Theory of Computer Games: Selected Advanced Topics

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Abstract

- Some advanced research issues.
 - The graph history interaction (GHI) problem.
 - Opponent models.
 - Searching chance nodes.
 - Proof-number search.
The graph history interaction (GHI) problem [Campbell 1985]:
- In a game graph, a position can be visited by more than one paths.
- The value of the position depends on the path visiting it.
 - It can be win, loss or draw for Chinese chess.
 - It can only be draw for Western chess.
 - It can only be loss for Go.

In the transposition table, you record the value of a position, but not the path leading to it.
- Values computed from rules on repetition cannot be used later on.
- It takes a huge amount of storage to store all the paths visiting it.

This is a very difficult problem to be solved in real time [Wu et al. ’05].
• Assume the one causes loops loses the game.

• \(A \rightarrow B \rightarrow E \rightarrow I \rightarrow J \rightarrow H \rightarrow E \) is loss because of rules of repetition.
 ▶ Memorized \(H \) as a loss position.

• \(A \rightarrow B \rightarrow D \) is a loss.

• \(A \rightarrow C \rightarrow F \rightarrow H \) is loss because \(H \) is recorded as loss.

• \(A \) is loss because both branches lead to loss.

• However, \(A \rightarrow C \rightarrow F \rightarrow H \rightarrow E \rightarrow G \) is a win.
Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.

- What will happen when there are two strategies or evaluating functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$
 - “better” means closer to the real value $f(p)$
 - for some positions q, $f_2(q)$ is better than $f_1(q)$

- If you are using f_1 and you know your opponent is using f_2, what can be done to take advantage of this information.
 - This is called OM (opponent model) search [Carmel and Markovitch 1996].
 - In a MAX node, use f_1.
 - In a MIN node, use f_2.
Opponent models – comments

- **Comments:**
 - Need to know your opponent’s model precisely or to have some knowledge about your opponent.
 - How to learn the opponent model on-line or off-line?
 - When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.
Search with chance nodes

- **Chinese dark chess**
 - Two player, zero sum, complete information
 - Perfect information
 - Stochastic
 - There is a chance node during searching [Ballard 1983].
 - The value of a node is a distribution, not a fixed value.

- **Previous work**
 - Alpha-beta based [Ballard 1983]
 - Monte-Carlo based [Lancoto et al 2013]
It’s black turn and black has 6 different possible legal moves including 4 of them being moving its elephant and two flipping moves at a1 or a8.
- It is difficult for black to secure a win by moving its elephant.
Example (2/3)

- If black flips a1, then it becomes one of the 2 followings cases.
 - If a1 is black cannon, then black may win.
 - If a1 is black king, then it is difficult for black to win.
Example (3/3)

- If black flips a8, then it becomes one of the 2 followings cases.
 - If a8 is black cannon, then it is difficult for black to win.
 - If a8 is black king, then black may lose.
Basic ideas for searching chance nodes

- Assume a chance node x has a score probability distribution function $Pr(*)$ with the range of possible outcomes from 1 to N where N is a positive integer.
 - For each possible outcome i, we need to compute $score(i)$.
 - The expected value $E = \sum_{i=1}^{N} score(i) \times Pr(x = i)$.
 - The minimum value is $m = \min_{i=1}^{N} \{score(i) \mid Pr(x = i) > 0\}$.
 - The maximum value is $M = \max_{i=1}^{N} \{score(i) \mid Pr(x = i) > 0\}$.

- Example: open game in Chinese dark chess.
 - For the first ply, $N = 14 \times 32$.
 - Using symmetry, we can reduce it to 7*8.
 - We now consider the chance node of flipping the piece at the cell a1.
 - $N = 14$.
 - Assume $x = 1$ means a black King is revealed and $x = 8$ means a red King is revealed.
 - Then $score(1) = score(8)$ since the first player owns the revealed king no matter its color is.
 - $Pr(x = 1) = Pr(x = 8) = 1/14$.

TCG: Selected advanced topics, 20170109, Tsan-sheng Hsuc © 2017
Bounds in a chance node

Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase i, $i = N$ is evaluated.

- Assume $v_{min} \leq score(i) \leq v_{max}$.

How do the lower and upper bounds, namely m_i and M_i, of the chance node change at the end of phase i?

- $i = 0$.
 - $m_0 = v_{min}$
 - $M_0 = v_{max}$

- $i = 1$, we first compute $score(1)$, and then know
 - $m_1 \geq score(1) \times Pr(x = 1) + v_{min} \times (1 - Pr(x = 1))$, and
 - $M_1 \leq score(1) \times Pr(x = 1) + v_{max} \times (1 - Pr(x = 1))$.

- ...

- $i = i^*$, we have computed $score(1), \ldots, score(i^*)$, and then know
 - $m_{i^*} \geq \sum_{i=1}^{i^*} score(i) \times Pr(x = i) + v_{min} \times (1 - \sum_{i=1}^{i^*} Pr(x = i))$, and
 - $M_{i^*} \leq \sum_{i=1}^{i^*} score(i) \times Pr(x = i) + v_{max} \times (1 - \sum_{i=1}^{i^*} Pr(x = i))$.

TCG: Selected advanced topics, 20170109, Tsan-sheng Hsu ©
Algorithm: Chance_Search

- **Algorithm** $F^{2.1'}(\text{position } p, \text{ value } \alpha, \text{ value } \beta)$
 // max node
 - determine the successor positions p_1, \ldots, p_b
 - if $b = 0$, then return $f(p)$
 else begin
 ▶ $m := \alpha$
 ▶ for $i := 1$ to b do
 ▶ begin
 ▶ if p_i is to play a chance node n
 then $t := Star1_F^{2.1'}(p_i, n, \alpha, \beta)$
 ▶ else $t := G^{2.1'}(p_i, m, \beta)$
 ▶ if $t > m$ then $m := t$
 ▶ if $m \geq \beta$ then return(m) // beta cut off
 ▶ end
 ▶ end;
 ▶ return m
Algorithm: Chance_Search

- **Algorithm Star1_F2.1'** (position \(p \), node \(n \), value \(\alpha \), value \(\beta \))
 - // return the expected value of a chance node \(n \)
 - determine the possible values of the chance node \(n \) to be \(k_1, \ldots, k_c \)
 - \(m_0 = \alpha; \) // current lower bound, \(\alpha \geq v_{\min} \)
 - \(M_0 = \beta; \) // current upper bound, \(\beta \leq v_{\max} \)
 - \(v_{\text{sum}} = 0; \) // current expected value
 - for \(i = 1 \) to \(c \) do
 - begin
 - let \(p_i \) be the position of assigning \(k_i \) to \(n \) in \(p \);
 - \(t := G2.1'(p_i, \max\{m_{i-1}, v_{\min}\}, \min\{M_{i-1}, v_{\max}\}); \)
 - if \(t \leq m_{i-1} \) then \(t := \alpha; \)
 - if \(t \geq M_{i-1} \) then \(t := \beta; \)
 - \(v_{\text{sum}} += t \times Pr_i \)
 - \(m_i = m_{i-1} + (t - \alpha) \times Pr_i; \)
 - \(M_i = M_{i-1} + (t - \beta) \times Pr_i; \)
 - \(\ldots \)
 - end
 - return \(v_{\text{sum}}; \)
Example: Chinese dark chess

Assumption:

- The range of the scores of Chinese dark chess is $[-10, 10]$ inclusive, $\alpha = -10$ and $\beta = 10$.
- $N = 7$.
- $Pr(x = i) = 1/N = 1/7$.

Calculation:

- $i = 0$,
 - $m_0 = -10$.
 - $M_0 = 10$.
- $i = 1$ and if $score(1) = -2$, then
 - $m_1 = -2 \times 1/7 + -10 \times 6/7 = -62/7 \approx -8.86$.
 - $M_1 = -2 \times 1/7 + 10 \times 6/7 = 58/7 \approx 8.26$.
- $i = 1$ and if $score(1) = 3$, then
 - $m_1 = 3 \times 1/7 + -10 \times 6/7 = -57/7 \approx -8.14$.
 - $M_1 = 3 \times 1/7 + 10 \times 6/7 = 63/7 = 9$.

TCG: Selected advanced topics, 20170109, Tsan-sheng Hsu ©
Comments

- We illustrate the ideas using a fail hard version of the alpha-beta algorithm.
 - Fail hard version has a simple logic in maintaining the search interval.
 - The semantic of comparing an exact returning value with an expected returning value is something that needs careful thinking.
 - May want to pick a chance node with a lower value but having a hope of winning not one with a slightly higher value but having no hope of winning when you are in disadvantageous positions.
 - May want to pick a chance node with a lower value but having no chance of losing, not one with a slightly higher value but having a chance of losing when you are in advantage positions.

- Need to revise algorithms carefully when dealing with the fail sort version or the NegaScout version.
 - What does it mean to combine bounds from a fail soft version?

- Exist other improvements by considering better move orderings involving chance nodes.
How to use these bounds

- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
 - Nicely fit into the alpha-beta search algorithm.
- Can do better by not searching the DFS order.
 - It is not necessary to search completely the subtree of $x = 1$ first, and then start to look at the subtree of $x = 2$.
 - Assume it is a MAX chance node, e.g., the opponent takes a flip.
 - Knowing some value v'_1 of a subtree for $x = 1$ gives an upper bound, i.e., $\text{score}(1) \geq v'_1$.
 - Knowing some value v'_2 of a subtree for $x = 2$ gives another upper bound, i.e., $\text{score}(2) \geq v'_2$.
 - These bounds can be used to make the search window further narrower.
- For Monte-Carlo based algorithm, we need to use a sparse sampling algorithm to efficiently estimate the expected value of a chance node [Kearn et al 2002].
Ideas for new search methods

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
 - win, or not win which is lose or draw;
 - lose, or not lose which is win or draw;
 - Call this a binary valued game tree.

- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
 - The value of the root is either 0 or 1.
 - If a branch of the root returns 1, then we know for sure the value of the root is 1.
 - The value of the root is 0 only when all branches of the root returns 0.
 - An AND-OR game tree search.
Which node to search next?

- **A most proving node** for a node u: a node if its value is 1, then the value of u is 1.
- **A most disproving node** for a node u: a node if its value is 0, then the value of u is 0.

\[
\begin{array}{c}
\text{d} & \text{e} & \text{f} & \text{g} & \text{h} \\
1 & ? & ? & 1 & ?
\end{array}
\quad
\begin{array}{c}
\text{d} & \text{e} & \text{f} & \text{g} & \text{h} \\
1 & ? & ? & 1 & ?
\end{array}
\]
Proof or Disproof Number

- Assign a **proof number** and a **disproof number** to each node u in a binary valued game tree.
 - $\text{proof}(u)$: the minimum number of leaves needed to visited in order for the value of u to be 1.
 - $\text{disproof}(u)$: the minimum number of leaves needed to visited in order for the value of u to be 0.
Proof Number: Definition

- **u is a leaf:**
 - If \(\text{value}(u) \) is unknown, then \(\text{proof}(u) \) is the cost of evaluating \(u \).
 - If \(\text{value}(u) \) is 1, then \(\text{proof}(u) = 0 \).
 - If \(\text{value}(u) \) is 0, then \(\text{proof}(u) = \infty \).

- **u is an internal node with all of the children \(u_1, \ldots, u_b \):**
 - if \(u \) is a MAX node,
 \[
 \text{proof}(u) = \min_{i=1}^{i=b} \text{proof}(u_i);
 \]
 - if \(u \) is a MIN node,
 \[
 \text{proof}(u) = \sum_{i=1}^{i=b} \text{proof}(u_i).
 \]
Disproof Number: Definition

- u is a leaf:
 - If $\text{value}(u)$ is unknown, then $\text{disproof}(u)$ is cost of evaluating u.
 - If $\text{value}(u)$ is 1, then $\text{disproof}(u) = \infty$.
 - If $\text{value}(u)$ is 0, then $\text{disproof}(u) = 0$.

- u is an internal node with all of the children u_1, \ldots, u_b:
 - if u is a MAX node,
 \[
 \text{disproof}(u) = \sum_{i=1}^{i=b} \text{disproof}(u_i);
 \]
 - if u is a MIN node,
 \[
 \text{disproof}(u) = \min_{i=1}^{i=b} \text{disproof}(u_i).
 \]
Illustrations

proof number, disproof number
How to use these Numbers

- If the numbers are known in advance, then from the root, we search a child \(u \) with the value equals to \(\min\{\text{proof}(\text{root}), \text{disproof}(\text{root})\} \).
 - Then we find a path from the root towards a leaf recursively as follows,
 - if we try to prove it, then pick a child with the least proof number for a MAX node, and pick any node that has a chance to be proved for a MIN node.
 - if we try to disprove it, then pick a child with the least disproof number for a MIN node, and pick any node that has a chance to be disproved for a MAX node.

- Assume each leaf takes a lot of time to evaluate.
 - For example, the game tree represents an open game tree or an endgame tree.
 - Depends on the results we have so far, pick the next leaf to prove or disprove.

- Need to be able to update these numbers on the fly.
PN-search: algorithm

- **loop:** Compute or update proof and disproof numbers for each node in a bottom up fashion.
 - If $\text{proof}(\text{root}) = 0$ or $\text{disproof}(\text{root}) = 0$, then we are done, otherwise
 - $\text{proof}(\text{root}) \leq \text{disproof}(\text{root})$: we try to prove it.
 - $\text{proof}(\text{root}) > \text{disproof}(\text{root})$: we try to disprove it.

- $u \leftarrow \text{root}; \{ \ast \text{ find the leaf to prove or disprove } \ast \}$
 - if we try to prove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero proof number;
 - if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with a non-zero proof number;
 - if we try to disprove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with a non-zero disproof number;
 - if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero disproof number;

- Prove or disprove u; go to loop;
Multi-Valued game Tree

- The values of the leaves may not be binary.
 - Assume the values are non-negative integers.
 - Note: it can be in any finite countable domain.

- Revision of the proof and disproof numbers.
 - $\text{proof}_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.
 - $\text{proof}(u) \equiv \text{proof}_1(u)$.
 - $\text{disproof}_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $< v$.
 - $\text{disproof}(u) \equiv \text{disproof}_1(u)$.
Illustration
Multi-Valued Proof Number

- \(u \) is a leaf:
 - If \(\text{value}(u) \) is unknown, then \(\text{proof}_v(u) \) is cost of evaluating \(u \).
 - If \(\text{value}(u) \geq v \), then \(\text{proof}_v(u) = 0 \).
 - If \(\text{value}(u) < v \), then \(\text{proof}_v(u) = \infty \).

- \(u \) is an internal node with all of the children \(u_1, \ldots, u_b \):
 - if \(u \) is a MAX node,
 \[
 \text{proof}_v(u) = \min_{i=1}^{i=b} \text{proof}_v(u_i);
 \]

 - if \(u \) is a MIN node,
 \[
 \text{proof}_v(u) = \sum_{i=1}^{i=b} \text{proof}_v(u_i).
 \]
Multi-valued Disproof Number

- **u is a leaf:**
 - If \(\text{value}(u) \) is unknown, then \(\text{disproof}_v(u) \) is cost of evaluating \(u \).
 - If \(\text{value}(u) \geq v \), then \(\text{disproof}_v(u) = \infty \).
 - If \(\text{value}(u) < v \), then \(\text{disproof}_v(u) = 0 \).

- **u is an internal node with all of the children \(u_1, \ldots, u_b \):**
 - if \(u \) is a MAX node,
 \[
 \text{disproof}_v(u) = \sum_{i=1}^{i=b} \text{disproof}_v(u_i);
 \]
 - if \(u \) is a MIN node,
 \[
 \text{disproof}_v(u) = \min_{i=1}^{i=b} \text{disproof}_v(u_i).
 \]
Revised PN-search(v): algorithm

- **loop**: Compute or update proof_v and disproof_v numbers for each node in a bottom up fashion.
 - If $\text{proof}_v(\text{root}) = 0$ or $\text{disproof}_v(\text{root}) = 0$, then we are done, otherwise
 - $\triangleleft \text{proof}_v(\text{root}) \leq \text{disproof}_v(\text{root})$: we try to prove it.
 - $\triangleleft \text{proof}_v(\text{root}) > \text{disproof}_v(\text{root})$: we try to disprove it.

- $u \leftarrow \text{root}$; \{\text{* find the leaf to prove or disprove *}\}
 - if we try to prove, then
 - \triangleleft while u is not a leaf do
 - \triangleleft if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero proof_v number;
 - \triangleleft if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with a non-zero proof_v number;
 - if we try to disprove, then
 - \triangleleft while u is not a leaf do
 - \triangleleft if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with a non-zero disproof_v number;
 - \triangleleft if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero disproof_v number;

- Prove or disprove u; go to loop;
Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
 - Set the initial value of v to be 1.
 - loop: PN-search(v)
 - \triangleright Prove the value of the search tree is $\geq v$ or disprove it by showing it is $< v$.
 - If it is proved, then double the value of v and go to loop again.
 - If it is disproved, then the true value of the tree is between $\lfloor v/2 \rfloor$ and $v - 1$.
 - $\{ *$ Use a binary search to find the exact returned value of the tree. $* \}$
 - $low \leftarrow \lfloor v/2 \rfloor; high \leftarrow v - 1;$
 - while $low \leq high$ do
 - \triangleright if $low = high$, then return low as the tree value
 - $mid \leftarrow \lfloor (low + high)/2 \rfloor$
 - PN-search(mid)
 - \triangleright if it is disproved, then $high \leftarrow mid - 1$
 - \triangleright else if it is proved, then $low \leftarrow mid$
Comments

- Can be used to construct opening books.
- Appears to be good for searching certain types of game trees.
 - Find the easiest way to prove or disprove a conjecture.
 - A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
 - Performance of most previous algorithms depends heavily on whether a good move ordering can be found.
- Searching the “easiest” branch may not give you the best performance.
 - Performance depends on the value of each internal nodes.
- Commonly used in verifying conjectures, e.g., first-player win.
 - Partition the opening moves in a tree-like fashion.
 - Try to the “easiest” way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.
References and further readings (1/2)

References and further readings (2/2)

- Bruce W. Ballard The *-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350
- Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49.2-3: 193-208.