
Theory of Computer Games:
Selected Advanced Topics

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Abstract

Some advanced research issues.
• The graph history interaction (GHI) problem.
• Opponent models.
• Searching chance nodes.
• Proof-number search.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 2

Graph history interaction problem

The graph history interaction (GHI) problem [Campbell 1985]:
• In a game graph, a position can be visited by more than one paths

from a starting position.
• The value of the position depends on the path visiting it.

. It can be win, loss or draw for Chinese chess.

. It can only be draw for Western chess and Chinese dark chess.

. It can only be loss for Go.

In the transposition table, you record the value of a position,
but not the path leading to it.
• Values computed from rules on repetition cannot be used later on.
• It takes a huge amount of storage to store all the paths visiting it.

This is a very difficult problem to be solved in real time [Wu et
al ’05].

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 3

GHI problem – example

A

B C

F
D

loss

E

G

win

H

IJ

• Assume the one causes loops wins the game.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 4

GHI problem – example

A

B C

F
D

loss

E

G

win

H

IJ

loss

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 5

GHI problem – example

A

B C

F
D

loss

E

G

win

H

IJ

loss

win

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 6

GHI problem – example

A

B C

F
D

loss

E

G

win

H

IJ

loss

win

loss

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 7

GHI problem – example

A

B C

F
D

loss

E

G

win

H

IJ

loss

win

loss

loss

loss

loss

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is loss because J is recorded as loss.

• A is loss because both branches lead to loss.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 8

GHI problem – example
A

B C

F
D

loss

E

G

win

H

IJ

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is loss because J is recorded as loss.

• A is loss because both branches lead to loss.

• However, A→ C → F → J → D → H is a win (for the root).

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 9

Comments

Using DFS to search the above game graph from left first or
from right first produces two different results.
Position A is actually a win position.
• Problem: memorize J is a loss is only valid when the path leading to

it causes a loop.

Storing the path leading to a position in a transposition table
requires too much memory.
It is still a research problem to use a more efficient data
structure.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 10

Opponent models

In a normal alpha-beta search, it is assumed that you and the
opponent use the same strategy.
• What is good to you is bad to the opponent and vice versa!
• Hence we can reduce a minimax search to a NegaMax search.
• This is normally true when the game ends, but may not be true in the

middle of the game.

What will happen when there are two strategies or evaluating
functions f1 and f2 so that
• for some positions p, f1(p) is better than f2(p)

. “better” means closer to the real value f(p)

• for some positions q, f2(q) is better than f1(q)

If you are using f1 and you know your opponent is using f2,
what can be done to take advantage of this information.
• This is called OM (opponent model) search [Carmel and Markovitch

1996].
. In a MAX node, use f1.
. In a MIN node, use f2.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 11

Opponent models – comments

Comments:
• Need to know your opponent’s model precisely or to have some

knowledge about your opponent.
• How to learn the opponent model on-line or off-line?
• When there are more than 2 possible opponent strategies, use a

probability model (PrOM search) to form a strategy.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 12

Search with chance nodes

Chinese dark chess
• Two player, zero sum, complete information
• Perfect information
• Stochastic
• There is a chance node during searching [Ballard 1983].

. The value of a chance node is a distribution, not a fixed value.

Previous work
• Alpha-beta based [Ballard 1983]
• Monte-Carlo based [Lancoto et al 2013]

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 13

Example (1/4)

It’s BLACK turn and BLACK has 6 different possible legal
moves including 4 of them being moving its elephant and two
flipping moves at a1 or a8.
• It is difficult for BLACK to secure a win by moving its elephant along

any of the 3 possible directions, namely up, right or left, or by capturing
the RED pawn at the left hand side.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 14

Example (2/4)

If BLACK flips a1, then there are 2 possible cases.
• If a1 is BLACK cannon, then it is difficult for RED to win.
• If a1 is BLACK king, then it is difficult for BLACK to lose.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 15

Example (3/4)

If BLACK flips a8, then there are 2 following cases.
• If a8 is BLACK cannon, then RED cannon captures it immediately and

results in a BLACK lose eventurally.
• If a8 is BLACK king, then RED cannon captures it immediately and

results in a BLACK lose eventurally.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 16

Example (4/4)

Conclusion:
• It is vary bad for BLACK to flip a8.
• It is bad for BLACK to move its elephant.
• It is better for BLACK to slip a1.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 17

Basic ideas for searching chance nodes

Assume a chance node x has a score probability distribution
function Pr(∗) with the range of possible outcomes from 1 to
N where N is a positive integer.
• For each possible outcome i, we need to compute score(i).

• The expected value E =
∑N

i=1 score(i) ∗ Pr(x = i).

• The minimum value is m = minNi=1{score(i) | Pr(x = i) > 0}.
• The maximum value is M = maxNi=1{score(i) | Pr(x = i) > 0}.

Example: open game in Chinese dark chess.
• For the first ply, N = 14 ∗ 32.

. Using symmetry, we can reduce it to 7*8.

• We now consider the chance node of flipping the piece at the cell a1.
. N = 14.
. Assume x = 1 means a BLACK King is revealed and x = 8 means a

RED King is revealed.
. Then score(1) = score(8) since the first player owns the revealed king

no matter its color is.
. Pr(x = 1) = Pr(x = 8) = 1/14.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 18

Illustration

...

max

min

chance

expected value

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 19

Bounds in a chance node

Assume the various possibilities of a chance node is evaluated
one by one in the order that at the end of phase i, the ith
choice is evaluated.
• Assume vmin ≤ score(i) ≤ vmax.

What are the lower and upper bounds, namely mi and Mi, of
the expected value of the chance node immediately after the
end of phase i?
• i = 0.

. m0 = vmin

. M0 = vmax

• i = 1, we first compute score(1), and then know
. m1 ≥ score(1) ∗ Pr(x = 1) + vmin ∗ (1− Pr(x = 1)), and
. M1 ≤ score(1) ∗ Pr(x = 1) + vmax ∗ (1− Pr(x = 1)).

• · · ·
• i = i∗, we have computed score(1), . . . , score(i∗), and then know

. mi∗ ≥
∑i∗

i=1 score(i) ∗ Pr(x = i) + vmin ∗ (1−
∑i∗

i=1 Pr(x = i)), and

. Mi∗ ≤
∑i∗

i=1 score(i) ∗ Pr(x = i) + vmax ∗ (1−
∑i∗

i=1 Pr(x = i)).

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 20

Changes of bounds: uniform case (1/2)

Assume the search window entering a chance node with N = c
choices is [alpha, beta].
• For simplicity, let’s assume Pri =

1
c, for all i, and the evaluated value

of the ith choice is vi.

The value of a chance node after the first i choices are explored
can be expressed as
• an expected value Ei = vsumi/i;

. vsumi =
∑i

j=1 vj

. This value is returned only when all choices are explored.
⇒ The expected value of an un-explored child shouldn’t be

vmin+vmax
2 .

• a range of possible values [mi,Mi].

. mi = (
∑i

j=1 vj + vmin · (c− i))/c

. Mi = (
∑i

j=1 vj + vmax · (c− i))/c

• Invariants:
. Ei ∈ [mi,Mi]
. EN = mN = MN

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 21

Changes of bounds: uniform case (2/2)

Let mi and Mi be the current lower and upper bounds,
respectively, of the expected value of this chance node
immediately after the evaluation of the ith node.
• mi = (

∑i−1
j=1 vj + vi + vmin · (c− i))/c

• Mi = (
∑i−1

j=1 vj + vi + vmax · (c− i))/c

How to incrementally update mi and Mi:
• m0 = vmin
• M0 = vmax
• mi = mi−1 + (vi − vmin)/c
• Mi = Mi−1 + (vi − vmax)/c

The current search window is [alpha, beta].
• No more searching is needed when

. mi ≥ beta, chance node cut off I;
⇒ The lower bound found so far is good enough.
⇒ Similar to a beta cutoff.
⇒ The returned value is mi.

. Mi ≤ alpha, chance node cut off II.
⇒ The upper bound found so far is bad enough.
⇒ Similar to an alpha cutoff.
⇒ The returned value is Mi.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 22

Chance node cut off

When mi ≥ beta, chance node cut off I,
• which means (

∑i−1
j=1 vj + vi + vmin · (c− i))/c ≥ beta

• ⇒ vi ≥ Bi−1 = c · beta− (
∑i−1

j=1 vj − vmin ∗ (c− i))

When Mi ≤ alpha, chance node cut off II,
• which means (

∑i−1
j=1 vj + vi + vmax · (c− i))/c ≤ alpha

• ⇒ vi ≤ Ai−1 = c · alpha− (
∑i−1

j=1 vj − vmax ∗ (c− i))

Hence set the window for searching the ith choice to be
[Ai−1, Bi−1] which means no further search is needed if the
result is not within this window.
How to incrementally update Ai and Bi?
• A0 = c · (alpha− vmax) + vmax

• B0 = c · (beta− vmin) + vmin
• Ai = Ai−1 + vmax − vi
• Bi = Bi−1 + vmin − vi

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 23

Algorithm: Chance Search

Algorithm F3.1′(position p, value alpha, value beta)
// max node
• determine the successor positions p1, . . . , pb
• if b = 0, then return f(p)

else begin
. m := −∞
. for i := 1 to b do
. begin
. if pi is to play a chance node n

then t := Star1 F3.1′(pi,n,max{alpha,m}, beta)

. else t := G3.1′(pi,max{alpha,m}, beta)

. if t > m then m := t

. if m ≥ beta then return(m) // beta cut off

. end

• end;
• return m

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 24

Algorithm: Chance Search

Algorithm Star1 F3.1′(position p, node n, value alpha, value
beta)
• // a chance node n with equal probability choices k1, . . ., kc
• determine the possible values of the chance node n to be k1, . . . , kc
• A0 = c · (alpha− vmax) + vmax, B0 = c · (beta− vmin) + vmin;
• m0 = vmin, M0 = vmax // current lower and upper bounds
• vsum = 0; // current sum of expected values
• for i = 1 to c do
• begin

. let pi be the position of assigning ki to n in p;

. t := G3.1′(pi,max{Ai−1,vmin},min{Bi−1,vmax})

. mi = mi−1 + (t− vmin)/c, Mi = Mi−1 + (t− vmax)/c;

. if t ≥ Bi−1 then return mi; // failed high, chance node cut off I

. if t ≤ Ai−1 then return Mi; // failed low, chance node cut off II

. vsum += t;

. Ai = Ai−1 + vmax − t, Bi = Bi−1 + vmin − t;

• end

return vsum/c;

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 25

Example: Chinese dark chess

Assumption:
• The range of the scores of Chinese dark chess is [−10, 10] inclusive,
alpha = −10 and beta = 10.

• N = 7.
• Pr(x = i) = 1/N = 1/7.

Calculation:
• i = 0,

. m0 = −10.

. M0 = 10.

• i = 1 and if score(1) = −2, then
. m1 = −2 ∗ 1/7 +−10 ∗ 6/7 = −62/7 ' −8.86.
. M1 = −2 ∗ 1/7 + 10 ∗ 6/7 = 58/7 ' 8.26.

• i = 1 and if score(1) = 3, then
. m1 = 3 ∗ 1/7 +−10 ∗ 6/7 = −57/7 ' −8.14.
. M1 = 3 ∗ 1/7 + 10 ∗ 6/7 = 63/7 = 9.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 26

General case

Assume the ith choice happens with a chance wi/c where
c =

∑N
i=1wi and N is the total number of choices.

• m0 = vmin
• M0 = vmax

• mi = (
∑i−1

j=1wj · vj + wi · vi + vmin · (c−
∑i

j=1wj))/c

. mi = mi−1 + (wi/c) · (vi − vmin)

• Mi = (
∑i−1

j=1wj · vj + wi · vi + vmax · (c−
∑i

j=1wj))/c

. Mi = Mi−1 + (wi/c) · (vi − vmax)

• A0 = (c/w1) · (alpha− vmax) + vmax

• B0 = (c/w1) · (beta− vmin) + vmin

• Ai−1 = (c · alpha− (
∑i−1

j=1wj · vj − vmax · (c−
∑i

j=1wj)))/wi

. Ai = (wi/wi+1) · (Ai−1 − vi) + vmax

• Bi−1 = (c · beta− (
∑i−1

j=1wj · vj − vmin · (c−
∑i

j=1wj)))/wi

. Bi = (wi/wi+1) · (Bi−1 − vi) + vmin

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 27

Comments

We illustrate the ideas using a fail soft version of the alpha-beta
algorithm.
• Original and dail hard version have a simpler logic in maintaining the

search interval.
• The semantic of comparing an exact returning value with an expected

returning value is something that needs careful thinking.
• May want to pick a chance node with a lower expected value but

having a hope of winning, not one with a slightly higher expected value
but having no hope of winning when you are in disadvantageous.

• May want to pick a chance node with a lower expected value but
having no chance of losing, not one with a slightly higher expected
value but having a chance of losing when you are in advantage.

Need to revise algorithms carefully when dealing with the
original, fail hard or NegaScout version.
• What does it mean to combine bounds from a fail hard version?

Exist other improvements by considering better move orderings
involving chance nodes.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 28

How to use these bounds

The lower and upper bounds of the expected score can be used
to do alpha-beta pruning.
• Nicely fit into the alpha-beta search algorithm.

Can do better by not searching the DFS order.
• It is not necessary to search completely the subtree of x = 1 first, and

then start to look at the subtree of x = 2.
• Assume it is a MIN chance node, e.g., the opponent takes a flip.

. Knowing some value v′1 of a MAX subtree for x = 1 gives an upper
bound, i.e., score(1) ≥ v′1.

. Knowing some value v′2 of a MAX subtree for x = 2 gives another upper
bound, i.e., score(2) ≥ v′2.

. These bounds can be used to make the search window further narrower.

For Monte-Carlo based algorithm, we need to use a sparse
sampling algorithm to efficiently estimate the expected value of
a chance node [Kearn et al 2002].

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 29

Proof number search

Consider the case of a 2-player game tree with either 0 or 1 on
the leaves.
• win, or not win which is lose or draw;
• lose, or not lose which is win or draw;
• Call this a binary valued game tree.

If the game tree is known as well as the values of some leaves
are known, can you make use of this information to search this
game tree faster?
• The value of the root is either 0 or 1.
• If a branch of the root returns 1, then we know for sure the value of

the root is 1.
• The value of the root is 0 only when all branches of the root returns 0.
• An AND-OR game tree search.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 30

Which node to search next?

A most proving node for a node u: a descendent node if its
value is 1, then the value of u is 1.
A most disproving node for a node u: a descendent node if its
value is 0, then the value of u is 0.

a

b c

d e f g h

1 ?1 ? ?

a

b c

d e f g h

1 ? ?

? 00

0

i j k

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 31

Proof or Disproof Number

Assign a proof number and a disproof number to each node u
in a binary valued game tree.
• proof(u): the minimum number of leaves needed to visited in order for

the value of u to be 1.
• disproof(u): the minimum number of leaves needed to visited in order

for the value of u to be 0.

The definition implies a bottom-up ordering.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 32

Proof Number: Definition

u is a leaf:
• If value(u) is unknown, then proof(u) is the cost of evaluating u.
• If value(u) is 1, then proof(u) = 0.
• If value(u) is 0, then proof(u) =∞.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

proof(u) =
i=b
min
i=1

proof(ui);

• if u is a MIN node,

proof(u) =

i=b∑
i=1

proof(ui).

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 33

Disproof Number: Definition

u is a leaf:
• If value(u) is unknown, then disproof(u) is cost of evaluating u.
• If value(u) is 1, then disproof(u) =∞.
• If value(u) is 0, then disproof(u) = 0.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

disproof(u) =

i=b∑
i=1

disproof(ui);

• if u is a MIN node,

disproof(u) =
i=b
min
i=1

disproof(ui).

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 34

Illustrations

a

b c

d e f g h

1 ?1 ? ?

disproof numberproof number,

1,

2, 1, 11

2

a

b c

d e f g h

1 ? ?

? 00

0

disproof numberproof number,

2, 1 infty, 0

1,1

2,1

i j k

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 35

How to use these numbers

If the numbers are known in advance, then from the
root, we search a child u with the value equals to
min{proof(root), disproof(root)}.
• Find a path from the root towards a leaf recursively as follows.

. If we try to prove it, then pick a child with the least proof number for
a MAX node, and pick any node that has a chance to be proved for a
MIN node.

. If we try to disprove it, then pick a child with the least disproof number
for a MIN node, and pick any node that has a chance to be disproved
for a MAX node.

Assume each leaf takes a lot of time to evaluate.
• For example, the game tree represents an open game tree or an

endgame tree.
• Depends on the results we have so far, pick the next leaf to prove or

disprove.

Need to be able to update these numbers on the fly.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 36

PN-search: algorithm

loop: Compute or update proof and disproof numbers for each
node in a bottom up fashion.
• If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise

. proof(root) ≤ disproof(root): we try to prove it.

. proof(root) > disproof(root): we try to disprove it.

u← root; {∗ find the leaf to prove or disprove ∗}
• if we try to prove, then

. while u is not a leaf do

. if u is a MAX node, then
u← leftmost child of u with the smallest non-zero proof number;

. if current is a MIN node, then
u← leftmost child of u with a non-zero proof number;

• if we try to disprove, then
. while u is not a leaf do
. if u is a MAX node, then

u← leftmost child of u with a non-zero disproof number;
. if current is a MIN node, then

u← leftmost child of u with the smallest non-zero disproof number;

Prove or disprove u; go to loop;

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 37

Multi-Valued game Tree

The values of the leaves may not be binary.
• Assume the values are non-negative integers.
• Note: it can be in any finite countable domain.

Revision of the proof and disproof numbers.
• proofv(u): the minimum number of leaves needed to visited in order

for the value of u to ≥ v.
. proof(u) ≡ proof1(u).

• disproofv(u): the minimum number of leaves needed to visited in order
for the value of u to < v.

. disproof(u) ≡ disproof1(u).

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 38

Illustration

a

b c

d e f g h

?? ?18 10

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 39

Illustration

a

b c

d e f g h

?? ?18 10

v<=18? v<=18?

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 40

Multi-Valued proof number

u is a leaf:
• If value(u) is unknown, then proofv(u) is cost of evaluating u.
• If value(u) ≥ v, then proofv(u) = 0.
• If value(u) < v, then proofv(u) =∞.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

proofv(u) =
i=b
min
i=1

proofv(ui);

• if u is a MIN node,

proofv(u) =

i=b∑
i=1

proofv(ui).

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 41

Multi-Valued disproof number

u is a leaf:
• If value(u) is unknown, then disproofv(u) is cost of evaluating u.
• If value(u) ≥ v, then disproofv(u) =∞.
• If value(u) < v, then disproofv(u) = 0.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

disproofv(u) =

i=b∑
i=1

disproofv(ui);

• if u is a MIN node,

disproofv(u) =
i=b
min
i=1

disproofv(ui).

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 42

Revised PN-search(v): algorithm

loop: Compute or update proofv and disproofv numbers for each
node in a bottom up fashion.
• If proofv(root) = 0 or disproofv(root) = 0, then we are done, otherwise

. proofv(root) ≤ disproofv(root): we try to prove it.

. proofv(root) > disproofv(root): we try to disprove it.

u← root; {∗ find the leaf to prove or disprove ∗}
• if we try to prove, then

. while u is not a leaf do

. if u is a MAX node, then
u← leftmost child of u with the smallest non-zero proofv number;

. if current is a MIN node, then
u← leftmost child of u with a non-zero proofv number;

• if we try to disprove, then
. while u is not a leaf do
. if u is a MAX node, then

u← leftmost child of u with a non-zero disproofv number ;
. if current is a MIN node, then

u← leftmost child of u with the smallest non-zero disproofv number;

Prove or disprove u; go to loop;

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 43

Multi-valued PN-search: algorithm

When the values of the leaves are not binary, use an open value
binary search to find an upper bound of the value.
• Set the initial value of v to be 1.
• loop: PN-search(v)

. Prove the value of the search tree is ≥ v or
disprove it by showing it is < v.

• If it is proved, then double the value of v and go to loop again.
• If it is disproved, then the true value of the tree is between bv/2c and
v − 1.

• {∗ Use a binary search to find the exact returned value of the tree. ∗}
• low ← bv/2c; high← v − 1;
• while low ≤ high do

. if low = high, then return low as the tree value

. mid← b(low + high)/2c

. PN-search(mid)

. if it is disproved, then high← mid− 1

. else if it is proved, then low ← mid

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 44

Comments

Can be used to construct opening books.
Appear to be good for searching certain types of game trees.
• Find the easiest way to prove or disprove a conjecture.
• A dynamic strategy depends on work has been done so far.

Performance has nothing to do with move ordering.
• Performances of most previous algorithms depend heavily on whether

good move orderings can be found.

Searching the “easiest” branch may not give you the best
performance.
• Performance depends on the value of each internal node.

Commonly used in verifying conjectures, e.g., first-player win.
• Partition the opening moves in a tree-like fashion.
• Try to the “easiest” way to prove or disprove the given conjecture.

Take into consideration the fact that some nodes may need
more time to process than the other nodes.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 45

References and further readings (1/2)

L. V. Allis, M. van der Meulen, and H. J. van den Herik.
Proof-number search. Artificial Intelligence, 66(1):91–124,
1994.
David Carmel and Shaul Markovitch. Learning and using
opponent models in adversary search. Technical Report
CIS9609, Technion, 1996.
M. Campbell. The graph-history interaction: on ignoring
position history. In Proceedings of the 1985 ACM annual
conference on the range of computing : mid-80’s perspec-
tive, pages 278–280. ACM Press, 1985.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 46

References and further readings (2/2)

Bruce W. Ballard The *-minimax search procedure for trees
containing chance nodes Artificial Intelligence, Volume 21, Issue
3, September 1983, Pages 327-350
Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald,
Mark H. M. Winands Monte-Carlo *-MiniMax Search Proceed-
ings IJCAI, pages 580–586, 2013.
Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse
sampling algorithm for near-optimal planning in large Markov
decision processes. Machine Learning, 2002, 49.2-3: 193-208.
Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu ”The Graph
History Interaction Problem in Chinese Chess,” Proceedings of
the 11th Advances in Computer Games Conference, (ACG),
Springer-Verlag LNCS# 4250, pages 165–179, 2005.

TCG: Selected advanced topics, 20190102, Tsan-sheng Hsu c© 47

