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Abstract. In a log-likelihood ratio (LLR)-based speaker verification system, the 
alternative hypothesis is usually ill-defined and hard to characterize a priori, 
since it should cover the space of all possible impostors. In this paper, we pro-
pose a new LLR measure in an attempt to characterize the alternative hypothe-
sis in a more effective and robust way than conventional methods. This LLR 
measure can be further formulated as a non-linear discriminant classifier and 
solved by kernel-based techniques, such as the Kernel Fisher Discriminant 
(KFD) and Support Vector Machine (SVM). The results of experiments on two 
speaker verification tasks show that the proposed methods outperform classical 
LLR-based approaches. 

Keywords: Speaker verification, Log-likelihood ratio, Kernel Fisher Discrimi-
nant, Support Vector Machine. 

1   Introduction 

In essence, the speaker verification task is a hypothesis testing problem. Given an in-
put utterance U, the goal is to determine whether U was spoken by the hypothesized 
speaker or not. The log-likelihood ratio (LLR)-based [1] detector is one of the 
state-of-the-art approaches for speaker verification. Consider the following hypothe-
ses: 

H0: U is from the hypothesized speaker,  
H1: U is not from the hypothesized speaker. 

The LLR test is expressed as 
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where ,1 ,0  ),|( =iHUp i  is the likelihood of the hypothesis Hi given the utterance 
U, and θ  is the threshold. H0 and H1 are, respectively, called the null hypothesis and 
the alternative hypothesis. Mathematically, H0 and H1 can be represented by paramet-
ric models denoted as λ  and λ , respectively; λ  is often called an anti-model. 
Though H0 can be modeled straightforwardly using speech utterances from the hy-
pothesized speaker, H1 does not involve any specific speaker, and thus lacks explicit 
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data for modeling. Many approaches have been proposed to characterize H1, and 
various LLR measures have been developed. We can formulate these measures in the 
following general form [2]: 

,
))|( ),...,|(),|((

)|(log)(
21 NUpUpUp

UpUL
λλλ

λ
Ψ

=  (2) 

where Ψ(⋅) is some function of the likelihood values from a set of so-called back-
ground models {λ1,λ2,…,λN}. For example, the background model set can be obtained 
from N representative speakers, called a cohort [8], which simulates potential impos-
tors. If Ψ(⋅) is an average function [1], the LLR can be written as 
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Alternatively, the average function can be replaced by various functions, such as the 
maximum [3], i.e., 
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or the geometric mean [4], i.e., 
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A special case arises when Ψ(⋅) is an identity function and N = 1. In this instance, a 
single background model is usually trained by pooling all the available data, which is 
generally irrelevant to the clients, from a large number of speakers. This is called the 
world model or the Universal Background Model (UBM) [2]. The LLR in this case 
becomes 

),|(log)λ|(log)(4 Ω−= UpUpUL  (6) 

where Ω denotes the world model. 
However, none of the LLR measures developed so far has proved to be absolutely 

superior to any other, since the selection of Ψ(⋅) is usually application and training 
data dependent. In particular, the use of a simple function, such as the average, 
maximum, or geometric mean, is a heuristic that does not involve any optimization 
process. The issues of selection, size, and combination of background models moti-
vate us to design a more comprehensive function, Ψ(⋅), to improve the characteriza-
tion of the alternative hypothesis. In this paper, we first propose a new LLR measure 
in an attempt to characterize H1 by integrating all the background models in a more 
effective and robust way than conventional methods. Then, we formulate this new 
LLR measure as a non-linear discriminant classifier and apply kernel-based tech-
niques, including the Kernel Fisher Discriminant (KFD) [6] and Support Vector Ma-
chine (SVM) [7], to optimally separate the LLR samples of the null hypothesis from 
those of the alternative hypothesis. Speaker verification experiments conducted on 
both the XM2VTSDB database and the ISCSLP2006 speaker recognition evaluation 
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database show that the proposed methods outperform classical LLR-based ap-
proaches. 

The remainder of this paper is organized as follows. Section 2 describes the analy-
sis of the alternative hypothesis in our approach. Sections 3 and 4 introduce the kernel 
classifiers used in this work and the formation of the characteristic vector by back-
ground model selection, respectively. Section 5 contains our experiment results. Fi-
nally, in Section 6, we present our conclusions. 

2   Analysis of the Alternative Hypothesis 

First of all, we redesign the function Ψ(⋅) in Eq. (2) as 
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where T
NUpUpUp )]|( ),...,|(),|([ 21 λλλ=u  is an N × 1 vector and iα  is the 

weight of the likelihood p(U | λi), i = 1,2,…, N. This function gives N background 
models different weights according to their individual contribution to the alternative 
hypothesis. It is clear that Eq. (7) is equivalent to a geometric mean function when 

1=iα , i = 1,2,…, N. If some background model λi contrasts with an input utterance 
U, the likelihood p(U | λi) may be extremely small, and thus cause the geometric 
mean to approximate zero. In contrast, by assigning a favorable weight to each back-
ground model, the function Ψ(⋅) defined in Eq. (7) may be less affected by any spe-
cific background model with an extremely small likelihood. Therefore, the resulting 
score for the alternative hypothesis obtained by Eq. (7) will be more robust and reli-
able than that obtained by a geometric mean function. It is also clear that Eq. (7) will 
reduce to a maximum function when 1* =iα , )λ|(log* maxarg 1 iNi Upi ≤≤= ; and 

0=iα , *ii ≠∀ . 
By substituting Eq. (7) into Eq. (2) and letting )...(/ 21 Niiw αααα +++= , i = 

1,2,…, N, we obtain 
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where T
Nwww ] ..., ,[ 21=w  is an N×1 weight vector and x is an N × 1 vector in the 

space RN, expressed by 
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The implicit idea in Eq. (9) is that the speech utterance U can be represented by a 
characteristic vector x. 

If we replace the threshold θ  in Eq. (8) with a bias b, the equation can be rewrit-
ten as 

)(  )( xxw fbUL T =+= , (10) 

where f(x) forms a so-called linear discriminant classifier. This classifier translates the 
goal of solving an LLR measure into the optimization of w and b, such that the utter-
ances of clients and impostors can be separated. To realize this classifier, three dis-
tinct data sets are needed: one for generating each client’s model, one for generating 
the background models, and one for optimizing w and b. Since the bias b plays the 
same role as the decision threshold θ  of the conventional LLR-based detector de-
fined in Eq. (1), which can be determined through a trade-off between false accep-
tance and false rejection, the main goal here is to find w. 

3   Kernel Classifiers 

Intuitively, f(x) in Eq. (10) can be solved via linear discriminant training algorithms 
[9]. However, such methods are based on the assumption that the observed data of 
different classes is linearly separable, which is obviously not feasible in most practical 
cases with nonlinearly separable data. To solve this problem more effectively, we 
propose using a kernel-based nonlinear discriminant classifier. It is hoped that data 
from different classes, which is not linearly separable in the original input space RN, 
can be separated linearly in a certain higher dimensional (maybe infinite) feature 
space F via a nonlinear mapping Φ. Let Φ(x) denote a vector obtained by mapping x 
from RN to F. Then, the objective function, based on Eq. (10), can be re-defined as 

, )()( bf T +Φ= xwx  (11) 

which constitutes a linear discriminant classifier in F. 
In practice, it is difficult to determine the kind of mapping that would be applica-

ble; therefore, the computation of Φ(x) might be infeasible. To overcome this diffi-
culty, a promising approach is to characterize the relationship between the data sam-
ples in F, instead of computing Φ(x) directly. This is achieved by introducing a kernel 
function k(x, y)=<Φ(x),Φ(y)>, which is the dot product of two vectors Φ(x) and Φ(y) 
in F. The kernel function k(⋅) must be symmetric, positive definite and conform to 
Mercer’s condition [7]. A number of kernel functions exist, such as the simplest dot 
product kernel function k(x, y) = xTy, and the very popular Radial Basis Function 
(RBF) kernel k(x, y) = exp(− ||x − y||2 / 2σ2) in which σ is a tunable parameter. Ex-
isting techniques, such as KFD [6] or SVM [7], can be applied to implement Eq. (11). 
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3.1   Kernel Fisher Discriminant (KFD) 

Suppose the i-th class has ni data samples, },..,{ 1
i
n

i
i i

xxX = , i = 1, 2. The goal of the 
KFD is to find a direction w in the feature space F such that the following Fisher’s 
criterion function J(w) is maximized: 
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where Φ
bS and Φ

wS  are, respectively, the between-class scatter matrix and the 
within-class scatter matrix defined as 

T
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s
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sii n 1 )()/1( xm , and i = 1, 2, is the mean vector of the i-th class in F. 

Let },..,,{ 2121 lxxxXX =∪  and 21 nnl += . Since the solution of w must lie in the 
span of all training data samples mapped in F [6], w can be expressed as 
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Let αT = [α1, α2,…, αl]. Accordingly, Eq. (11) can be re-written as 
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Our goal therefore changes from finding w to finding α, which maximizes 
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where M and N are computed by 
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respectively, where iη  is an l×1 vector with ∑ == in
s

i
sjiji kn 1 ),()/1()( xxη , Ki is an l

×ni matrix with ),()( i
sjjsi k xxK = , Ini

 is an ni×ni identity matrix, and 1ni
 is an ni×ni 

matrix with all entries equal to 1/ni. Following [6], the solution for α, which maxi-
mizes J(α) defined in Eq. (17), is the leading eigenvector of N-1M. 
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3.2   Support Vector Machine (SVM) 

Alternatively, Eq. (11) can be solved with an SVM, the goal of which is to seek a 
separating hyperplane in the feature space F that maximizes the margin between 
classes. Following [7], w is expressed as 
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where each training sample xj belongs to one of the two classes identified by the label 
yj∈{−1,1}, j=1, 2,…, l. We can find the coefficients αj by maximizing the objective 
function, 
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subject to the constraints, 
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where C is a penalty parameter [7]. The problem can be solved using quadratic pro-
gramming techniques [10]. Note that most αj are equal to zero, and the training sam-
ples associated with non-zero αj are called support vectors. A few support vectors act 
as the key to deciding the optimal margin between classes in the SVM. An SVM with 
a dot product kernel function is known as a Linear SVM. 

4   Formation of the Characteristic Vector 

In our experiments, we use B+1 background models, consisting of B cohort set mod-
els and one world model, to form the characteristic vector x in Eq. (9); and B cohort 
set models for L1(U) in Eq. (3), L2(U) in Eq. (4), and L3(U) in Eq. (5). Two cohort se-
lection methods [1] are used in the experiments. One selects the B closest speakers to 
each client; and the other selects the B/2 closest speakers to, plus the B/2 farthest 
speakers from, each client. The selection is based on the speaker distance measure [1], 
computed by 
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where iλ  and jλ  are speaker models trained using the i-th speaker’s utterances 

iX  and the j-th speaker’s utterances jX , respectively. Two cohort selection meth-

ods yield the following two (B+1)×1 characteristic vectors: 

Tc
B

c UpUpUp )](~  ...  )(~  )(~[ 10=x  (25) 

and 
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where )|(/)|(log)(~
0 Ω= UpUpUp λ , )|(/)|(log)(~

closest   i
c
i UpUpUp λλ= , and 

)|(/)|(log)(~
 farthest  i

f
i UpUpUp λλ= . iclosest   λ  and i farthest  λ  are the i-th closest 

model and the i-th farthest model of the client model λ , respectively. 

5   Experiments 

We evaluate the proposed approaches on two databases: the XM2VTSDB database 
[11] and the ISCSLP2006 speaker recognition evaluation (ISCSLP2006-SRE) data-
base [12].  

For the performance evaluation, we adopt the Detection Error Tradeoff (DET) 
curve [13]. In addition, the NIST Detection Cost Function (DCF) [14], which reflects 
the performance at a single operating point on the DET curve, is also used. The DCF 
is defined as 

)1( TargetFalseAlarmFalseAlarmTargetMissMissDET PPCPPCC −××+××= , (27) 

where MissP  and FalseAlarmP  are the miss probability and the false-alarm probabil-
ity, respectively, MissC  and FalseAlarmC  are the respective relative costs of detection 
errors, and TargetP  is the a priori probability of the specific target speaker. A special 

case of the DCF is known as the Half Total Error Rate (HTER), where MissC  and 

FalseAlarmC  are both equal to 1, and TargetP = 0.5, i.e., 2/)(HTER FalseAlarmMiss PP += . 

5.1   Evaluation on the XM2VTSDB Database 

The first set of speaker verification experiments was conducted on speech data ex-
tracted from the XM2VTSDB multi-modal database [11]. In accordance with “Con-
figuration II” described in [11], the database was divided into three subsets: “Train-
ing”, “Evaluation”, and “Test”. In our experiments, we used the “Training” subset to 
build the individual client’s model and the world model, and the “Evaluation” subset 
to estimate the decision threshold θ  in Eq. (1) and the parameters w and b in Eq. 
(11). The performance of speaker verification was then evaluated on the “Test” sub-
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set. As shown in Table 1, a total of 293 speakers1 in the database were divided into 
199 clients, 25 “evaluation impostors”, and 69 “test impostors”. Each speaker partici-
pated in four recording sessions at approximately one-month intervals, and each re-
cording session consisted of two shots. In a shot, every speaker was prompted to utter 
three sentences “0 1 2 3 4 5 6 7 8 9”, “5 0 6 9 2 8 1 3 7 4”, and “Joe took father’s 
green shoe bench out”. Using a 32-ms Hamming-windowed frame with 10-ms shifts, 
each utterance (sampled at 32 kHz) was converted into a stream of 24-order feature 
vectors, each consisting of 12 Mel-scale cepstral coefficients [5] and their first time 
derivatives. 

Table 1.  Configuration of the XM2VTSDB speech database. 

Session Shot 199 clients 25 impostors 69 impostors 

1 1 
2 
1 2 2 

Training

1 
3 2 Evaluation

1 4 
2 

Test 

Evaluation Test 

 
We used 12 (2×2×3) utterances/speaker from sessions 1 and 2 to train the individ-

ual client’s model, represented by a Gaussian Mixture Model (GMM) [1] with 64 
mixture components. For each client, the other 198 clients’ utterances from sessions 1 
and 2 were used to generate the world model, represented by a GMM with 256 mix-
ture components; 20 speakers were chosen from these 198 clients as the cohort. Then, 
we used 6 utterances/client from session 3, and 24 (4×2×3) utter-
ances/evaluation-impostor, which yielded 1,194 (6×199) client samples and 119,400 
(24×25×199) impostor samples, to estimate θ , w, and b. However, because a ker-
nel-based classifier can be intractable when a large number of training samples is in-
volved, we reduced the number of impostor samples from 119,400 to 2,250 using a 
uniform random selection method. In the performance evaluation, we tested 6 utter-
ances/client in session 4 and 24 utterances/test-impostor, which produced 1,194 
(6×199) client trials and 329,544 (24×69×199) impostor trials. 

5.1.1   Experiment Results 

We implemented the proposed LLR system in four ways: KFD with Eq. (25) 
(“KFD_w_20c”), KFD with Eq. (26) (“KFD_w_10c_10f”), SVM with Eq. (25) 
(“SVM_w_20c”), and SVM with Eq. (26) (“SVM_w_10c_10f”). Both SVM and 
KFD used an RBF kernel function with σ= 5. For the performance comparison, we 
used five systems as our baselines: 1) L1(U) with the 20 closest cohort models 

                                                           
1 We discarded 2 speakers (ID numbers 313 and 342) because of partial data corruption. 
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(“L1_20c”), 2) L1(U) with the 10 closest cohort models plus the 10 farthest cohort 
models (“L1_10c_10f”), 3) L2(U) with the 20 closest cohort models (“L2_20c”), 4) 
L3(U) with the 20 closest cohort models (“L3_20c”), and 5) L4(U) (“L4”). 

Fig. 1 shows the results of the baseline systems tested on the “Evaluation” subset 
in DET curves [13]. We observe that the curves “L1_10c_10f” and “L4” are better 
than the others. Thus, in the second experiment, we focused on the performance im-
provements of our proposed LLR systems over these two baselines. 

 

 
Fig. 1. Baselines: DET curves for the XM2VTSDB “Evaluation” subset. 

Fig. 2 shows the results of our proposed LLR systems versus the baseline systems 
evaluated on the “Test” subset. It is clear that the proposed LLR systems, including 
KFD and SVM, outperform the baseline LLR systems, while KFD performs better 
than SVM. 

An analysis of the results based on the HTER is given in Table 2. For each ap-
proach, the decision threshold, θ  or b, was used to minimize the HTER on the 
“Evaluation” subset, and then applied to the “Test” subset. From Table 2, we observe 
that, for the “Test” subset, a 30.68% relative improvement was achieved by 
“KFD_w_20c”, compared to “L1_10c_10f” – the best baseline system. 

5.2   Evaluation on the ISCSLP2006-SRE Database 

We participated in the text-independent speaker verification task of the ISCSLP2006 
Speaker Recognition Evaluation (SRE) plan [12]. The database, which was provided 
by Chinese Corpus Consortium (CCC) [15], contained 800 clients. The length of the 
training data for each client ranged from 21 seconds to 1 minute and 25 seconds; the 
average length was approximately 37.06 seconds.  
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Fig. 2. Best baselines vs. our proposed LLR systems: DET curves for the XM2VTSDB “Test” 
subset. 

Table 2.  HTERs for “Evaluation” and “Test” subsets (The XM2VTSDB task). 

 min HTER for “Evaluation” HTER for “Test” 
L1_20c 0.0676 0.0535 

L1_10c_10f 0.0589 0.0515 
L2_20c 0.0776 0.0635 
L3_20c 0.0734 0.0583 

L4 0.0633 0.0519 
KFD_w_20c 0.0247 0.0357 
SVM_w_20c 0.0320 0.0414 

KFD_w_10c_10f 0.0232 0.0389 
SVM_w_10c_10f 0.0310 0.0417 

 
We sorted the clients according to the length of their training data in descending 

order. For the first 100 clients, we cut two 4-second segments from the end; and for 
the remaining 700 clients, we cut one 4-second segment from the end, as the “Evalua-
tion” data to estimate θ , w, and b. For each client, the remaining training data was 
used for “Training” to build that client’s model. In the implementation, all the 
“Training” data was pooled to train a UBM [2] with 1,024 mixture components. Then, 
the mean vectors of each client’s GMM were adapted from the UBM by his/her 
“Training” data. In the evaluation stage, each client was treated as an “evaluation im-
postor” of the other 799 clients. In this way, we had 900 (2×100+700) client samples 
and 719,100 (900×799) impostor samples. We applied all the client samples and 
2,400 randomly selected impostor samples to estimate w of the kernel classifiers. 
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According to the evaluation plan, the ratio of true clients to imposters in the “Test” 
subset should be approximately 1:20. Therefore, we applied the 900 client samples 
and 18,000 randomly selected impostor samples to estimate the decision threshold, θ  
or b. The “Test” data consisted of 5,933 utterances. 

The signal processing front-end was same as that applied in the XM2VTSDB task. 

5.2.1    Experiment Results 

Fig. 3 shows the results of the proposed LLR system using KFD with Eq. (26) and B 
= 100 (“KFD_w_50c_50f”) versus the baseline GMM-UBM [2] system tested on 
5,933 “Test” utterances in DET curves. The proposed LLR system clearly outper-
forms the baseline GMM-UBM system. According to the ISCSLP2006 SRE plan, the 
performance is measured by the NIST DCF with 10=MissC , 1=FalseAlarmC , and 

05.0=TargetP . In each system, the decision threshold, θ  or b, was selected to mini-
mize the DCF on the “Evaluation” data, and then applied to the “Test” data. The 
minimum DCFs for the “Evaluation” data and the associated DCFs for the “Test” data 
are given in Table 3. We observe that “KFD_w_50c_50f” achieved a 34.08% relative 
improvement over “GMM-UBM”. 

 

 
Fig. 3. DET curves for the ISCSLP2006-SRE “Test” subset. 

Table 3.  DCFs for “Evaluation” and “Test” subsets (The ISCSLP2006-SRE task). 

 min DCF for “Evaluation” DCF for “Test” 
GMM-UBM 0.0129 0.0179 

KFD_w_50c_50f 0.0067 0.0118 
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6   Conclusions 

We have presented a new LLR measure for speaker verification that improves the 
characterization of the alternative hypothesis by integrating multiple background 
models in a more effective and robust way than conventional methods. This new LLR 
measure is formulated as a non-linear classification problem and solved by using ker-
nel-based classifiers, namely, the Kernel Fisher Discriminant and Support Vector 
Machine, to optimally separate the LLR samples of the null hypothesis from those of 
the alternative hypothesis. Experiments, in which the proposed methods were applied 
to two speaker verification tasks, showed notable improvements in performance over 
classical LLR-based approaches. Finally, it is worth noting that the proposed methods 
can be applied to other types of data and hypothesis testing problems. 
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