <= 7

V>=15
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Ideas for refinements

During searching, maintain two values alpha and beta so that
• alpha is the current lower bound of the possible returned value;
• beta is the current upper bound of the possible returned value.

If during searching, we know for sure alpha > beta, then there
is no need to search any more in this branch.
• The returned value cannot be in this branch.
• Backtrack until it is the case alpha ≤ beta.

The two values alpha and beta are called the ranges of the
current search window.
• These values are dynamic.
• Initially, alpha is −∞ and beta is ∞.
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Alpha-beta pruning algorithm: Mini-Max

Algorithm F2′(position p, value alpha, value beta) // max node
• determine the successor positions p1, . . . , pb
• if b = 0, then return f(p) else begin

. m := alpha

. for i := 1 to b do

. t := G2′(pi,m, beta)

. if t > m then m := t

. if m ≥ beta then return(m) // beta cut off

• end; return m

Algorithm G2′(position p, value alpha, value beta) // min node
• determine the successor positions p1, . . . , pb
• if b = 0, then return f(p) else begin

. m := beta

. for i := 1 to b do

. t := F2′(pi, alpha,m)

. if t < m then m := t

. if m ≤ alpha then return(m) // alpha cut off

• end; return m
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Example

Initial call: F2′(root,−∞,∞)

• m = −∞
• call G2′(node 1,−∞,∞)

. it is a terminal node

. return value 15

• t = 15;
. since t > m, m is now 15

• call G2′(node 2,15,∞)
. call F2′(node 2.1,15,∞)
. it is a terminal node; return

10
. t = 10; since t <∞, m is now

10
. alpha is 15, m is 10, so we

have an alpha cut off
. no need to call
F2′(node 2.2,15,10)

. · · ·

1 2

2.1 2.2

V=15

V=10

V <= 10

cut

V>=15
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Alpha-beta pruning algorithm: Nega-max

Algorithm F2(position p, value alpha, value beta)
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth reaches the cutoff threshold // from iterative deepening
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

. m := alpha

. for i := 1 to b do

. begin

. t := −F2(pi,−beta,−m)

. if t > m then m := t

. if m ≥ beta then return(m) // cut off

. end

• end
• return m
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Examples (1/4)
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Examples (2/4)
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Examples (3/4)
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Examples (3/4)
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Examples (4/4)
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Lessons from the previous examples

It looks like for the same tree, different move orderings give
very different cut branches.
It looks like if a node can evaluate a child with the best possible
outcome earlier, then it can decide to cut earlier.
• For a min node, this means to evaluate the child branch that gives the

lowest value first.
• For a max node, this means to evaluate the child branch that gives the

highest value first.

Q: In the best possible scenario, how many nodes are cut?
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Analysis of a possible best case

Definitions:
• A path in a search tree is a sequence of numbers indicating the branches

selected in each level using the Dewey decimal system.
• A position is denoted as a path a1.a2. · · · .a` from the root.
• A position a1.a2. · · · .a` is critical if

. ai = 1 for all even values of i or

. ai = 1 for all odd values of i.

• Note: as a special case, the root is critical.
• Examples:

. 2.1.4.1.2, 1.3.1.5.1.2, 1.1.1.2.1.1.1.3 and 1.1 are critical

. 1.2.1.1.2 is not critical
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Perfect-ordering tree

A perfect-ordering tree:

F (a1. · · · .a`) =
{

h(a1. · · · .a`) if a1. · · · .a` is a terminal
−F (a1. · · · .a`.1) otherwise

• The first successor of every non-terminal position gives the best possible
value.
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Theorem 1

Theorem 1: F2 examines precisely the critical positions of a
perfect-ordering tree.
Proof sketch:
• Classify the critical positions, a.k.a. nodes.

. You must evaluate the first branch from the root to the bottom.

. Alpha cut off happens at odd-depth nodes as soon as the first branch
of this node is evaluated.

. Beta cut off happens at even-depth nodes as soon as the first branch of
this node is evaluated.

• For each type of nodes, try to associate them with the types of pruning
occurred.

TCG: α-β Pruning, 20141106, Tsan-sheng Hsu c© 27



Types of nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index, if exists, such that aj 6= 1 and ` is the last
index.
• Def: let IS1(ai) be a boolean function so that it is 0 if it is not the

value 1 and it is 1 if it is.
. We call this IS1 parity of a number.

• If j exists and ` > j, then
. aj+1 = 1 because this position is critical and thus the IS1 parities of aj

and aj+1 are different.

• Since this position is critical, if aj 6= 1, then ah = 1 for any h such that
h− j is odd.

We now classify critical nodes into 3 types.
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Type 1 nodes

type 1: the root, or a node with all the ai are 1;
• This means j does not exist.
• Nodes on the leftmost branch.
• The leftmost child of a type 1 node except the root.

type 1
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Type 2 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 2: `− j is zero or even;
• type 2.1: `− j = 0.

. It is in the form of 1.1.1. · · · .1.1.1.a` and a` 6= 1.

. The non-leftmost children of a type 1 node.

• type 2.2: `− j > 0 and is even.
. It is in the form of 1.1. · · · .1.1.aj.1.aj+2. · · · .a`−2.1.a`.
. Note, we will show 1.1. · · · .1.1.aj.1.aj+2. · · · .a`−2.1 is a type 3 node

later.
. All of the children of a type 3 node.
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Type 3 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 3: `− j is odd;
• type 3.1: ` = j + 1.

. It is of the form 1.1. · · · .1.aj.1

. The leftmost child of a type 2.1 node.

• type 3.2: ` > j + 1.
. It is of the form 1.1. · · · .1.aj.1.aj+2.1. · · · .1.a`−1.1
. The leftmost child of a type 2.2 node.
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Comments

Nodes of the same have common properties.
These properties can be used in solving other problems.
• Efficient parallel processing.

Main techniques used: you cannot have two consecutive non-1
numbers in the ID of a critical node.
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Illustration — critical nodes

1

*

1

1

1 1 1 1*1

1

1

:1 

: not 1

: any

1
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Type 2.1 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 2: `− j is zero or even;
• type 2.1: `− j = 0.

. Then ` = j.

. It is in the form of 1.1.1. · · · .1.1.1.a` and a` 6= 1.

. The non-leftmost children of a type 1 node.

type 1

type 2.1
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Type 3.1 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 3: `− j is odd;
• type 3.1: ` = j + 1.

. It is of the form 1.1. · · · .1.aj.1 and a` 6= 1.

. The leftmost child of a type 2.1 node.

type 1

type 2.1

type 3.1
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Type 2.2 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 2: `− j is zero or even;
• type 2.2: `− j > 0 and is even.

. The IS1 parties of aj and aj+1 are different.
=⇒ Since aj 6= 1, aj+1 = 1.

. (`− 1)− j is odd:
=⇒ The IS1 parties of a`−1 and aj are different.
=⇒ Since aj 6= 1, a`−1 = 1.

. It is in the form of 1.1. · · · .1.1.aj.1.aj+2. · · · .a`−2.1.a`.

. Note, we will show 1.1. · · · .1.1.aj.1.aj+2. · · · .a`−2.1 is a type 3 node
later.

. All of the children of a type 3 node.
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Type 2.2 nodes

type 1

type 2.1

type 3.1

type 2.2
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Type 3.2 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 3: `− j is odd;
• aj 6= 1 and `− j is odd

. Since this position is critical, the IS1 parities of aj and a` are different.
=⇒ a` = 1
=⇒ aj+1 = 1

• It is in the form of
. 1.1. · · · .1.aj.1.aj+2.1. · · · .1.a`−1.1.

• The leftmost child of a type 2 node.
• type 3.1: ` = j + 1.

. It is of the form 1.1. · · · .1.aj.1

. The leftmost child of a type 2.1 node.

• type 3.2: ` > j + 1.
. It is of the form 1.1. · · · .1.aj.1.aj+2.1. · · · .1.a`−1.1
. The leftmost child of a type 2.2 node.
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Type 3.2 nodes

type 1

type 2.1

type 3.1

type 2.2

type 3.2

TCG: α-β Pruning, 20141106, Tsan-sheng Hsu c© 39



Illustration

type 1
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Illustration

type 1

type 2.1
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Illustration

type 1

type 2.1

type 3.1
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Illustration

type 1

type 2.1

type 3.1

type 2.2
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Illustration

type 1

type 2.1

type 3.1

type 2.2

type 3.2
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Illustration

type 1

type 2.1

type 3.1

type 2.2

type 3.2

type 2.2
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Proof sketch for Theorem 1

Properties (invariants)
• A type 1 position p is examined by calling F2(p,−∞,∞)

. p’s first successor p1 is of type 1

. F (p) = −F (p1) 6= ±∞

. p’s other successors p2, . . . , pb are of type 2

. pi, i > 1, are examined by calling F2(pi,−∞, F (p1))

• A type 2 position p is examined by calling F2(p,−∞, beta) where
−∞ < beta ≤ F (p)

. p’s first successor p1 is of type 3

. F (p) = −F (p1)

. p’s other successors p2, . . . , pb are not examined

• A type 3 position p is examined by calling F2(p, alpha,∞) where
∞ > alpha ≥ F (p)

. p’s successors p1, . . . , pb are of type 2

. they are examined by calling F2(p1,−∞,−alpha),
F2(p2,−∞,−max{m1, alpha}), . . . , F2(pi,−∞,−max{mi−1, alpha})
where mi = F2(pi,−∞,−max{mi−1, alpha})

Using an inductive argument to prove all and also only critical
positions are examined.
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Analysis: best case

Corollary 1: Assume each position has exactly b successors
• The number of positions examined by the alpha-beta procedure on

level i is exactly
bdi/2e + bbi/2c − 1.

Proof:
• There are bbi/2c sequences of the form a1. · · · .ai with 1 ≤ ai ≤ b for all
i such that ai = 1 for all odd values of i.

• There are bdi/2e sequences of the form a1. · · · .ai with 1 ≤ ai ≤ b for all
i such that ai = 1 for all even values of i.

• We subtract 1 for the sequence 1.1. · · · .1.1 which are counted twice.

Total number of nodes visited is

∑̀
i=0

bdi/2e + bbi/2c − 1.
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Analysis: average case

Assumptions: Let a random game tree be generated in such a
way that
• each position on level j has probability qj of being nonterminal
• has an average of bj successors

Properties of the above random game tree
• Expected number of positions on level ` is b0 · b1 · · · b`−1
• Expected number of positions on level ` examined by an alpha-beta

procedure assumed the random game tree is perfectly ordered is

b0q1b2q3 · · · b`−2q`−1 + q0b1q2b3 · · · q`−2b`−1 − q0q1 · · · q`−1if ` is even;

b0q1b2q3 · · · q`−2b`−1 + q0b1q2b3 · · · b`−2q`−1 − q0q1 · · · q`−1if ` is odd

Proof sketch:
• If x is the expected number of positions of a certain type on level j,

then xbj is the expected number of successors of these positions, and
xqj is the expected number of “numbered 1” successors.

• The above numbers equal to those of Corollary 1 when qj = 1 and
bj = b for 0 ≤ j < `.
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Perfect ordering is not always best

Intuitively, we may “think” alpha-beta pruning would be most
effective when a game tree is perfectly ordered.
• That is, when the first successor of every position is the best possible

move.
• This is not always the case!

2 3 3

4

2 1 2 1

4

>=4

<=2

>=4

<=3

Truly optimum order of game trees traversal is not obvious.
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When is a branch pruned?

Assume a node r has two children u and v with u being visited
before v using some move ordering.
• Further assume u produced a new bound bound.

Assume node v has a child w.
• If the value new returned from w can cause a range conflict with bound,

then branches of v later than w are cut.

This means as long as the “relative” ordering of u and v are
good enough, then we can have some cut-off.
• There is no need for r to have the best move ordering.
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Theorem 2

Theorem 2: Alpha-beta pruning is optimum in the following
sense:
• Given any game tree and any algorithm which computes the value of

the root position, there is a way to permute the tree
. by reordering successor positions if necessary;

• so that every terminal position examined by the alpha-beta method
under this permutation is examined by the given algorithm.

• Furthermore if the value of the root is not ∞ or −∞, the alpha-beta
procedure examines precisely the positions which are critical under this
permutation.
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Variations of alpha-beta search

Initially, to search a tree with the root r by calling
F2(r,−∞,+∞).
• What does it mean to search a tree with the root r by calling
F2(r,alpha,beta)?

. To search the tree rooted at r requiring that the returned value to be
within alpha and beta.

In an alpha-beta search with a pre-assigned window [alpha, beta]:

• Failed-high means it returns a value that is larger than or equal to its
upper bound beta.

• Failed-low means it returns a value that is smaller than or equal to its
lower bound alpha.

Variations:
• Brute force Nega-Max version: F

. Always finds the correct answer according to the Nega-Max formula.

• Fail hard alpha-beta cut (Nega-Max) version: F2
• Fail soft alpha-beta cut (Nega-Max) version: F3
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Fail hard version

Original version.
Algorithm F2(position p, value alpha, value beta)
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth reaches the cutoff threshold // from iterative deepening
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

. m := alpha // hard initial value

. for i := 1 to b do

. begin

. t := −F2(pi,−beta,−m)

. if t > m then m := t // the returned value is “used”

. if m ≥ beta then return(m) // cut off

. end

• end
• return m
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Properties and comments

Properties:
• alpha < beta
• F2(p, alpha, beta) = alpha if F (p) ≤ alpha
• F2(p, alpha, beta) = F (p) if alpha < F (p) < beta
• F2(p, alpha, beta) = beta if F (p) ≥ beta
• F2(p,−∞,+∞) = F (p)

Comments:
• F2(p, alpha, beta): find the best possible value according to a nega-max

formula for the position p with the constraints that
. If F (p) is less than the lower bound alpha, then F2(p, alpha, beta)

returns with a value alpha from a terminal position whose value is
≤ alpha.

. If F (p) is more than the upper bound beta, then F2(p, alpha, beta)
returns with value beta from a terminal terminal position whose value
is ≥ beta.

• The meanings of alpha and beta during searching:
. For a max node: the current best value is at least alpha.
. For a min node: the current best value is at most beta.

• F2 always finds a value that is within alpha and beta.
. The bounds are hard, i.e., cannot be violated.
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Fail hard version: Example

−200

bound

W Q

[4000,5000]

−v

return(−200)

return(−v)F2(W,−5000,−4000)

F2(Q,−5000,−4000)

A

4000return max{           ,200,v}

As long as the value of the leaf node W is less than the
current alpha value, the returned value of A will be at least the
returned value of W .
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Fail soft version

Algorithm F3(position p, value alpha, value beta)
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth reaches the cutoff threshold // from iterative deepening
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

. m := −∞ // soft initial value

. for i := 1 to b do

. begin

. t := −F3(pi,−beta,−max{m, alpha})

. if t > m then m := t // the returned value is “used”

. if m ≥ beta then return(m) // cut off

. end

• end
• return m
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Properties and comments

Properties:
• alpha < beta
• F3(p, alpha, beta) ≤ alpha if F (p) ≤ F3(p, alpha, beta) ≤ alpha
• F3(p, alpha, beta) = F (p) if alpha < F (p) < beta
• F3(p, alpha, beta) ≥ beta if F (p) ≥ F3(p, alpha, beta) ≥ beta
• F3(p,−∞,+∞) = F (p)

F3 finds a “better” value when the value is out of the search
window.
• Better means a tighter bound.

. The bounds are soft, i.e., can be violated.

• When it fails high, F3 normally returns a value that is higher than that
of F2.

. Never higher than that of F !

• When it fails low, F3 normally returns a value that is lower than that
of F2.

. Never lower than that of F !
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Fail soft version: Example

−200

bound

W Q

[4000,5000]

F3(Q,−5000,−4000)
−v

F3(W,−5000,−4000)

return(−200)

return(−v)

return max{200,v}

A

Let the value of the leaf node W be u.
If u < alpha, then the branch at W will have a returned value
of at least u.
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Comparisons between F2 and F3

Both versions find the corrected value v if v is within the
window [alpha, beta].
Both versions scan the same set of nodes during searching.

. If the returned value of a subtree is decided by a cut, then F2 and F3 return
the same value.

F3 provides more information when the true value is out of the
pre-assigned search window.
• Can provide a feeling on how bad or good the game tree is.
• Use this “better” value to guide searching later on.

F3 saves about 7% of time than that of F2 when a transposition
table is used to save and re-use searched results [Fishburn
1983].
• A transposition table is a data structure to record the results of previous

searched results.
• The entries of a transposition table can be efficiently accessed, i.e.,

read and write, during searching.
• Need an efficient addressing scheme, e.g., hash, to translate between

a position and its address.
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F2 and F3: Example (1/2)

−200

bound

W Q

P1 P2

[4000,5000]

bound
[400,500]

A

Assume the node A can be reached from the starting position
using path P1 and path P2.
• If W is visited first along P1 with a bound of [4000, 5000], and returns

a value of 200, then
. the returned value of W , 200, is stored into the transposition table.

• If A is visited again along P2 with a bound of [400, 500], then a better
value of previously stored value of W helps to decide whether the
subtree rooted at W needs to be searched again.
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F2 and F3: Example (2/2)

−200

bound

W Q

P1 P2

[4000,5000]

bound
[400,500]

A

Fail soft version has a chance to record a better value to be
used later when this position is revisited.
• If A is visited again along P2 with a bound of [400, 500], then

. it does not need to be searched again, since the previous stored value
of W is −200.

• However, if the value of W is 450, then it needs to be searched again.

The fail hard version does not store the returned value of W
after its first visit since this value is less than alpha.
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Questions

What move ordering is good?
• It may not be good to search the best possible move first.
• It maybe better to cut off a branch with more nodes first.

How about the case when the tree is not uniform?
What is the effect of using iterative-deepening alpha-beta cut
off?
How about the case for searching a game graph instead of a
game tree?
• Can some nodes be visited more than once?
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