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Abstract

Adding new ideas to the pure Monte-Carlo approach for
computer Go.
• On-line knowledge: domain independent techniques

. Progressive pruning

. All moves as first and RAVE heuristic

. Node expansion policy

. Temperature

. Depth-i tree search

• Machine learning and deep learning: domain dependent techniques
. Node expansion
. Better simulation policy
. Better position evaluation

Conclusion:
• Combining the power of statistical tools and machine learning, the

Monte-Carlo approach reaches a new high for computer Go.
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Domain independent refinements

Main considerations
• Avoid doing un-needed computations
• Increase the speed of convergence
• Avoid early mis-judgement
• Avoid extreme bad cases

Refinements came from on-line knowledge.
• Progressive pruning.

. Cut hopeless nodes early.

• All moves at first and RAVE.
. Increase the speed of convergence.

• Node expansion policy.
. Grow only nodes with a potential.

• Temperature.
. Introduce randomness.

• Depth-i enhancement.
. With regard the initial phase, the one on obtaining an initial game tree,

exhaustively enumerate all possibilities instead of using only the root.
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Progressive pruning (1/5)

Each position has a mean value µ and a standard deviation σ
after performing some simulations.
• Left expected outcome µl = µ− rd ∗ σ.
• Right expected outcome µr = µ+ rd ∗ σ.
• The value rd is a constant fixed up by practical experiments.

Let P1 and P2 be two child positions of a position P .
P1 is statistically inferior to P2 if P1.µr < P2.µl, and P1.σ < σe
and P2.σ < σe.
• The value σe is called standard deviation for equality.
• Its value is determined by experiments.

P1 and P2 are statistically equal if P1.σ < σe, P2.σ < σe and no
move is statistically inferior to the other.
Remarks:
• Assume each trial is an independent Bernoulli trial and hence the

distribution is normal.
• We only compare nodes that are of the same parent.
• We usually compare their raw scores not their UCB values.
• If you use UCB scores, then the mean and standard deviation of a

move are those calculated only from its un-pruned children.
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Progressive pruning (2/5)

After a minimal number of random games, say 100 per move,
a position is pruned as soon as it is statistically inferior to
another.
• For a pruned position:

. Not considered as a legal move.

. No need to maintain its UCB information.

• This process is stopped when
. this is the only one move left for its parent, or
. the moves left are statistically equal, or
. a maximal threshold, say 10,000 multiplied by the number of legal

moves, of iterations is reached.

Two different pruning rules.
• Hard: a pruned move cannot be a candidate later on.
• Soft: a move pruned at a given time can be a candidate later on if its

value is no longer statistically inferior to a currently active move.
. The score of an active move may be decreased when more simulations

are performed.
. Periodically check whether to reactive it.
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Progressive pruning (3/5)

Experimental setup:
• 9 by 9 Go.
• Difference of stones plus eyes after Komi is applied.
• The experiment is terminated if any one of the followings is true.

. There is only move left for the root.

. All moves left for the root are statistically equal.

. A given number of simulations are performed.
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Progressive pruning (4/5)

Selection of rd.
• The greater rd is,

. the less pruned the moves are;

. the better the algorithm performs;

. the slower the play is.

• Results [Bouzy et al’04]:
rd 1 2 4 8

score 0 + 5.6 + 7.3 +9.0
time 10’ 35’ 90’ 150’

Selection of σe.
• The smaller σe is,

. the fewer equalities there are;

. the better the algorithm performs;

. the slower the play is.

• Results [Bouzy et al’04]:
σe 0.2 0.5 1

score 0 -0.7 -6.7
time 10’ 9’ 7’

Conclusions:
• rd plays an important role in the move pruning process.
• σe is less sensitive.
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Progressive pruning (5/5)

Comments:
• It makes little sense to compare nodes that are of different depths or

belong to different players.
• Another trick that may need consideration is progressive widening or

progressive un-pruning.
. A node is effective if enough simulations are done on it and its values

are good.

• Note that we can set a threshold on whether to expand or grow the
end of the selected PV path.

. This threshold can be enough simulations are done and/or the score is
good enough.

. Use this threshold to control the way the underline tree is expanded.

. If this threshold is high, then it will not expand any node and looks
like the original version.

. If this threshold is low, then we may make not enough simulations for
each node in the underline tree.
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All-moves-as-first heuristic (AMAF)

How to perform statistics for a completed random game?
• Basic idea: its score is used for the first move of the game only.
• All-moves-as-first AMAF: its score is used for all moves played in the

game as if they were the first to be played.

AMAF Updating rules:
• If a playout S, starting from the position following PV towards the best

leaf and then appending a simulation run, passes through a position V
from W with a sibling position U , then

. the counters at the position V leads to is updated;

. the counters at the node U leads to is also updated if S later contains
a ply from W to U .

• Note, we apply this update rule for all nodes in S regardless nodes
made by the player that is different from the root player.
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Illustration: AMAF

Assume a playout is simulated
from the root with the sequence
of plys starting from the position
L being v, y, u, w, · · · .
The statistics of nodes along
this path are updated.
The statistics of node L′, a child
position of L, and node L′′, a
descendent position of L, are
also updated.

. In L′, exchange u and v in the play-
out.

. In L′′, exchange w and y in the play-
out.

In this example, 3 playouts
are recorded for the position L
though only one is performed.
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AMAF: Implementation

When a playout, say P1, P2, . . . , Ph is simulated where P1 is the
root position of the selected PV and Ph is the end position of
the playout, then we perform the following updating operations
bottom up:
• count := 1
• for i := h− 1 downto 1 do

. for each child position W of Pi that is not equal to Pi+1 do

. if the ply (Pi → W ) is played in Pi, Pi+1, . . . , Ph then

. {

. update the score and counters of W ;

. count + = 1;

. }

. update the score and counters of Pi as though count playouts are per-
formed

Some forms of hashing is needed to check the if condition
efficiently.
It is better to use a good data structure to record the children
of a position when it is first generated to avoid regenerating.
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AMAF: Pro’s and Con’s

Advantage:
• All-moves-as-first helps speeding up the convergence of the simulations.

Drawbacks:
• The evaluation of a move from a random game in which it was played

at a late stage is less reliable than when it is played at an early stage.
• Recapturing.

. Order of moves is important for certain games.

. Modification: if several moves are played at the same place because of
captures, modify the statistics only for the player who played first.

• Some move is good only for one player.
. It does not evaluate the value of an intersection for the player to move,

but rather the difference between the values of the intersections when
it is played by one player or the other.
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AMAF: results

Results [Bouzy et al’04]:
• Relative scores between different heuristics.

AMAF basic idea PP
0 +13.7 + 4.0

. Basic idea is very slow: 2 hours vs 5 minutes.

• Number of random games N : relative scores with different values of
N using AMAF.

N 1000 10000 100000
scores -12.7 0 +3.2

. Using the value of 10000 is better.

Comments:
• The statistical natural is something very similar to the history heuristic

as used in alpha-beta based searching.
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AMAF refinement – RAVE

Definitions:
• Let v1(P ) be the score of a position P without using AMAF.
• Let v2(P ) be the score of a position P with AMAF.

Observations:
• v1(P ) is good when sufficient number of trials are performed starting

with P .
• v2(P ) is a good guess for the true score of the position P when

. it is approaching the end of a game;

. when too few trials are performed starting with P such as when the
node for P is first expanded.

Rapid Action Value Estimate (RAVE)
• Let revised score v3(P ) = α · v1(P ) + (1 − α) · v2(P ) with a properly

chosen value of α.
• Other formulas for mixing the two scores exist.
• Can dynamically change α as the game goes.

. For example: α = min{1, NP/10000}, where NP is the number of play-
outs done on P .

. This means when NP reaches 10000, no AMAF is used.
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RAVE

v3(P ) = α · v1(P ) + (1− α) · v2(P )
• When setting α = 0, it is pure AMAF.
• When setting α = 1, it uses no AMAF.

Other forms of formula for using the RAVE values are known.
Silver in his 2009 Ph.D. thesis [Silver’09]:
• Let β = 1− α.
• Let ÑP = NP +N ′P where NP is the number of simulations done at the

position P and N ′P is the number of simulations from AMAF at P .

• β = ÑP
NP+ÑP+4b2NP ÑP

where b is a constant to be decided empirically.

Discussion:
• β = 1

NP
ÑP

+1+4b2NP

• We know ÑP ≥ NP , hence 1
2+4b2NP

≤ β ≤ 1
1+4b2NP

.

• During updating, when N ′P increases a lot due to AMAF being applied
on many of P ’s children, then β becomes larger.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20171208, Tsan-sheng Hsu c© 15



Node expansion

May decide to expand potentially good nodes judging from the
current statistics [Yajima et al’11].
• All ends: expand all possible children of a newly added node.
• Visit count: delay the expansion of a node until it is visited a certain

number of times.
• Transition probability: delay the expansion of a node until its “score”

or estimated visit count is high comparing to that of its siblings.
. Use the current mean, variance and parent’s values to derive a good

estimation using statistical methods.

Expansion policy with some transition probability is much better
than the “all ends” or pure “visit count” policy.
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Temperature (1/2)

Constant temperature: consider all the legal moves and play
the ith move with a probability proportional to e(K·vi), where
• vi is the current value of the position obtained by taking move i;

. It is usually the case vi ≥ 0.

. e(K·vi) ≥ 1.

• K ≥ 0 is the inverse of the temperature used in a simulated annealing
setting.

. Add extra randomness by setting a constant K.

. The probability of playing the ith move is Pi(K) = eK·vi∑
∀q e

K·vq .

. When K = 0, this means temperature is ∞ and the selection is uni-
formly random.

. If vi > vj and K1 > K2, then Pi(K1)− Pj(K1) > Pi(K2)− Pj(K2).
→ When K becomes larger,
the value of vi contributes more in the calculation of Pi(K).
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Temperature (2/2)

Results for constant temperature [Bouzy et al’04]:

K 0 2 5 10 20
score -8.1 0 +2.6 -4.9 -11.3

• When temperature is very high (K = 0) when means pure random,
then it looks bad.

• When there is no added randomness (K > 5), it also looks bad.
• Tradeoff between the current score and randomness.

Simulated annealing: Pi(Kt) = eKt·vi∑
∀j e

Kt·vj where Kt is the value of

K at the tth moment.
• Change the temperature over the time.

. In the beginning, allow more randomness, and decrease the amount of
randomness over the time.

• Increasing K from 0 to 5 over time does not enhance the performance.
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Depth-i enhancement

Algorithm:
• Enumerate all possible positions from the root after i moves are made.
• For each position, use Monte-Carlo simulation to get an average score.
• Use a minimax formula to compute the best move from the average

scores on the leaves.

Result [Bouzy et al’04]: depth-2 is worse than depth-1 due to
oscillating behaviors normally observed in iterative deepening.
• Depth-1 overestimates the root’s value.
• Depth-2 underestimates the root’s value.
• It is computational difficult for computer Go to get depth-i results

when i > 2.
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Putting everything together

Two versions [Bouzy et al’04]:
• Depth = 1, rd = 1, σe = 0.2 with PP, and basic idea.
• K = 2, no PP, and all-moves-as-first.

Still worse than GnuGo in 2004, a Go program with lots of
domain knowledge, by more than 30 points.
Conclusions:
• Add tactical search: for example, ladders.
• Add more domain knowledge besides no filling of eyes: for example, in

Atari, simulate extending plys first.
. An extending ply is one which can increase the liberty of some strings.

• As the computer goes faster, more domain knowledge can be added.
• Exploring the locality of Go using statistical methods.
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Ladder

White to move next at 1, then black at 2, then white at 3, and
then black at 4, ...
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Comments

We only describe some specific implementations of some general
Monte-Carlo techniques.
• Other implementations exist for say AMAF and others.

Depending on the amount of resources you have, you can
• decide the frequency to update the node information;
• decide the frequency to re-pick PV;
• decide the frequency to prune/unprune nodes.
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Domain dependent refinements

Main technique:
• Adding domain knowledge.

We use computer Go as an example here.
Refinements come from machine learning and/or deep learning
via training and predicting.
• During the expansion phase:

. Special case: open game.

. General case: use domain knowledge to expand only the nodes that are
meaningful with respect to the game considered, e.g., Go.

• During the simulation phase: try to find a better simulation policy.
. Simulation balancing for getting a better playout policy.
. Other techniques are also known.

Prediction of board evaluations, not just good moves.
. Combined with UCB score to form a better estimation on how good or bad

the current position is.
. To start a simulation with a good prior knowledge.
. To end the simulation earlier when something very bad or very good happened

in the middle.
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How domain knowledge can be obtained

Via human experts: very expensive to get and very difficult
to be complete as proven by studies before year 2004 such as
GNU Go.
Machine learning.
• (Local) pattern: treat positions as pictures and find important patterns

and shapes within them.
. K by K sub-boards such as K = 3.
. Diamond shaped patterns with different widths.
. . . .

• (Global) feature: find (high order) semantics of positions.
. The liberties of each stone.
. The number of stones can be captured by playing this intersection.
. . . .

• Need to take care of information that are history dependent, namely
cannot be stated using only one position.

. Ko.

. Features include previous several plys of a position.
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3 by 3 patterns

[Huang et al’10]

�
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Diamond shaped patterns

[Stern et al’06]

�
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Supervised learning

Use supervised learning to get a good prediction on the move
to choose when a position is given: a vast amount of expert
games with possible annotations are available.
• Training phase.

. Feed positions and their corresponding actions (moves) in expert games
into the learning program.

. Feature and pattern extraction from these positions.

• Prediction phase.
. Predict the probability of a move will be taken when a position is

encountered.

Many different paradigms and algorithms.
• A very active research area with many applications.
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Reinforcement learning

Use reinforcement learning to boost the baseline prediction,
obtained from supervised learning for example, using self-play
or expert annotated games.
• The baseline one needs to be good enough to achieve some visible

improvement.
• Feed evaluations of positions from the baseline one into the learning

program.
. The objective of the learning is different from the supervised learning

phase.
. To learn which move will result in better positions, namely positions

with better evaluations.

Note that the predictions of moves best matched with the
training data and moves best matched with better positions
may be very different.
Many different paradigms and algorithms.
• Another very active research area with many applications.
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History

Using machine learning to aid computer Go programs is not
new.
• NeuroGo [Enzenberger’96]: neural network based move predication.
• IndiGo [Bouzy and Chaslot’05]: Bayesian network.

Pure learning approach is very difficult to compete with top Go
programs with searching before AlphaGo.
• Need to combine some forms of searching.

Hardware constraints.
In 2017, DeepMind team claims that no supervised learning is
needed even the training time is limited in training AlphaGo
Zero [Silver et al 2017].
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Combining with MCTS

Places that MCTS needs helps.
• The expansion phase: what children to explore when a leaf is to be

expanded.
• The simulation phase.

. Originally almost random games are generated: needs a huge amount
of simulated games to have a high confidence in the outcome.

. Can we use more domain knowledge to get a better confidence using
the same number of simulations?

• Position evaluation: to end a simulation earlier or to start a simulation
with better prior knowledge.

Fundamental issue: assume we can only afford to use a fixed
amount of resources R, say computing power in a given time
constraint.
• Assume each simulation takes rs amount of resources for a strategy s

in generating a playout.
. Hence we can only afford to have R

rs
playouts.

• How to pick s to maximize cs, the confidence or quality?
. Difficult to define confidence or quality.

• Not likely that rs is linearly proportional to cs.
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Machine learning

Many different framework and theories.
• Decision tree.
• Support vector machine.
• Bayesian network.
• Artificial neural network.
• . . .

Here we will only introduce Bayesian network and multi-layer
artificial neural network (ANN) which including convolutional
neural network (CNN) and deep neural network (DNN).
For each framework, depending on how the underlying opti-
mization problem is solved, there are many different simplified
models.
• We will only introduce some popular models used in game playing.
• There are many open-source or public domain softwares available.
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Bayesian network based learning (1/3)

Bayes theorem: P (B | A) = P (A|B)P (B)
P (A) .

• A: features and patterns
• B: an action or a move
• P (A): probability of A happens in the training data set
• P (B): probability of an action B is taken
• P (A | B): probability of A appears in the training set when an action
B is taken.

. this is the training phase.

• P (B | A): when A appears, the prediction of B is taken.

Assume there are two actions B1 and B2 that one can take
in a position with the feature set A, then use the values of
P (B1 | A) and P (B2 | A) to make a decision.
• Take one with a larger value.
• Take one with a chance proportional to its value.
• · · ·
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Bayesian network based learning (2/3)

When the training set is huge and the feature set A is large, it
is very time and space consuming to compute.
• Training data are usually huge in quantity, may contain error, and most

of the time incomplete.
• When there are many features in a position, it is very time and space

consuming to compute P (B | A).

Use some sort of approximation.
• Assume a position P is consisted of features PA1, PA2, . . . , PAw.
• For a possible child position B of P , give each feature PAi a strength

or influence parameter q(B,PAi) so that it approximates the probability
of P (B | PAi).

• Use a function f(q(B,PA1), . . . , q(B,PAw)) to approximate the value of
P (B | P ).
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Bayesian network based learning (3/3)

Many different models exist to approximate the strength or
influence parameter, θ, of a party, player, feature or pattern.
• Bradley-Terry (BT) model.

. Given 2 players with strengths θi and θj, P (i beats j) = eθi

eθi+e
θj

.

. Generalized model: Comparisons between teams of players, say odds

of players i+ j beats both k+m and j+n+ p is e
θi+θj

e
θi+θj+eθk+θm+e

θj+θn+θp
.

• Thurstone-Mosteller (TM) model.
. Given 2 players with strengths to be Gaussian distributed (or normal

distributed) with N (θi, σ
2
i ) and N (θj, σ

2
j), P (i beats j) = Φ( e

θi−eθj√
σ2
i
+σ2

j

),

where N (µ, σ2) is a normal distribution with mean µ and variance σ2,
and Φ is the c.d.f. of the standard normal distribution, namely N (0, 1).

. Generalized TM model is more involved.

May not be reasonable in real life.
• Does not allow cyclic relations among players.
• Strength of a team needs not to be product of teammate’s strength.

We will use mainly BT model to illustrate the ideas here.
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BT model

This is also how Elo rating system is computed between players
in games like Chess or Go.
• Example: The Elo rating number of player i with strength θi is

400 log10(e
θi).

. Assume the Elo ratings of players A, B and C are 2,800, 2,900 and 3,000
respectively.

. P (C beats B) = 103000/400

103000/400+102900/400 = 107.5

107.5+107.25 ∼ 0.64.

. P (B beats A) = 102900/400

102900/400+102800/400 = 107.25

107.25+107 ∼ 0.64.

. P (C beats A) = 103000/400

103000/400+102800/400 = 107.5

107.5+107 ∼ 0.76.

. Note that P (i beats j) + P (j beats i) = 1 assuming no draw.

Fundamental problem:
• When data are incomplete but huge, how to compute the strength

parameters using limited amount of resources?
• The problem is even bigger when data may contain some errors and/or

incomplete.
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Minorization-Maximization (MM)

Minorization-Maximization (MM): an approximation algorithm
for the BT model [Coulom’07].
• Patterns: all possible, for example 3 ∗ 3 patterns, i.e., 39 = 19, 683 of

them [Huang et al’11].
• Training set: records of expert games.

During the simulation phase, use the prediction algorithm to
find a random playout.
• It is easy to have an efficient implementation.
• Can add some amount of randomness in selecting the moves, such as

using the idea of temperature.
Results are very good: 37.86% correctness rate using 10,000
expert games [Wistuba et al’12]
• A very good playout policy may not be good for the purpose of finding

out the average behavior.
. The samplings must consider the average “real” behavior of a player

can make.
. It is extremely unlikely that a player will make trivially bad moves.

• Need to balance the amount of resources used in carrying out the
policy found and the total number of simulations can be computed.
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Simulation balancing (SB)

Use the idea of self-play games to boost the performance
[Huang et al’11].
• Supervised learning.
• Feature set can be smaller.
• Normally does not learn what positions are played in expert games, but

how good or bad a position is.
. Some forms of position evaluation.

Results are extremely positive for 9 by 9 Go.
• Against GNU Go 3.8 level 10.

. 62.6% winning rate using SB against a good baseline program of 50%.

. 59.3% winning rate using MM against a good baseline of 50%.

Results are not as good on 19 by 19 Go against one using MM
along.
Erica, a computer Go program, later improved the SB ideas in
[Huang et al’11] won 2010 Computer Olympiad 19x19 Go Gold
medal.
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How they are used

Assume using the BT model.
Generation of the pattern database:
• Manually construct.
• Exhaustive enumeration: small patterns such as 3 by 3.
• Find patterns happened more than a certain number of times in the

training set.
. Patterns, for example diamond-shapes, are too large to enumerate.

Training.
Setting of the parameters:
• Assume after training, feature or pattern i has a strength θi.
• Let the current position be P with b possible child positions P1, . . . , Pb.
• Let Fi be the features or patterns occurred in Pi.
• Let the score of Pi be Si = Πj∈Fiθj.

Child Pj is chosen with the probability Sj∑b
i=1 Si

.

. The best child is one with the largest score.
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Comments

Implementation:
• Incrementally update the features and patterns found.
• Use some variations of the Zobrist hash function to efficiently find the

strength of a feature or pattern.
We only show two possible avenues of using Bayesian network
based learning via using the BT model, namely MM and SB.
• There are many other choices such Bayesian full ranking.

The training phase needs to be done once, but takes a huge
amount of space and time.
• Usually use some forms of iterative updating algorithms to obtain the

parameters, namely the strength vector, of the model.
• For MM with k distinct features or patterns, n training positions and

an average b legal moves for each position, it takes O(kbn) space, and
X iterations each of which takes O(bnkh + k2bn) time, where h is the
size of the pattern or feature and X is the number of iterations needed
for the approximation algorithm to converge [Coulum’07].

The prediction phase takes only O(kh) space and time.
Q: Can the part of feature extraction and weights of multiple
features be done automatically?
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Artificial Neural Network

Using a complex network of neurons to better approximate
non-linear optimizations.
• Usually called deep learning when the number of artificial neural

network layers is more than 1.
• Can have different architectures such as CNN or DNN.

A hot learning method inspired by the biological process of the
animal visual cortex.
• Each neuron takes input from possibly overlaid neighboring sub-images

of an image, and then assigns appropriate weights to each input plus
some values within the cell to compute the output value.

• This process can have multiple layers, namely a neuron’s output can
be other neurons’ inputs, and forms a complex network.

• Depending on the network structure, Bayesian network approaches
tends to need less resources than the CNN or DNN approach.

• There are also training phase and prediction phase.

Many different tools which can be parallelized using GPU.
• Need a great deal of resources to do training and some amount of time

to do prediction.
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Basics (1/3)

Assume the ith neuron whose output is zi takes mi inputs
xi,1, . . . , xi,mi

, and has internal states yi,1, . . . , yi,ni.

• We want to assign weights wi,1, . . . , wi,mi+ni so that

zi = f(

mi∑
j=1

(wi,j ∗ xi,j) +

ni∑
j=1

(wi,j+mi
∗ yi,j)),

where f is a transformation function that is not hard to compute.

Neurons are connected as a inter-connection network where
outputs of neurons can be inputs of others.
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f

internal states

external inputs

weights
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Basics (2/3)

f is often called activation function that normalize the value.
• Examples:

. Binary step: f(x) = (x ≤ 0)?0 : 1

. ReLU (Rectified Linear Unit): f(x) = (x < 0)?0 : x

. . . .

• Desired properties in optimization and consistence:
. Nonlinear
. Continuously differentiable
. Monotonic
. . . .
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Basics (3/3)

Measurement of success
• Accuracy: the percentage of your predicted values equal to their actual

values.
. Accuracy may not be a good indicator of success since not all events,

for example false positive and false negative, are equal.
. Example: assume a rare event happened in a training set, then answer-

ing all negative’s gives you a high accuracy, but useless prediction.

When there are multiple input data set, we want to find an
assignment of the weights so that some loss or error function is
minimized.
• The loss or error function can be the average distance, in terms of L1

or L2 metric, among the training data set.
• May want to use some log scale such as cross entropy.

Many different algorithms to compute approximated values for
the weights.
• Computation intensive.
• Space usage intensive.
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Deep learning

Use artificial neural network of different sizes and structure to
achieve different missions in playing 19 by 19 Go [Silver et
al’16].
• Supervised learning (SL) in building policy networks which spell out a

probability distribution of possible next moves of a given position.
. A fast rollout policy: for the simulation phase of MCTS, prediction

rate is 24.2% using only 2 µs.
. A better SL rollout policy: 13-layer CNN with a prediction rate of

57.0% using 3 ms.

• Reinforcement learning (RL): obtain both a better, namely more ac-
curate, policy network and a value network for position evaluation.

. RL policy: further training on the top of the previously obtained SL
policy using more features and self-play games that achieves an 80%
winning rate against the SL rollout policy.

. Value network: using the RL policy to train for knowing how good or
bad a position is.
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Various networks in AlphaGo

[Silver et al’16]

�
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How networks are obtained by AlphaGo

[Silver et al’16]

�
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Combining networks

Use a fast, but less accurate, SL Rollout policy to do the
simulations.
• Need to do lots of simulations.

Use a slow, but more accurate, SL policy in the expansion
phase.
• Do not need to do node expansions too often.

Use a slow, resource consuming and complex, but more
informatic RL policy to construct the value network.
• Do not need to do node evaluations too often.

Using a combination of the output from the value network and
the current score from the simulation phase, one can decide
whether to end a simulation earlier or not.
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How networks are used in AlphaGo

[Silver et al’16]

�

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20171208, Tsan-sheng Hsu c© 49



Comments (1/3)

A very good tradeoff in performance and amount of resources
used.
• A less accurate but fast rollout policy is used with MCTS so that the

tree search part can augment correctness rate.
. Need to do lots of simulations so each cannot take too much time.

• Use a slow but more accurate policy for tasks such as expansion that
do not need to carry out many times.

• Use reinforcement learning in obtaining a value network to replace the
role of designing complicated evaluating functions.

Now is the way to go for computer Go!
• Performance is extremely well and is generally considered to be over

human champion.
• Lots of legacy teams such as Zen and Crazystone are embracing ANN.
• New teams such as Darkforest developed by Facebook, Fine Art

developed by Tencent, and CGI developed by NCTU Taiwan, are
catching up.

. Darkforest has turned open sourced in 2016.
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Comments (2/3)

This approach can be used in many applications such as medical
informatic which includes medical image and signal reading.
• Anything that is pattern related and has lots of data collected with

expert annotations.

Take a lot of computing resources for computer Go.
• More than 100,000 features and patterns.
• More than 40 machines each with 32 cores and a total of more than

176 GPU cards whose power consumption is estimated to be in the
order of 103 KW.

• AlphaGo Zero claims to use much less resources.

More studies are needed to lower the amount of resources used
and to do transfer learning, namely duplicate the successful
experience on one domain to another domain.
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Comments (3/3)

We only know it works by building the ANN, but it is almost
impossible to explain how it works.
• Very difficult to debug if a silly bug occurs.
• Very difficult to “control” it to act the way you wanted to.
• It is an art to find the right coefficients and tradeoff.

We also describe some fundamental techniques and ideas in the
part of combining machine learning.
• Other machine learning tools are also available and used.

Using machine learning or MTCS along won’t solve the perfor-
mance problem in computer Go. However, the combination of
both does the magic.
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AlphaGo Zero

Latest result: AlphaGo zero uses no supervised learning to
achieves the top of computer Go at an Elo rating of 5185
[Silver et al. 2017].
Main methods:
• Trained solely by self-play reinforcement learning, starting from random

play, without any supervision or use of human data.
• Uses only the black and white stones from the board as input features.
• Uses a single neural network, rather than separate policy and value

networks.
• Uses a simpler tree search that relies upon this single neural network to

evaluate positions and sample moves, without performing any Monte
Carlo rollouts.

Contribution:
• A new reinforcement learning algorithm that incorporates lookahead

search inside the training loop, resulting in rapid improvement and
precise and stable learning.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20171208, Tsan-sheng Hsu c© 53



Training while self-playing

[Silver et al’17]

�
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MCTS and training together

[Silver et al’17]

�
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Comments

Updating the network each ply you do in a self-play.
Fast stabilizing in just 72 hours.
Helped by special hardwares and the total power consumption
is greatly reduced.
• A single machine with 4 TPU’s.

Is this a unique experience or something can be used in many
other applications?
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Alpha Zero

A deep learning program to end all programs.

Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. David Silver, Thomas
Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis
Hassabis, Dec. 5, 2017.
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