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Abstract

Introducing the original ideas of using Monte-Carlo simulation
in computer Go.

o Sequential Implementation only here.

e From pure Monte-Carlo simulation to a tree based UCT simulation.

Adding new ideas to pure Monte-Carlo approach for computer
Go.
e On-line knowledge
> Progressive pruning
> All moves as first heuristic
> Node expansion policy
> Temperature
> Depth-2 tree search

o Off-line domain knowledge

> Node expansion
> Better simulation policy

Conclusion:
o With the ever-increasing power of computers, we can add more knowl-
edge to the Monte-Carlo approach to get a reasonable solution for
computer games.
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Basics of Go (1/2)

Black first, a player can pass anytime. It’'s a draw when both

players pass.
e Use the rule of Ko to avoid endless repeated plys.

intersection: a cell where a stone can be placed or is placed.

two intersections are connected: they are either adjacent
vertically or horizontally.

string: a connected, i.e., vertically or horizontally, set of stones
of one color.

liberty: the number of connected empty intersections.
o Usually we find the amount of liberties for a stone or a string.
e A string with no liberty is captured.
eye:
o Exact definition: very difficult to be understood and implemented.
o Approximated definition:

> An empty intersection surrounded by stones of one color with two lib-
erties or more.

> An empty intersection surrounded by stones belonging to the same
string.
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Basics of Go (2/2)
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A black string with 3 liberties.

A black string with 2 eyes.

o A string with 2 internal eyes cannot be captured unless you fill in one
of the eyes first.
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The rule of Ko

Place a white stone at 1, a black stone is captured.
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Place a black stone at 2, a white stone is captured.
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General rules of Go

Black plays first.
A string without liberty is removed.

You cannot place a stone and results in a previous position.
after the removing of strings without liberty.
e You cannot create a loop.

You can pass, but cannot play a suicide ply.

You can place a stone in a place without liberty if as a result
you capture opponent’s stones.

When both players pass in consecutive plys, the game ends.

The one with more stones and eyes wins at the end of the
game.

When calculating the final score, the black side, namely the
first player, has a penalty of X stones, which is set by what is

called Komi.
o To offset the initiative.
e When X is an integer, you can draw a game.
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Implementation

How to partition stones into strings?
o Scan the stones one by one.
e For each unvisited stone

> do a DFS to find all stones of the same color that are connected
e Can use a good data structure to maintain this information when a
stone is placed.
> ex: disjoint union-find

How to know an empty intersection is an eye?
e check its 4 neighbors
e each neighbor must be either

> out of board, or
> it is in the same string with the other neighbors.

How to find out the amount of liberties of a string?
o for each empty intersection, check its 4 neighbors

> it is a liberty of the string where its neighbor is in

> make sure an empty intersection contributes at most 1 in counting the
amount of liberties of a string
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Why Alpha-Beta cut won’t work on Go?

Alpha-beta based searching has been used since the dawn of
CS.

o Effective when a good evaluating function can be computed efficiently.
o Good for games with a not-too-large branching factor, say within 40

and a relative small effective branching factor, say within 5.
Go has a huge branching and a good evaluating function cannot

be easily computed.
o First Go program is probably written by Albert Zobrist around 1968.

o Until 2004, due to a lack of major break through, the performance of
computer Go programs is around 5 to 8 kyu for a very long time.

e Need new ideas.
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Monte-Carlo search: original ideas

Algorithm MCS,,,,.:

e For each possible next move
> Play a large number of almost random games from a position to the

end, and score them.
o Evaluate a move by computing the average of the scores of the random

games in which it had played.
o Play a move with the best score.
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How scores are calculated

Score of a game: the difference of the the total numbers of
stones for the two sides.

Evaluation of the moves:
e Moves are considered independent of positions.
o Moves were evaluated according to the average scores of the games in
which they were played, not only at the beginning but at every stage
of the games provided that it was the first time one player had played

at the intersection.
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How almost random games are played

No filling of the eyes when doing a random game.

o The only domain-dependent knowledge used in the original version of
GOBBLE in 1993.

Moves are ordered according to their current scores.

Ideas from “simulating annealing” were used to control the
probability that a move could be played out of order.

e The amount of randomness put in the games was controlled by the
controlled by the temperature.

> The temperature was set high in the beginning, and then graduately
decreased.

> For example, the amount of randomness can be a random value drawn
from the interval [—v(N)-e “'™W) y(N)-e ' ™)] where v(N) is the value
at the Nth iteration, c is a constant and t(IN) = N is the temperature
at the Nth iteration.

> Simulating annealing is not required, but was used in the original 1993
version.
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Results

Original version: GOBBLE 1993.

e Performance is not good compared to other Go programs.

Enhanced versions
o Adding the idea of minimax tree search.

e Adding more domain knowledge.
o Adding more techniques.
> Much more than what are discussed here.

o Building theoretical foundations from statistics, and on-line and off-line
learning.

Recent results
e MoGo
> Won CO champion of the 19 x 19 version in 2007.

> Beat a professional human 8 dan with a 8-stone handicap at January
2008.
> Judged to be in a “professional” level for 9 x 9 Go in 2009.

o Zen:

> Is close to amateur 3-dan in 2011.

> Beat a 9-dan professional master with handicaps at March 17, 2012.
First game: Five stone handicap and won by 11 points.
Second game: four stones handicap and won by 20 points.
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Problems of MCS,,,.

The average score of a branch sometimes does not capture the
essential idea of a minimax tree search.

MAX

MIN

MAX

+ 5 10 3 17

May spend too much time on hopeless branches.
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First major refinement

Intuition:
o Initially, obtain a partial representing the current possible choices that
are needed to be further investigated.
o Perform some simulations on the leaf at the PV branch.

> A PV path is a path from the root so that each node in this path has
a largest score among all of its siblings.

Update the scores of nodes in the current tree using a mini-max
formula.

o Grow a best leaf at the PV one level.

e Repeat the above process until time runs out.

Best first tree growing
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Best first tree growing: algorithm

When the number of simulations done on a node is not enough,
the mini-max formula of the scores on the children may not be

a good approximation of the true value of the node.
e For example on a MIN node, if not enough children are probed for

enough number of times, then you may miss a very bad branch.
When the number of simulations done on a node is enough,
the mini-max value is a good approximation of the true value
of the node.

Use a formula to take into the consideration of node counts
so that it will initially act as returning the mean value and
then shift to computing the normal mini-max value [Bouzy

2004],[Coulom 2006],[Chaslot et al 2006].
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Monte-Carlo based tree search

Algorithm MCTS,.;.: // Monte-Carlo mini-max tree search
1: Obtain an initial game tree

2: Repeat the following sequence N;,.,; times
e 2.1: Selection

> From the root, pick one path to a leaf with the best ‘“score” using a
mini-max formula.

o 2.2: Expansion

> From the chosen leaf with the best score, expand it by one level using
a good node expansion policy.

e 2.3: Simulation
> For the expanded leaves, perform some trials (playouts).

o 2.4: Back propagation

> Update the ‘“scores” for nodes from the selected leaves to the root using
a good back propagation policy.

Pick a child of the root with the current score as your move.
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lllustration: Tree growing
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lllustration: Best first tree growing

simulations

and then pick the best |eaf to expand
—+ Grow the best |eaf
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Second major refinement

Efficient sampling:
e Original: equally distributed among all legal moves.
o Biased sampling: sample some moves more often than others.

Observations:

e Some moves are bad and do not need further exploring.

o Should spend some time to verify whether a move that is current good
will remain good or not.

e Need to have a mechanism for moves that are bad because of extremely
bad luck to have a chance to be reconsidered later.
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Better playout allocation

K-arm bandit problem:
o Assume you have K slot machines each with a different payoff, i.e.,
expected value of returns 1;, and an unknown distribution.
e Assume you can bet on the machines N times, what is the best strategy
to get the largest returns?

Ideas:
e Try each machine a few, but enough, times and record their returns.
o For the machines that currently have the best returns, play more often

later on.
e For the machines that currently return poorly, give them a chance from
time to time just in case their distributions are bad for the runs you

tried.
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UuCB

UCB: Upper Confidence Bound

e For each child M, of a parent node v, compute its

UCB; = % +c IO]%ZV where

> W, is the number of win’s for move M,

> N, is the total number of games played M,

> N is the total number of games played on v, and
>

c is a constant called exploration parameter which controls how often
a slightly bad move be tried.

o Expand a new simulated game for the move with the highest UCB
value.

Note:
o We only compare UCB scores among children of a node.
o It is meaningless to compare scores of nodes that are not siblings.

Using c to keep a balance between

o Exploitation: exploring the best move so far.
o Exploration: exploring other moves to see if they can be proved to be
better.
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lllustration: using UCB scores

—+  score=winning rate
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Other formulas for UCB

Other formulas are available from the statistic domain.
o Ease of computing

o Better statistical behaviors
> For example, consider the variance of scores in each branch.

Example: consider the games are either win (1) or lose (0), and

there is no draw.
o Then u; = W;/N; is the expected value of the playouts simulated from
this position.
o Let o7 be the variance of the playouts simulated from this position.

o Define V; = 07 + ¢ lojg\,]_v where c; is a constant to be decided by

experiments.
o A revised UCB formula is

log N
,LL7;—|—C\/ O]%[ min{V;, ¢},

1

where ¢ and ¢, are both constants to be decided by experiments [Auer
et al 2002].
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Tree growing using UCB scores
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UCT

UCT: Upper Confidence Bound for Tree

e Maintain the UCB value for each node in the game tree that is visited
so far.

o Best first tree growing:

> From the root, pick a PV path such that each node in this path has a
largest UCB score among all of its siblings.

> Pick the leaf-node in the PV path and has been visited more than a
certain amount of times to expand.

UCT approximates mini-max tree search with cuts on proven
worst portion of trees.

Usable when the “density of goals” is sufficiently large.

e When there is only a unique goal, Monte-Carlo based simulation may
not be useful.

o The “density” and distribution of the goals may be something to
consider when picking the threshold for the number of playouts.
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Comments about the UCB value

For each node )/;, its UCB, = V]\‘f +c loji,]_v.

1

What does “winning rate” mean:
e For a MAX node, W; is the number of win’s for the MAX player.
e For a MIN node, W, is the number of win’s for the MIN player.

When N, is approaching log N, then UCB,; is nothing but the

current winning rate plus a constant.
e When N is very large, then the current winning rate is approaching the
real winning rate for this node.
o If you walk down the tree from the root along the path with the largest
UCB values, then it is like walking down the PV.
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Implementation hints (1/3)

Each node m; maintains 3 counters W;, L; and D;, which are
the number of games won, lost, and drawn, respectively, for

playouts simulated starting from this position.
e Note that Nz = Wz + Lz + Dz
o For ease of coding, the numbers are from the view point of the root,
namely MAX, player.

Assume m; 1, m; 9, ..., m;, are the children of m;.
o W, = Z?:l Wi,j
o Li=3"_ L
e Dj=3"_ D,

“Winning rate”

o For a MAX node, it is W;/N,.
o For a MIN node, it is L;/N;.
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Implementation hints (2/3)

Only nodes in the current “partial” tree maintained the 3
counters.

Assume m; i, m;9,...,m;, are the children of m; that are
currently in the “partial” tree.
o It is better to maintain a “default” node representing the information
of playouts simulated when m; was a leaf.
When any counter of a node v is updated, it is important to
update the counters of its ancestors.

Need efficient data structures and algorithms to maintain the
UCB value of each node.

e When a simulated playout is completed, the UCB scores of all nodes

are updated because the total number of playouts, N, is increased by
1.

> The winning rate of all v and v’s ancestors are also changed.
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Implementation hints (3/3)

How to incrementally update mean and variance of a node?
o Assume the results of the simulation form the sequence
x17x27x37"'7xiaxi+17x@;+27"' )
o Let Var(n) be the variance of the first n elements. Hence

Var(n) = 157 (; — u(n))? where u(n) = 1 S0z,

T n
e In each node, we maintain the following data:
> n
> sum2(n) = > 1, x?
2

Hence sum2(n + 1) = sum2(n) + x,
> suml(n) = > 1" x;
Hence suml(n + 1) = suml(n) + 11

o pu(n) =21.suml(n)

o Var(n) =L (sum2(n) — 2 p(n) - suml(n)) + p(n)?
Note:
e In general, we do not perform a division operator unless it is really

needed to do so.
o If the value of a node can only be 0 or 1, then suml(n) = sum2(n).

o If the value of a node can be something else, then suml(n) and
sum2(n) may be different.
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MCTS with UCT

Algorithm MCTS:
1: Obtain an initial game tree

2: Repeat the following sequence N;,;,; times
e 2.1: Selection

> From the root, pick a PV path to a leaf such that each node has best
UCB score among its siblings.

> May decide to “trust” the score of a node if it is visited more than a
threshold number of times.

> May decide to “prune” a node if its raw score is too bad to save time.

o 2.2: Expansion
> From a leaf with the best UCB score, expand it by one level.
> Use some node expansion policy to expand.

e 2.3: Simulation
> For the expanded leaves, perform some trials (playouts).
> May decide to add knowledge into the trials.

o 2.4: Back propagation
> Update the UCB scores for nodes using a good back propagation policy.

Pick a child of the root with the best win rate as your move.
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Domain independent refinements

Main considerations
e Avoid doing un-needed computations
o Increase the speed of convergence
o Avoid early mis-judgement
e Avoid extreme bad cases
Refinements came from on-line knowledge.
e Progressive pruning.
> Cut hopeless nodes early.

o All moves at first.
> Increase the speed of convergence.

e Node expansion policy.
> Grow only nodes with a potential.

o Temperature.
> Introduce randommness.

e Depth-: enhancement.

> With regard to Line 1, the initial phase, exhaustively enumerate all
possibilities.
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Progressive pruning (1/4)

Each move has a mean value m and a standard deviation o.
o Left expected outcome m; =m —ry - o.
e Right expected outcome m, =m +ry-o.
e 74 is a ratio fixed up by practical experiments.

A move M, is statistically inferior to another move M, if
My.m, < My.m;.

Two moves M; and M, are statistically equal if M;,.c < o,
Msy.0 < 0. and no move is statistically inferior to the other.

e 0, is called standard deviation for equality.
o lIts value is determined by experiments.

Remarks:
o We only compare nodes that are of the same parent.
o We usually compare their raw scores not their UCB values.
o If you use UCB scores, then the mean and standard deviation of a
move are those calculated only from its un-pruned children.
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Progressive pruning (2/4)

After a minimal number of random games, say 100 per move, a
move is pruned as soon as it is statistically inferior to another.
e For a pruned move:

> INot considered as a legal move.
> INo need to maintain its UCB information.

o This process is stopped when
> this is the only one move left for its parent, or
> the moves left are statistically equal, or

> a maximal threshold, say 10,000 multiplied by the number of legal
moves, of iterations is reached.

Two different pruning rules.

e Hard: a pruned move cannot be a candidate later on.
o Soft: a move pruned at a given time can be a candidate later on if its
value is no longer statistically inferior to a currently active move.

> The score of an active move may be decreased when more simulations
are performed.

> Periodically check whether to reactive it.

TCG: Monte-Carlo Game Tree Search, 20141224, Tsan-sheng Hsu (© 36



Progressive pruning (3/4)

Selection of r,.
o The greater r, is,
> the less pruned the moves are;
> the better the algorithm performs;
> the slower the play is.

Td 1 2 4
o Results [Bouzy et al 2004]): score | 0 | 4+ 5.6 ‘ + 7.3
time | 10’ 35’ 90’
Selection of o..
e The smaller o. is,
> the fewer equalities there are;
> the better the algorithm performs;
> the slower the play is.
Oc 0.2 ] 0.5 1
o Results [Bouzy et al 2004]: score | 0 | -0.7 | -6.7
time | 10° | 9 [

Conclusions:
e 74 plays an important role in the move pruning process.
e 0. is less sensitive.

TCG: Monte-Carlo Game Tree Search, 20141224, Tsan-sheng Hsu (©

8
+9.0
150’

37



Progressive pruning (4/4)

Comments:
o It makes little sense to compare nodes that are of different depths or
belonged to different players.
e Another trick that may need consideration is progressive widening or
progressive un-pruning.

> A node is effective if enough simulations are done on it and its values
are good.

» Note that we can set a threshold on whether to expand or grow the
end of the PV path.

> This threshold can be enough simulations are done and/or the score is
good enough.

> Use this threshold to control the way the underline tree is expanded.

> If this threshold is high, then it will not expand any node and looks
like the original version.

> If this threshold is low, then we may make not enough simulations for
each node in the underline tree.
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All-moves-as-first heuristic (AMAF)

How to perform statistics for a completed random game?
o Basic idea: its score is used for the first move of the game only.

o All-moves-as-first AMAF: its score is used for all moves played in the
game as if they were the first to be played.

AMAF Updating rules:

o If a playout P, starting from the root following PV towards the best
leaf and then appending a simulation run, passes through a node v
with a sibling node u, then

> the counters at v is updated;
> the counters at u is also updated if P later contains the node u.

o Note, we apply this update rule for all nodes in P regardless nodes
made by the player that is different from the root player.
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lllustration: AMAF

Assume a playout is simulated
with the sequence of r, v, vy, u,
w’ o o o

The statistics of nodes along
this path are updated. W

The statistics of node u that is
a child of r, and node w that is
a child of v are also updated.
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AMAF: Pro’s and Con’s

Advantage:
o All-moves-as-first helps speeding up the experiments.

Drawbacks:
e The evaluation of a move from a random game in which it was played
at a late stage is less reliable than when it is played at an early stage.
e Recapturing.
> Order of moves is important for certain games;

> Modification: if several moves are played at the same place because of
captures, modify the statistics only for the player who played first.

e Some move is good only for one player.

> It does not evaluate the value of an intersection for the player to move,
but rather the difference between the values of the intersections when
it is played by one player or the other.
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AMAF: results

Results [Bouzy et al 2004]:

o Basic idea is very slow: 2 hours vs b minutes.
e Relative scores between different heuristics.

AMAF | basic idea | PP
0 | +13.0 |+ 4.0

e Number of random games N: relative scores with different values of
N using AMAF.

N | 1000 | 10000 | 100000
scores | -12.7 ] 0 | 43.2

> Using the value of 10000 is better.

Comments:

o The statistical natural is something very similar to the history heuristic
as used in alpha-beta based searching.
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AMAF refinement — RAVE

Definitions:
o Let v;(m) be the score of a move m without using AMAF.

o Let v5(m) be the score of a move m with AMAF.

Observations:
o vi(m) is good when sufficient number of trials are performed starting

with m.
o vy(m) is a good guess for the true score of the move m when
> it is approaching the end of a game;

> when too few trials are performed starting with m such as when the
node for m is first expanded.

Rapid Action Value Estimate (RAVE)
o Let revised score v3(m) = a-vi(m) + (1 — «) - vo(m) with a properly
chosen value of .
o Other formulas for mixing the two scores exist.
e Can dynamically change o as the game goes.

> For example: o = min{1, N,,/10000}, where N,, is the number of play-
outs done on m.

> This means when N,, reaches 10000, then no RAVE is used.
Works out better than setting o = 0, i.e., pure AMAF.
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RAVE

Some other forms of formula for using the RAVE values are
know.

Silver in his 2009 Ph.D. thesis.
o Let 5=1—nq.

o Let N, = N,, + N/ where N/ is the number of simulations from
AMAF at a move m.

. Ny, . . . o
o 0= N TN AN N where b is a constant to be decided empirically.
Discussion:
¢ B — Nm
Nm+1—|—4b2Nm

> 1 < 1
» We know N,, > N,,, hence o 462N <8< ens

o During updating, when N/ increases a lot due to AMAF being applied
on many of its children, then 3 becomes larger.

TCG: Monte-Carlo Game Tree Search, 20141224, Tsan-sheng Hsu (© 44



Node expansion

May decide to expand potentially good nodes judging from the
current statistics [Yajima et al 2011].

o All ends: expand all possible children of a newly added node.

o Visit count: delay the expansion of a node until it is visited a certain
number of times.

o Transition probability: delay the expansion of a node until its “score”
or estimated visit count is high comparing to its siblings.

> Use the current value, variance and parent’s value to derive a good
estimation using statistical methods.

Expansion policy with some transition probability is much better
than the “all ends” or “pure visit count” policy.
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Temperature

Constant temperature: consider all the legal moves and play
one of them with a probability proportional to exp(K - v), where

e K is the temperature, and
e v is the current value.

Results [Bouzy et al 2004]:
K | 0 2] 5 | 10| 20
score | -8.1 0] +2.6|-4.9]|-11.3

Simulated annealing:
e increases K from 0 to 5 over time does not enhance the performance.
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Depth-: enhancement

Algorithm:
o Enumerate all possible positions from the root after : moves are made.
e For each position, use Monte-Carlo simulation to get an average score.

e Use a minimax formula to compute the best move from the average
scores on the leaves.

Result [Bouzy et al 2004]: depth-2 is worse than depth-1 due to
oscillating behaviors normally observed in iterative deepening.

o Depth-1 overestimates the root’s value.
e Depth-2 underestimates the root’s value.
o It is computational difficult to get depth-: results for i > 2.
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Putting everything together

Two versions [Bouzy et al 2004]:

e Depth =1, r;, =1, 0. = 0.2 with PP, and basic idea.

e K =2, no PP, and all-moves-as-first.
Still worse than GnuGo in 2004, a Go program with lots of
domain knowledge, by more than 30 points.

Conclusions:
o Add tactical search: for example, ladders.
o As the computer goes faster, more domain knowledge can be added.
o Exploring the locality of Go using statistical methods.
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Ladder

White to move next at 1, then black at 2, then white at 3, and
then black at 4, ...
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Domain dependent refinements

Main consideration
e Adding domain knowledge

Refinements came from off-line training
e During the expansion phase:

> Special case: open game.

> General case: use domain knowledge to expand only the nodes that are
meaningful such in the case of Go.

e During the simulation phase: try to find a better simulation policy.

> Simulation balancing for getting a better playout policy.
> Other techniques are also known.
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Simulation balancing (SB) — Go

Use ideas from data mining:

o Features: all possible, for example 3 = 3 patterns, i.e., 3° = 19,683 of
them [Huang et al. 2011].

e Training set: known game records.
o Try to find a set of weights for the features to maximize the score.

When doing the simulation, use the sum of weighted feature
values to select the next move for each player.

o It is easy to have an efficient implementation.

e Can add some amount of randomness in selecting the moves, such as
using the idea of temperature.

Results are very good.

o A very good playout policy may not be good for the purpose of finding
out the average behavior.

> The samplings must be consider the average “real” behavior of a player
can make.

> It is extremely unlikely that a player will make trivially bad moves.

e Need to balance the time used in carrying out the policy found and
the number of simulations can be computed.
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Important notes

We only describe some specific implementations of Monte-Carlo
techniques.
o Other implementations exist for say AMAF and others.

It is important to know the underling “theory” that make a
technique useful, not a particular implementation.

Depending on the amount of resources you have, you can
e decide the frequency to update the node information,
o decide the frequency to re-pick PV,
o decide the frequency to prune/unprune nodes.

You also need to know the precision and cost of your floating-
point number computation which is the core of calculating UCB
scores.

TCG: Monte-Carlo Game Tree Search, 20141224, Tsan-sheng Hsu (© 52



Comments (1/2)

Proven to be successful on a few games.
e Very successful on Go.

Not very successful on some games.
e Not currently very good on Chess or Chess-like games.

Performance becomes better when the game is going to
converge.

Needs a good random playout strategy that can simulate the

average behavior of the current position efficiently.
e On a bad position, do not try to always get the best play.
e On a good position, try to usually get the best play.

It is still an art to find out what coefficients to set.
e Need a theory to efficiently find out the values of the right coefficients.
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Comments (2/2)

The “reliability” of a Monte-Carlo simulation depends on the
number of trials it performs.
e The rate of convergence is important.
e Do enough number of trials, but not too much for the sake of saving
computing time.
Adding more knowledge can slow down each simulation trial.

o There should be a tradeoff between the amount of knowledge added
and the number of trials performed.
o Similar situation in searching based approach:

> How much time should one spent on computing the evaluating function
for the leaf nodes?

> How much time should one spent on searching deeper?

Knowledge, or patterns, about Go can be computed off-lined
by Monte-Carlo methods.
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