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Abstract 
The performance of a likelihood ratio-based speaker verification 
system is highly dependent on modeling of the target speaker’s 
voice (the null hypothesis) and characterization of non-target 
speakers’ voices (the alternative hypothesis). To better 
characterize the ill-defined alternative hypothesis, this study 
proposes a new likelihood ratio measure based on a composite-
structure Gaussian mixture model, the so-called GMM2. 
Motivated by the combined use of a variety of background 
models to represent the alternative hypothesis, GMM2 is 
designed with an inner set of mixture weights connected to the 
significance of each individual Gaussian density, and an outer 
set of mixture weights connected to the significance of each 
individual background model. Through the use of kernel 
discriminant analysis namely, Kernel Fisher Discriminant (KFD) 
or Support Vector Machine (SVM), GMM2 is trained in such a 
manner that the utterances of the null hypothesis can be 
optimally separated from those of the alternative hypothesis. 
Index Terms: speaker verification, likelihood ratio, kernel 
Fisher discriminant, support vector machine 

1. Introduction 
In essence, speaker verification is a hypothesis testing problem 
that is commonly solved by using a likelihood ratio (LR) test [1]. 
Given an input utterance U, the goal is to determine whether or 
not U was spoken by the target (hypothesized) speaker. 
Consider the following two hypotheses: 
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where ,1 ,0  ),|( =iHUp i  is the likelihood of hypothesis Hi 
given the utterance U, and θ  is a threshold. H0 and H1 are 
called the null hypothesis and the alternative hypothesis, 
respectively. Mathematically, H0 and H1 can be characterized 
by some parametric models, such as λ  and λ , respectively; λ  
is often called an anti-model. Though H0 can be modeled 
straightforwardly using speech utterances from the target 
speaker, H1 does not involve any specific speaker, and thus 
lacks explicit data for modeling. The approaches that have been 
proposed to better characterize H1 can be collectively expressed 
in the following form [2]: 
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where Ψ() is a function of the likelihoods computed for a set of 
background models {λ1, λ2,…, λN}. For example, the 
background model set can be obtained from N representative 
speakers, called a cohort set [8], which simulates potential 
impostors. If Ψ() is an average function [1], the LR is computed 
using 
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Alternatively, the average function can be replaced by 
various functions, such as the maximum [3] and the geometric 
mean [4]. A special case arises when N = 1, in which a single 
background model is usually trained by pooling all the available 
data from a large number of speakers. This is called the world 
model [2]. The LR in this case becomes 

),|(log)λ|(log)(2 Ω−= UpUpUL                        (5) 
where Ω denotes the world model. 

However, none of the LR measures developed so far has 
proved to be absolutely superior to the others, since the 
selection of Ψ() is usually application and training data 
dependent. In particular, the use of a simple function, such as 
the average, maximum, or geometric mean, is a heuristic that 
does not involve any optimization process. Thus, the resulting 
system is far from optimal in terms of verification accuracy. To 
better handle this problem, in this study, we formulate Ψ() as a 
combination of the likelihoods computed for all the background 
models. The combination is then optimized using kernel 
discriminant analysis such that the samples of the null 
hypothesis can be optimally separated from those of the 
alternative hypothesis.  

The remainder of this paper is organized as follows. Section 
2 presents the problem formulation of our approach for speaker 
verification. Section 3 introduces kernel discriminant analysis 
used in this work. Section 4 presents our experiment results. 
Finally, in Section 5, we present our conclusions. 

2. Problem formulation 
Our objective is to design a function ()Ψ  that best combines N 
background models according to their individual significance to 
the classifier. The combination is assumed to be of the form: 
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where iw  is a weight for )|( iUp λ , i = 1,…, N, and w1 + w2 
+…+ wN = 1. Suppose all the N background models are 
Gaussian Mixture Models (GMMs) [1], then Eq. (6) can be 
viewed as a mixture Gaussian density function. From this 
perspective, the anti-model λ  is considered as a GMM with two 
layers of mixture weights, in which one layer stands for each 
background model and the other for the combination of 
background models. We refer to λ  as 2-layer GMM (GMM2), 
since it involves both inner and outer mixture weights. GMM2 
is different from the world model Ω in that it is designed to 
characterize the relationship between individual background 
models through the use of outer mixture weights, rather than 
simply pool all the available data and train a single background 
model. Note that these inner and outer mixture weights are 
trained by different algorithms. Specifically, the inner mixture 
weights are estimated using the standard expectation-
maximization (EM) algorithm [5], while the outer mixture 
weights are trained on the basis of the LR. 

By applying Eq. (6) to Eq. (2) and reversing the LR, we 
obtain 
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where T
Nwww ] ..., ,[ 21=w  is an N×1 vector of outer mixture 

weights, the new threshold θθ /1'= , and x is an N × 1 vector in 
the space RN, which is expressed by 
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In this way, each speech utterance U is represented by a 
characteristic vector x, which is analogous to the anchor model 
technique [9] if the background models are regarded as the 
anchor models. In the sequel, we further rewrite Eq. (7) by 
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where f(x) forms a so-called linear discriminant classifier, in 
which the bias b plays the same role as the decision threshold 

'θ  in Eq. (7). This classifier translates the goal of solving an LR 
test problem into the optimization of w and b, such that the 
utterances of the clients and impostors can be separated. To 
realize this classifier, three distinct data sets are needed, one for 
generating each client’s model, one for generating the 
background models, and one for optimizing w and b. 

3. Kernel discriminant analysis 
Intuitively, f(x) in Eq. (9) can be solved via linear discriminant 
training algorithms [10]. However, such a method is based on 
the assumption that the observed data of different classes is 
linearly separable, which is obviously not adequate in most 
practical cases with nonlinearly separable data. To solve this 
problem more effectively, we propose using a kernel-based 
nonlinear discriminant classifier. It is hoped that the data from 

different classes, which is not linearly separable in the original 
input space RN, can be separated linearly in a certain higher 
dimensional (maybe infinite) feature space F via a nonlinear 
mapping Φ. Let Φ(x) denote a vector obtained by mapping x 
from RN to F. The objective based on Eq. (9) can be re-defined 
as 

, )()( bf T +Φ= xwx                              (10) 
which constitutes a linear discriminant classifier in F. 

In practice, it is difficult to determine the kind of mapping 
that would be applicable. Therefore, the computation of Φ(x) 
can be infeasible. To overcome this difficulty, a promising 
approach is to characterize the relationship between the data 
samples in F, instead of computing Φ(x) directly. This is 
achieved by introducing a kernel function k(x, y)=<Φ(x),Φ(y)>, 
which is the dot product of two vectors Φ(x) and Φ(y) in F. The 
kernel function k(⋅) must be symmetric positive definite and 
conform to Mercer’s condition [7]. A number of kernel 
functions exist, such as the simple dot product kernel function, 
i.e., k(x, y) = xTy, and the popular Exponential Radial Basis 
Function (ERBF) kernel, i.e., k(x, y) = exp(− ||x − y|| / 2σ2), 
where σ is a tunable parameter. Existing techniques, such as 
KFD [6] or SVM [7], can be applied to implement Eq. (10). 

3.1. Kernel Fisher Discriminant (KFD) 

The purpose of KFD is to find a direction w in the feature space 
F that maximizes the between-class scatter, while minimizing 
the within-class scatter. Since the solution of w must lie in the 
span of all training data samples mapped in F [6], it can be 
expressed as 
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where l is the number of training data samples. Let αT = [α1, 
α2,…, αl]. Our goal therefore changes from finding w to finding 
α. Accordingly, Eq. (10) is equivalent to 
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where α and b can be solved by an approach similar to Fisher’s 
Linear Discriminant (FLD) [6]. 

3.2. Support Vector Machine (SVM) 

Alternatively, Eq. (10) can be solved with SVM, the goal of 
which is to seek a separating hyperplane in the feature space F 
that maximizes the margin between classes. Following [7], w is 
expressed as 
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which yields 
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where each training sample xj belongs to one of the two classes 
identified by the label yj∈{−1,1}, j=1, 2,…, l. The coefficients 
αj and b can be solved using the quadratic programming 
techniques in [11]. Note that αj is non-zero for a few support 
vectors, and zero otherwise. An SVM with a dot product kernel 
function is known as a Linear SVM. 



The inner and outer mixture weights of GMM2 are 
estimated via the EM algorithm and the kernel discriminant 
analysis, respectively. That is to say, the GMM2 integrates the 
Bayesian learning and discriminative training algorithms. The 
objective is to optimize the classifier by considering the null 
hypothesis and the alternative hypothesis jointly. 

4. Experiments 

4.1. Experimental setup 

The speaker verification experiments were conducted on speech 
data extracted from the XM2VTSDB multi-modal database [12]. 
In accordance with “Configuration II” described in [12], the 
database was divided into three subsets: “Training”, 
“Evaluation”, and “Test”. In our experiments, we used 
“Training” to build the individual client’s model and anti-model, 
and “Evaluation” to optimize w and b. The performance of 
speaker verification was then evaluated on the “Test” subset. As 
shown in Table 1, a total of 293 speakers1 in the database were 
divided into 199 clients, 25 “evaluation impostors”, and 69 “test 
impostors”. Each speaker participated in 4 recording sessions at 
approximately one-month intervals, and each recording session 
consisted of 2 shots. In a shot, every speaker was prompted to 
utter 3 sentences “0 1 2 3 4 5 6 7 8 9”, “5 0 6 9 2 8 1 3 7 4”, and 
“Joe took father’s green shoe bench out”. Each utterance, 
sampled at 32 kHz, was converted into a stream of 24-order 
feature vectors, each consisting of 12 Mel-scale cepstral 
coefficients [5] and their first time derivatives, by a 32-ms 
Hamming-windowed frame with 10-ms shifts. 

 

Table 1. Configuration of the speech database. 

Session Shot 199 clients 25 impostors 69 impostors
1 1 2 
1 2 2 

Training 

1 3 2 Evaluation 

1 4 2 Test 

Evaluation Test 

 
We used 12 (2×2×3) utterances/speaker from sessions 1 and 

2 to train the individual client’s model, represented by a GMM 
with 64 mixture components. For each client, the other 198 
clients’ utterances from sessions 1 and 2 were used to generate 
the world model, represented by a GMM with 256 mixture 
components; B speakers were chosen from these 198 clients as 
the cohort. Then, we used 6 utterances/client from session 3, 
along with 24 (4×2×3) utterances/evaluation-impostor, which 
yielded 1,194 (6×199) client examples and 119,400 (24×25×199) 
impostor examples, to optimize w and b. However, recognizing 
the fact that a kernel-based classifier can be intractable when a 
huge amount of training examples involves, we downsized the 

                                                                 
 
1 We discarded 2 speakers (ID numbers 313 and 342) because of 
partial data corruption. 

number of impostor examples from 119,400 to 2,250 using a 
uniform random selection method. In the performance 
evaluation, we tested 6 utterances/client in session 4 and 24 
utterances/test-impostor, which produced 1,194 (6×199) client 
trials and 329,544 (24×69×199) impostor trials. 

4.2. Background model selection 

We used B+1 background models, consisting of one world 
model and B cohort set models, to form the characteristic vector 
x in Eq. (8), and B cohort set models to form L1(U) in Eq. (4). 
Two cohort selection methods [1] were applied in this 
experiment. One selected the B closest speakers for each client, 
and the other selected the B/2 closest speakers plus the B/2 
farthest speakers for each client. The selection was based on the 
speaker distance measure [1], computed by 
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where iλ  and jλ  were speaker models trained using the i-th 

speaker’s utterances iX  and the j-th speaker’s utterances jX , 
respectively. Two cohort selection methods yielded the 
following two (B+1)×1 characteristic vectors: 
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i =  i = 1,…, B for Eq. (16), and i 

= 1,…, B/2 for Eq. (17). iclosest   λ  and i farthest  λ  are the i-th 
closest model and the i-th farthest model of the client model λ , 
respectively. In the experiments, B was set to 20.  

4.3. Experimental results 

We implemented the proposed LR system via KFD with Eq. (16) 
(curve “KFD_w_20c”), KFD with Eq. (17) (curve 
“KFD_w_10c_10f”), SVM with Eq. (16) (curve 
“SVM_w_20c”), and SVM with Eq. (17) (curve 
“SVM_w_10c_10f”), respectively. Both SVM and KFD used an 
ERBF kernel function with σ= 5. For performance comparison, 
three systems, L1(U) with 20 closest cohort models (curve 
“L1_20c”), L1(U) with 10 closest cohort models plus 10 farthest 
cohort models (curve “L1_10c_10f”), and L2(U) were used as 
our baselines. 

Fig. 1 shows the results of speaker verification conducted 
on “Evaluation” with DET curves [13], obtained equivalently 
by adjusting the decision threshold, i.e., θ or b. Though this 
experiment was an inside test for our proposed LR system, it is 
clear that KFD performs better than SVM. To verify that the 
proposed LR systems are superior to the baseline systems, 
experiments were conducted on “Test”. The results, as shown in 
Fig. 2, confirm that both the proposed LR systems, SVM and 
KFD, outperform the baseline systems. We can also see from 
Fig. 2 that the performances of SVM and KFD are similar, but 
this is not the case in Fig. 1. We speculate that the KFD 
classifier might have over-learned the training examples. In 
addition, it can be seen that there is no significant difference in 



performance between the background model sets used in Eq. 
(16) and Eq. (17). 

Further analysis of the results via the equal error rate (EER) 
showed that, for “Test”, a 14.87% relative improvement was 
achieved by SVM_w_20c (EER = 4.35%), compared to 5.11% 
of L2(U), which was the best result of the baseline systems. 

5. Conclusions 
This study has investigated the feasibility of improving the 
characterization of the alternative hypothesis by combining 
multiple background models more effectively and robustly. The 
combination has been formulated as a structure of two-layer 
Gaussian mixture modeling called GMM2. The GMM2 is first 
trained via the Bayesian learning algorithm, and further 
optimized by using kernel discriminant analysis. In this way, the 
classifier is optimized by considering the null hypothesis and 
the alternative hypothesis jointly, so that, based on the GMM2-
based LR measure, the samples of the null hypothesis can be 
optimally separated from those of the alternative hypothesis. 
Experiments conducted on a speaker-verification task showed 
that the GMM2-based LR measure improves performance 
significantly. The proposed method can be applied to other 
types of data and hypothesis testing problems. 
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Figure 1 DET curves for “Evaluation”. 

 

 
Figure 2 DET curves for “Test”. 


