
Advanced Automata-based Algorithms for Program
Termination Checking

Yu-Fang Chen
Academia Sinica, Taiwan

National Taipei University, Taiwan
yfc@iis.sinica.edu.tw

Matthias Heizmann
University of Freiburg, Germany

heizmann@informatik.uni-freiburg.
de

Ondřej Lengál
FIT, Brno University of Technology
IT4Innovations Centre of Excellence
Czech Republic, lengal@fit.vutbr.cz

Yong Li
State Key Laboratory of Computer

Science, Institute of Software
Chinese Academy of Sciences

University of Chinese Academy of
Sciences, China, liyong@ios.ac.cn

Ming-Hsien Tsai
Academia Sinica, Taiwan
mhtsai208@gmail.com

Andrea Turrini
State Key Laboratory of Computer

Science, Institute of Software
Chinese Academy of Sciences

China
turrini@ios.ac.cn

Lijun Zhang
State Key Laboratory of Computer

Science, Institute of Software
Chinese Academy of Sciences

University of Chinese Academy of
Sciences, China, zhanglj@ios.ac.cn

Abstract
In 2014, Heizmann et al. proposed a novel framework for
program termination analysis. The analysis starts with a ter-
mination proof of a sample path. The path is generalized to
a Büchi automaton (BA) whose language (by construction)
represents a set of terminating paths. All these paths can be
safely removed from the program. The removal of paths is
done using automata difference, implemented via BA com-
plementation and intersection. The analysis constructs in
this way a set of BAs that jointly “cover” the behavior of the
program, thus proving its termination. An implementation
of the approach in Ultimate Automizer won the 1st place
in the Termination category of SV-Comp 2017.
In this paper, we exploit advanced automata-based al-

gorithms and propose several non-trivial improvements of
the framework. To alleviate the complementation computa-
tion for BAs—one of the most expensive operations in the
framework—, we propose a multi-stage generalization con-
struction.We start with generalizations producing subclasses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192405

of BAs (such as deterministic BAs) for which efficient com-
plementation algorithms are known, and proceed to more
general classes only if necessary. Particularly, we focus on
the quite expressive subclass of semideterministic BAs and
provide an improved complementation algorithm for this
class. Our experimental evaluation shows that the proposed
approach significantly improves the power of termination
checking within the Ultimate Automizer framework.

CCS Concepts • Theory of computation→ Automata
over infinite objects; • Software and its engineering→
Formal software verification;

Keywords Program Termination, Büchi Automata Comple-
mentation and Language Difference

ACM Reference Format:
Yu-Fang Chen, Matthias Heizmann, Ondřej Lengál, Yong Li, Ming-
Hsien Tsai, Andrea Turrini, and Lijun Zhang. 2018. Advanced
Automata-based Algorithms for Program Termination Checking.
In Proceedings of 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18). ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3192366.3192405

1 Introduction
Termination analysis of programs is a challenging area of for-
mal verification, which has attracted the interest of many re-
searchers approaching the problem from different angles [4,
13, 17–19, 27, 28, 31, 33, 34, 36, 38, 42, 45–48, 51, 52]. All ap-
proaches need to deal with the following challenge: when
a program contains loops with branching or nesting, how to

https://doi.org/10.1145/3192366.3192405
https://doi.org/10.1145/3192366.3192405

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

The scope of the paperP always terminates

Program P and
uvω ∈ L (AP)

Prove the termina-
tion of uvω [6, 8, 9,
14, 16, 32, 39, 44].

A multi-stage ap-
proach to generalize
uvω to a certified
module (AM , f ,I).

(Section 3)

Efficient automata
algorithms to find
a word uvω in the
uncertified part of P .

(Sections 4-6)

uvω

uvω with a proof

AM

uvω

Figure 1. The flow of the automata-based termination anal-
ysis and the scope of the paper

devise a termination argument that holds for any possible
interleaving of different paths through the loop body?

Due to the difficulty of solving the general problem, many
researchers have focused on its simplified version that ad-
dresses only lasso-shaped programs, i.e., programs where the
control flow consists of a stem followed by a simple loopwith-
out any branching. Proving termination of this class of pro-
grams can be done rather efficiently [6, 8, 9, 14, 16, 32, 39, 44].
The approach of Heizmann et al. [33] leverages those re-

sults and proposes a modular construction of termination
proofs for a general program P from termination proofs of
lasso-shaped programs obtained from its concrete paths. On
a high level, the approach repeatedly performs the follow-
ing sequence of operations (see Figure 1). First, it samples
a path τ = uvω from the possible behaviors of P and at-
tempts to prove its termination using an off-the-shelf ap-
proach. Second, it generalizes τ into a (potentially infinite)
set of pathsM, called a certified module, that all share the
same termination proof with τ . Finally, it checks whether the
behavior of P contains a path τ ′ not covered by any certified
module generated so far and, if so, the procedure is restarted.
This sequence is repeated until either a non-terminating path
is found or all behaviors of P are covered by the modules.

Let us followwith an informal description of the procedure
on the example program Psort in Figure 2a. Figure 2b shows
the control flow graph (CFG) of Psort as a Büchi automaton
(BA) AP sort . The alphabet of AP sort is the set of all state-
ments occurring in Psort and each state ofAP sort is a location
of Psort. All states of AP sort are accepting so every infinite
sequence of statements of the program corresponds to an in-
finite word in the language L (AP sort

). The task is to decom-
pose AP sort into a finite set of BAs {A1, . . . ,An }, each rep-
resenting a program with a termination argument, such that
L (AP sort

) ⊆ L (A1) ∪ · · · ∪ L (An), so every path of Psort

is represented by a word in AP sort and is guaranteed to ter-
minate by an argument for some Ai . More concretely, each
BAAi is associated with a ranking function fi and a rank cer-
tificate Ii mapping each state to a predicate over the program
variables (cf. Section 3). The tripleMi = (Ai , fi ,Ii) is called

program sort(int i):
ℓ1: while (i>0):

ℓ2: int j:=1

ℓ3: while (j<i):

// if (a[j]>a[i]):

// swap(a[j],a[i])

ℓ4: j++

ℓ5: i--

(a) Program Psort

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

i>0

j:=1

j<ij++

j>=i

i--

(b) The BA AP sort

Figure 2. An example program and its BA representation

a certified module. The construction of the set {M1, . . . ,Mn }

is step-wise (see Figure 1). First, we find an ultimately pe-
riodic word uvω ∈ L (AP sort

)—which is essentially a lasso-
shaped program—and use a standard approach to check if it
corresponds to a terminating path. In our example, we start
with sampling the word uvω = i>0 j:=1 (j<i j++)ω .
We can prove termination of the path corresponding to uvω
by finding, e.g., the ranking function f1 (i, j) = i − j.
In the following, we will denote the outer loop of AP sort

as Outer = j>=i i-- i>0 j:=1 and its inner loop as
Inner = j<i j++ . We can observe that f1 is also a ranking
function for the set of paths obtained by generalizing uvω
into the set of words that correspond to all paths that even-
tually stay in the inner loop, i.e., words from

L1 = i>0 j:=1 · (Inner + Outer)∗ · Innerω . (1)

The language L1 together with a ranking function f1 and
a rank certificate I1 can be represented by the certified mod-
ule M1 = (A1, f1,I1) where L (A1) = L1. We proceed
by removing all paths covered by L1 from AP sort to know
which paths still need to be examined. The removal can be
performed by executing a BA difference algorithm, followed
by checking language emptiness (potentially finding a new
counterexample uvω on failure). In our example, the differ-
ence corresponds to the (non-empty) language

L (AP sort

|A1
) = i>0 j:=1 · (Inner∗Outer)ω (2)

represented by AP sort

|A1
. Suppose the next sampling gives us

uvω = i>0 j:=1 · Outerω , for which, e.g., the ranking
function f2 (i, j) = i is applicable. Note that f2 is also a valid
ranking function for all paths taking the outer while loop
infinitely often, i.e., all paths corresponding to words from

L2 = i>0 j:=1 · (Inner∗Outer)ω . (3)

We represent these paths by the certified module M2 =

(A2, f2,I2) where L (A2) = L2. After removing the words
from L (AP sort

|A1
), we, finally, obtain the BA AP sort

|A1,A2
, whose

language is empty. This means that the modulesM1 andM2
cover all possible paths of the program Psort and, because
each of them comes with a termination argument, we can
conclude that all paths of Psort are guaranteed to terminate.

Automata-based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Note that the above procedure performs extensively com-
putation of language difference of a pair of BAs. The com-
putation of difference involves computing the complement
of a BA, one of the most difficult operations in automata
theory—it is known that complementing a BA with n states
has the lower-bound space complexity 2O (n logn) [40].
In this paper, we exploit advanced automata-based algo-

rithms and propose several non-trivial improvements of the
framework. Our main contributions are the following:
Contribution 1: We devise a multi-stage generalization ap-
proach, which tries to avoid the costly complementation of
general BAs by considering several subclasses of BAs with
cheaper complementation operations. For every terminating
trace represented as a word uvω , we consider the follow-
ing subclasses: (i) finite-trace BAs (BAs accepting the lan-
guagewΣω for a wordw ∈ Σ∗), (ii) deterministic BAs (DBAs),
(iii) semideterministic BAs (SDBAs; BAs where, intuitively,
all strongly connected components (SCCs) containing an ac-
cepting state are deterministic), and, finally, (iv) general BAs.
These subclasses indeed have more efficient complementa-
tion procedures: the complementation of finite-trace BAs
needs only O (1) space, DBAs can be complemented in O (n)
space [35], and complementing SDBAs requires only 2O (n)
space [12]. The details of the multi-stage approach are pre-
sented in Section 3. Our observation from running the multi-
stage approach is that general BAs are needed only rarely—in
the vast majority of cases, SDBAs are expressive enough.
Contribution 2: In our multi-stage approach shown above,
the computation of the difference automaton for a BA and
an SDBA is one of the most expensive operations in the loop
of automata-based termination analysis. Our second contri-
bution is an efficient algorithm for computing the language
difference of a BA and an SDBA. The difference algorithm
performs on-the-fly intersection and complement, on the top
level using the (as far as we know currently the most effi-
cient) SCC-based BA emptiness checking algorithm of [26].
The details of the algorithm are given in Section 4.
Contribution 3: Our third contribution is the improvement
of the efficiency of state-of-the-art algorithms manipulat-
ing SDBAs. We, in particular, provide several heuristics of
the SDBA complementation procedure of Blahoudek et al.
from [12]. The main ideas of the heuristics are the following:
(i) lazy construction, which delays nondeterministic choices
in a way similar to partial order reduction [30, 43, 54] (Sec-
tion 5), and (ii) subsumption-based pruning of states inspired
by antichain-based algorithms for testing universality and
language inclusion over finite automata [2, 23] (Section 6).

We implemented the proposed solutions in the open source
tool Ultimate Automizer and evaluated them on the bench-
marks from SV-Comp [1]. Our experimental evaluation (Sec-
tion 7) shows that the approach we propose in this work has
significantly improved the power of termination checking
within the Ultimate Automizer framework.

2 Preliminaries
We fix an alphabet Σ. A (nondeterministic) generalized Büchi
automaton (GBA) with k accepting sets is a tuple A =

(Q,δ ,QI ,F), whereQ is a finite set of states, δ : Q ×Σ→ 2Q
is a transition function, QI ⊆ Q is a set of initial states, and
F = { Fj ⊆ Q | j ∈ {1, . . . ,k } } is a set of accepting con-
ditions. Unless stated explicitly, we assume that all GBAs
are complete, i.e., for each q ∈ Q and a ∈ Σ, it holds that
δ (q,a) , ∅. We use q

a
−→p to denote that p ∈ δ (q,a), and

we define post (q) =
⋃

a∈Σ δ (q,a). We lift δ to sets of states
in the usual way. We abuse notation and for q ∈ Q use
F (q) = { j ∈ {1, . . . ,k } | q ∈ Fj } to denote the set of ac-
cepting conditions that q satisfies. Moreover, we sometimes
use F also to denote the set {1, . . . ,k }.
A trace of A on an infinite word w = w0w1 . . . ∈ Σω

from a state q0 is an infinite sequence of transitions π =
q0

w0
−−→q1

w1
−−→ · · · such that for each i ≥ 0, we have qi

wi
−−→qi+1.

The trace π is accepting iff for each 1 ≤ j ≤ k , there are in-
finitely many i such that qi ∈ Fj , and is safe iff for all i ≥ 0,
qi <
⋃

1≤j≤k Fj . A run ρ = q0q1 . . . is the projection of a trace
to states. The concept that a run is accepting or safe is defined
analogously. The language of a state q ∈ Q in A is the set
LA (q) = {w ∈ Σ

ω | A has an accepting trace onw from q}
(denoted also as L (q) if A is obvious). If L (q) = ∅, we call
q useless. The language of the GBA A is defined as L (A) =⋃

qi ∈QI L (qi). We use ⊆L to denote the relation of language
inclusion of states: p ⊆L q ⇐⇒ L (p) ⊆ L (q).
A Büchi automaton (BA) is a GBA with just k = 1 ac-

cepting condition, i.e., F = {F }. We often denote a BA as
(Q,δ ,QI , F). A complement of A is a BA AC that accepts
the language L (AC) = Σω \ L (A). A is a deterministic BA
(DBA) if ∀q ∈ Q,a ∈ Σ : |δ (q,a) | ≤ 1 ∧ |QI | = 1. Moreover,
A is a semideterministic BA (SDBA) if, for each qf ∈ F , the
automaton A (qf) is deterministic, where A (qf) is obtained
from the BA (Q,δ , {qf }, F) by removing states unreachable
from qf . Intuitively, this means that an SDBA can move non-
deterministically until it visits an accepting state; then it can
only move deterministically. The set Q can be divided into
two disjoint parts Q1 and Q2 representing the states in the
nondeterministic part and deterministic part, respectively;
note that F ⊆ Q2. The transition function δ = δ1∪δt∪δ2 then
consists of the following three disjoint transition functions:
δ1 : Q1 × Σ→ 2Q1 , δt : Q1 × Σ→ 2Q2 , and δ2 : Q2 × Σ→ 2Q2 ,
where the relation δ2 is deterministic. To simplify presenta-
tion, we impose the following two additional requirements
on SDBAs: (1) we require that the entry points of Q2 are
accepting, i.e., δt (Q1,a) ⊆ F for all a ∈ Σ and (2) we require
that QI ∩ Q2 ⊆ F , i.e., all initial states in Q2 are accepting.
The two requirements guarantee that if a run in an SDBA
touches a state in Q2, it has already touched some accept-
ing state. Any SDBA can be transformed into an equiva-
lent SDBA satisfying the requirements by treating all non-
accepting entry or initial states q from Q2 (i.e., states from

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

either (
⋃

a∈Σ δt (Q1,a)) \F or (QI ∩Q2) \F) as follows: (1) we
add a new accepting state q′, (2) for all transitions entering q
from Q1, we redirect them to q′, and (3) we duplicate all
outgoing transitions of q to q′. Note that SDBAs recognize
the same class of languages as BAs, but can be, in the worst
case, exponentially larger.

3 Multi-Stage Generalization of Certified
Modules

Asmentioned in the introduction, a program P is represented
by a BA A. The termination proof of P can be obtained
by decomposing A into several BAs A1, . . . ,An , whose
languages jointly cover L (A), and then showing that each
of them is terminating by means of a certified module [33].
Given a well-ordered set (W ,≺), let ∞ denote a value

strictly larger than any other value inW . In the following,
we use v⃗ to denote the vector of program variables of P .
A valuation Φ is a function assigning a value to each variable
from v⃗. A statement is a command appearing in the program,
such as an assignment or the guard of a while loop. The
alphabet Σ is the set of statements appearing in P . Each
statement is associated with a binary relation over valuations
representing the effect of the statement; for instance, the
relation associated with the statement i>0 contains the
pairs (Φ,Φ) where Φ(i) =⇒ i > 0. A Hoare triple is
a triple {ψ } stmt {ψ ′} where stmt is a statement and ψ , ψ ′
are predicates over program variables; a Hoare triple is valid
if, for each pair of valuations (Φ,Φ′) in the relation associated
with stmt , if Φ satisfiesψ , then Φ′ satisfiesψ ′.

Definition 3.1 (cf. [33, Definition 3]). Given a BA AM =
(Q,δ , {qi }, {qf }) and a ranking function fM from valuations
into a well-ordered set (W ,≺), we call a mapping IM from
states to predicates over program variables a rank certificate
for fM and AM if the following properties hold:
• The initial state qi is mapped by IM to the predicate
where the auxiliary variable oldrnk has the value∞,
i.e., IM (qi) ⇐⇒ oldrnk = ∞.
• The accepting state qf is mapped by IM to a predicate
in which the value of f over the program variables is
strictly smaller than the value of the variable oldrnk,
i.e., IM (qf) =⇒ fM (⃗v) ≺ oldrnk.
• Each outgoing transition q

stmt
−−−−→q′ from a state q ,

qf corresponds to a valid Hoare triple, i.e., the triple
{IM (q)} stmt {IM (q′)} is valid.
• Each outgoing edge qf

stmt
−−−−→q′ from the accepting

state qf corresponds to a valid Hoare triple if we in-
sert an additional assignment statement that updates
oldrnk with the value of the ranking function, i.e.,
{IM (qf)} oldrnk:= fM (⃗v) ; stmt {IM (q′)} is valid.

We callM = (AM , fM ,IM) a certified module and define its
language asL (M) = L (AM). A certifiedmodule represents
a set of paths in P that share the same termination argument.

That is, for all paths represented byM, the evaluation of
the ranking function fM strictly decreases on visiting the
accepting state qf .

3.1 The Multi-Stage Approach to ConstructM
In this section, we describe our algorithm that generalizes
an ultimately periodic word uvω accompanied by a termi-
nation proof (obtained using an off-the-shelf termination
checker) into a certified module (cf. Figure 1).

First, we construct the initial certified lasso moduleMuvω

(cf. Section 3.1.1), which closely resembles the structure
of uvω . The alphabet Σ of Muvω (and of its generaliza-
tions, see below) consists of all statements occurring in uvω .
While such a module would work correctly in the later refine-
ment, it is of a very limited practical use. In our experience,
it usually covers only a very small fragment of programpaths;
sometimes it only covers the path corresponding to uvω .
The previous work [33] uses a generalization procedure

that usesMuvω to construct a moduleMnondet consisting of
a nondeterministic BA (cf. Section 3.1.5). AlthoughMnondet
is usually quite general, the drawback of this solution is
the extremely high complexity of complementing a nonde-
terministic BA, which is performed in the subsequent step.
To alleviate this issue, we propose the following multi-stage
approach for construction of certified modules.
Our multi-stage approach attempts to use the alphabet

and states ofMuvω to construct a certified module that is
as easy to complement as possible, while also satisfying the
condition that its language contains the word uvω (so that
when its language is removed from the set of uncertified
traces, we are guaranteed to remove at least uvω). The con-
struction proceeds in stages, starting with a module that
is the easiest to complement, and gradually progresses to
modules whose complementation is harder (they exhibit
a higher degree of nondeterminism), until it builds a module
whose language contains uvω . As the last option, we con-
struct Mnondet , which is guaranteed to contain uvω in its
language, but is the hardest to complement.

In this work we consider 4 stages: besides stage 0, where
the initial certified lasso moduleMuvω is built, we have at
stage 1 the finite-trace certified module construction (cf. Sec-
tion 3.1.2). The result contains a finite-trace BA whose com-
plementation takes constant time; the generalization is, how-
ever, possible only under certain conditions. At stage 2, we
build the deterministic certified module (cf. Section 3.1.3),
which is relatively easy to complement since it is determin-
istic. If it does not suffice, at stage 3, we create the semide-
terministic certified module (cf. Section 3.1.4), which allows
limited nondeterminism. The last construction we consider
at stage 4 is the nondeterministic certified module Mnondet
(cf. Section 3.1.5), which is guaranteed to accept uvω but
has the highest level of nondeterminism. More intermediate
constructions can be added into this multi-stage approach.

Automata-based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

3.1.1 Stage 0: Initial Certified Lasso Module
The initial certified lasso moduleMuvω consists of a BA ac-
cepting solely the worduvω , a ranking function f , and a rank
certificate I (from a lasso program termination prover). The
construction starts with the BA of the form depicted below,
for the stem u = u1u2 . . .ul and the loop v = v1v2 . . .vm .1

.u1 ul−1 ul

v1 v2

vm−1vm

For instance, consider again the sorting program Psort

and the ω-word uvω = i>0 j:=1 (j<i j++)ω . The cor-
responding BA and rank certificate Isort are depicted below,
where each state is annotated with the corresponding predi-
cate given byIsort for the ranking function f sort (i, j) = i− j .

q1

{oldrnk = ∞}

q2

{oldrnk = ∞}

q3

{i − j < oldrnk}

q4

{0 ≤ i − j ≤ oldrnk}

i>0 j:=1
j<i

j++

ModuleMuvω is obtained by generalizing the constructed
BA by merging states with the same predicate. Note that
for the given word uvω , two states can be merged only
if they both belong to the stem part u or both belong to
the loop part v; a state from the stem part can never be
merged with a state from the loop part, since the former
implies oldrnk = ∞ in its predicate while the latter im-
plies its negation. If we merge such states for the BA from
above, we obtain the following module accepting all words
of the form (i>0)∗ j:=1 (j<i j++)ω , not just uvω =
i>0 j:=1 (j<i j++)ω .

q1

{oldrnk = ∞}

q3

{i − j < oldrnk}

q4

{0 ≤ i − j ≤ oldrnk}

i>0

j:=1
j<i

j++

We denote the module from the example above asMsort
uvω .

3.1.2 Stage 1: Finite-trace Certified Module
The first module we try to construct is the finite-trace cer-
tified moduleM1 =Mfin. This module can be constructed
when uvω corresponds to a path that is infeasible already
in the stem part. In such a case, there must be a state q on
some path from the initial state qi to the accepting state qf
s.t. I (q) is unsatisfiable and for every q′ on the shortest path
from qi to q, I (q′) is satisfiable. More concretely,Mfin can
be constructed fromMuvω by (1) removing all states that
are not on a path from qi to q, (2) removing all outgoing tran-
sitions of q, (3) adding self-loops q

stmt
−−−−→q for all stmt ∈ Σ,

and (4) setting q as the single new accepting state.
1Note that if u = ε , the construction does not create a certified module
(since qi = qf). As a remedy for this, in such a case we materialize v once,
i.e., we use the identity εvω = vvω , and continue in the standard way.

3.1.3 Stage 2: Deterministic Certified Module
IfM1 cannot be constructed, we proceed by building a de-
terministic certified moduleM2 =Mdet. The high-level intu-
itive idea is to construct a DBA using sets of states ofMuvω

with transitions that respect the predicates ofMuvω (so that
the termination argument for uvω correctly extends to the
whole language of the module) and are in some sense maxi-
mal. In particular, the successor of a set of statesQ ofMuvω

over a statement stmt is computed as the maximal set of
states Q ′ satisfying the following property: the predicate of
every state inQ ′ is a logical consequence of the conjunction
of the predicates of the states inQ and the semantics of stmt .

For instance, let us consider an initial certified lasso mod-
uleMuvω whose alphabet contains the statement z:=x+y

and whose states q23,q42,q65 are annotated by I as follows:
I (q23) is x = 23, I (q42) is y = 42, and I (q65) is z = 65.
Then, regardless of the transitions ofMuvω , the successor of
{q23,q42} over z:=x+y is the set {q23,q42,q65}, since I (q65)
is implied by I (q23) ∧ I (q42) and the relation for z:=x+y ,
which contains all pairs (Φ,Φ′) such that Φ′(z) =⇒ z =
x + y and Φ(v) =⇒ Φ′(v) for v , z.

Definition 3.2. LetMuvω = (A, f ,I) be an initial certi-
fied lasso module such thatA = (Q,δ , {qi }, {qf }). The deter-
ministic certified moduleMdet = (Adet, f ,Idet) with a DBA
Adet = (Qdet,δdet,QI

det, F det) is defined as follows:

• The set of states of Adet is Qdet = 2Q .
• Let δ∧ : 2Q × Σ→ 2Q be a function s.t. δ∧ (Q, stmt) =
{q′ ∈ Q | {

∧
q∈Q I (q)} stmt ′ {I (q′)} is a valid Hoare

triple}, where stmt ′ = oldrnk:=f (⃗v) ; stmt if qf ∈ Q,
otherwise stmt ′ = stmt .
Now, the transition function δdet for a state Q ∈ Qdet

and a statement stmt is defined as δdet (Q, stmt) =
{Q ′}, where Q ′ = δ∧ (Q, stmt) if qf < δ∧ (Q, stmt),
otherwisewe omit all non-accepting states whose pred-
icate contains oldrnk, i.e., Q ′ = δ∧ (Q, stmt) \ {q ∈
Q | q , qf ∧ oldrnk ∈ var(I (q)) } where var(I (q))
denotes all variables occurring in I (q).
Note that the statement oldrnk:=f (⃗v) is used only
for defining δ∧; it is not in the alphabet of Adet.
• There is a single initial state, i.e., QI

det = {{qi }}.
• The set of accepting states F det contains all statesQ ∈
Qdet such that qf ∈ Q or

∧
q∈Q I (q) is unsatisfiable.

Moreover, Idet is such that Idet : Q 7→
∧

q∈Q I (q).

By applying the certified deterministic module construc-
tion toMsort

uvω , we obtain the following module:

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

{q1}

{oldrnk = ∞}

{q3}

{i − j < oldrnk}

{q4}

{0 ≤ i − j ≤ oldrnk}

∅

{true }

Σ

j++

j<i

i>0

j:=1

i>0
j<i

j++

j:=1

Σ

Note that this moduleMsort
det , despite accepting a non-empty

language, is absolutely useless for the refinement of Psort,
since it rejects the word uvω = i>0 j:=1 (j<i j++)ω

representing the path whose termination has been proved.
While a DBA is easy to use in computing language differ-

ence, the certified deterministic module is not always useful,
as we can see from the example above (in general, DBAs are
known to be less expressive than BAs [3]).

3.1.4 Stage 3: Semideterministic Certified Module
In order to overcome the shortcomings of the determinis-
tic certified module, we now present the semideterministic
certified moduleM3 =Msemi, which isMdet enriched with
additional transitions. In particular, for a statement stmt ,
each stateQ that is not reachable from an accepting state s.t.
qf ∈ δ∧ (Q, stmt) (cf. Definition 3.2) has two stmt-successors:
• δ∧ (Q, stmt) \ {q ∈ Q | q , qf ∧ oldrnk ∈ var(I (q)) },
the original successor in δdet;
• an additional successor δ∧ (Q, stmt) \ {qf }.

Obviously, the resulting automaton is an SDBA that, further-
more, satisfies the requirements from Section 2 (the require-
ment that any run entering an accepting loop needs to enter
via an accepting state—i.e., none of its states contains at the
same time a state from the stem and a state from the loop—
is guaranteed by the fact that all states in the stem imply
oldrnk = ∞, while all states in the loop imply oldrnk < ∞).
By applying the certified semideterministic module con-

struction toMsort
uvω , we obtain the following moduleMsort

semi .

{q1}

{oldrnk = ∞}

{q1,q4}

{0 ≤ i − j ≤ oldrnk = ∞}

{q3}

{i − j < oldrnk}

{q4}

{0 ≤ i − j ≤ oldrnk}

∅

{true }

Σ \ j<i

Σ

j<i

j<i

i>0
j++

j:=1 Σ

j++

j<i

i>0

j:=1

i>0
j<i

j++

j:=1

Σ

Note that, in contrast toMsort
det , the moduleMsort

semi already
accepts the word uvω = i>0 j:=1 (j<i j++)ω .

Note that although the construction of the semidetermin-
istic module can theoretically produce an exponential-sized
automaton, we rarely experienced this case in our evaluation.

3.1.5 Stage 4: Nondeterministic Certified Module
The nondeterministic certified moduleM4 =Mnondet is the
most powerful generalization we considered. It is obtained

by adding every possible transition between each pair of
states toMuvω , as long as the rank certificate is still correct.

For instance, the above lasso moduleMsort
uvω becomes the

following nondeterministic module.

q1

{oldrnk = ∞}

q3

{i − j < oldrnk}

q4

{0 ≤ i − j ≤ oldrnk}

Σ

Σ

j<i

j<i

j++

j++
j<i i>0

While usually accepting significantly more words than
Muvω , the use ofMnondet in the refinement can pose practi-
cal problems, caused by its high level of nondeterminism.

Although Mnondet is always guaranteed to accept uvω
(since it contains all transitions ofMuvω), its use in the over-
all termination procedure is expensive, because algorithms
for complementing BAs have a prohibitive complexity. Based
on our experiments, constructingMnondet is seldom neces-
sary, and inmany cases,Msemi is sufficient (in the worst case)
for a successful generalization of a program path. As also
observed in our experiments, computing the difference of
a GBA representing program paths and a module can domi-
nate the overall execution time, so constructing modules that
are easier to complement is crucial. In the following sections,
we provide efficient algorithms for computing the difference
of a GBA and a BA (Section 4) and for complementing an
SDBA (Sections 5 and 6) that serve as an enabling technology
of the whole termination checking procedure.

4 Building Difference of a GBA and a BA
In this section, we introduce an algorithm that, given aGBAA
(in our setting representing program paths whose termina-
tion has not yet been established) and, in general, a BA B
(which represents the program paths whose termination we
have just proved), constructs a GBA D such that L (D) =
L (A) \ L (B). We present the algorithm and its optimiza-
tions in several steps. Note that we use GBAs since they are
usually smaller than their equivalent BA counterparts and
have a more efficient language intersection operation.
From a high-level view, our algorithm can be seen as an

optimization of a naïve algorithm that first builds the comple-
ment of B, further denoted as B, then constructs a GBA AI
accepting the intersection L (AI) = L (A) ∩ L (B) and, fi-
nally, removes useless states from AI (yielding an empty
automaton in the case L (AI) = ∅). Recall that a state q
is useless iff LAI (q) = ∅, otherwise, q is useful. Our opti-
mizations that make the algorithm usable in practice are the
following.

1. B is constructed on the fly when constructing AI , i.e.,
only those states of B that occur in some product state
ofAI = A∩B are constructed (note that intersection
of GBAs produces a GBA whose structure corresponds
to finite automaton-like product construction).

Automata-based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Algorithm 1: Removing useless states from a GBA
Input :GBA A = (Q,δ ,QI ,F)
Output :GBA A ′ = (Q ′,δ ′,QI

′,F ′) s.t. ∀q ∈ Q ′ : L (q) , ∅
Global :Q ′ ← ∅, emp← ∅, SCCs← ∅, act← ∅, cnt← 0
1 Function remove_useless(A):
2 foreach qI ∈ I do
3 if qI < Q

′∪ emp then // qI < Q
′ ∪ ⌈emp⌉

4 construct(qI);
5 return A ′ = (Q ′,δ ∩ (Q ′ × Σ × 2Q ′), I ∩Q ′,F|Q ′);

6 Function construct(s):
7 ++cnt; s .dfsnum← cnt; is_nemp← false;
8 SCCs.push((s,F (s))); act.push(s);
9 foreach t ∈ post (s) do

10 if t ∈ Q ′ then is_nemp← true;
11 else if t ∈ emp then continue; // t ∈ ⌈emp⌉

12 else if t < act then
13 is_nemp← construct(t) ∨ is_nemp;
14 else
15 B← ∅;
16 do
17 (u,C) ← SCCs.pop(); B ← B ∪C;
18 if B = F then is_nemp← true ;
19 while u.dfsnum > t .dfsnum;
20 SCCs.push((u,B));

21 if SCCs.top() = (s, _) then
22 SCCs.pop();
23 do
24 u ← act.pop();
25 if is_nemp then Q ′.add(u);
26 else emp.add(u);
27 while u , s;
28 return is_nemp;

2. We remove useless states from AI using a modifica-
tion of the state-of-the-art SCC-based algorithm for
testing emptiness of the language of a GBA by Gaiser
& Schwoon [26], which refines the algorithm of Cou-
vreur [22] (Section 4.1).

3. When B is an SDBA, we optimize the construction
of B from [12] by delaying nondeterministic choices
as long as possible, thus significantly reducing the
number of generated states (Section 5).

4. We prune the search from Point 2 by using an antichain-
like [23] subsumption on the states of AI (Section 6).

4.1 Removing Useless States in a GBA
Algorithm 1 is a modification of the algorithm for check-
ing emptiness of a GBA A = (Q,δ ,QI ,F = {F1, . . . , Fk })
proposed by Gaiser & Schwoon [26] (GS for short), which

is based on finding a reachable strongly connected compo-
nent (SCC) that contains at least one state from every set Fj .
Our modification not only tests the emptiness of L (A), but
also efficiently constructs a copy A ′ of A without any use-
less state (and, therefore, if L (A) = ∅, then A ′ is empty).
Similarly to GS, Algorithm 1 uses two stacks, SCCs and

act, to keep track of the possible entry states of SCCs and
the active states, which may be constituting the SCCs. Our
algorithm uses additional data structures, namely the pair of
sets Q′ and emp, which are used to store all states that have
been proved to be useful or useless. The algorithm starts in
the function remove_useless and traverses the reachable
states ofA in a depth first search manner. Each state has the
data field dfsnum, which is used to record the relative order of
the visit of the states, i.e., if t .dfsnum > s .dfsnum, then s has
been visited before t . Therefore, if such a t can reach the said s
and, at the same time, s is in act, this means thatA contains
an SCC that includes both s and t . From all states forming an
SCC, the one with the lowest value of dfsnum is the SCC’s
entry point. The stack SCCs also assigns each possible SCC
entry point qe the set of accepting conditions from F that qe
can infinitely many times reach (F (s) ⊆ {1, . . . ,k } denotes
all accepting conditions that s belongs to).

The differences of Algorithm 1 from GS are the following:
(i) Algorithm 1 does not stop immediately when an accepting
SCC is found (line 18), but continues in the construction,
(ii) in lines 25–26 (which correspond to leaving a possible
SCC), the states popped from the stack act are classified
to be either useful (then they are added to Q ′) or useless
(then they are added to emp), and (iii) we use Q ′ and emp in
lines 10–11 to check whether we already knowwhether t has
a non-empty language. The algorithm returnsA projected to
the statesQ ′, which are known to have non-empty languages.
Note that Algorithm 1 is amenable to on-the-fly traversal of
the automaton A, i.e., A can be provided implicitly.

Proposition 4.1. Algorithm 1 is correct.

5 Efficient Complementation of SDBAs
Algorithm 1 can be used for constructing the useful part of
the GBA D such that L (D) = L (A) \ L (B) = L (A) ∩

L (B), which requires an efficient construction of B. In this
section, we present such a construction for an SDBA B.
We first explain the NCSB algorithm of Blahoudek et

al. [12] for complementing SDBAs, which is, to the best
of our knowledge, the most efficient complementation algo-
rithm for SDBAs up to date. Later, we identify a source of
inefficiency and propose a solution that mitigates it.

5.1 The NCSB-Original Algorithm
The NCSB-Original algorithm [12] can be viewed as an exten-
sion of the classical algorithm for complementing a nondeter-
ministic finite automaton using the power set construction
(used to determinize the automaton). The extension assigns

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

every state in a macro-state one of the labels {N ,C, S,C+B}
depending on the component where the state is present (as
defined formally later, B is always a subset of C so the label
C+B means that the state is both in C and B). The labels
characterize the expected status of the runs going through
the states. To avoid confusion, we will call a run of the com-
plement automaton AC = (QC,δC,QI C, FC) a macro-run.
We usually denote states in QC as q̂ = (N ,C, S,B), where
the components have the following intuitive meaning:

N (nondeterministic): If a run of A touches a state in N ,
then it is still in the nondeterministic part Q1.

C (choice): If a run of A touches a state in C , then it can
never leave the setQ2, but we are not yet sure whether
it is an accepting run. Therefore, every time a run in
C leaves an accepting state, we nondeterministically
guess whether it was the last time the run has touched
an accepting state (in which case we move the run to
the set S) or not (in which case it remains in C).

S (safe): If a run arrives into S , it can only remain safe,
i.e., it will touch no more accepting states in the future.
In the case the run is not safe, it will be blocked inAC
as soon as it attempts to touch an accepting state, i.e.,
if q ∈ S and δ2 (q,a) ∈ F , then δC (q̂,a) = ∅ (there can
still be another safe run in some other guess though).

B (breakpoint): The set B is used for tracking that all
runs of A that arrive into Q2 will eventually become
safe. In particular, once B becomes empty (denoting an
accepting state), we copy the runs that are currently
in C into B, and remove them from B only when they
become safe (i.e., when they have been moved to S).

The construction is formally defined as follows.

Definition 5.1 (cf. [12, Section 3.2]). Given an SDBA A =
(Q1 ∪ Q2,δ ,QI , F), where Q1 and Q2 are defined as in Sec-
tion 2, its complement automaton AC = (QC,δC,QI C, FC)
is defined as follows:
• QC = {(N ,C, S,B) ∈ 2Q1 × 2Q2 × 2Q2\F × 2Q2 | B ⊆ C}.
• QI C = {(Q1 ∩QI ,Q2 ∩QI , ∅,Q2 ∩QI)}.
• FC = { (N ,C, S,B) ∈ QC | B = ∅ }.
• δC is the transition function δC : QC × Σ→ 2QC such
that (N ′,C ′, S ′,B′) ∈ δC ((N ,C, S,B),a) iff
1. N ′ = δ1 (N ,a),
2. C ′ ∪ S ′ = δt (N ,a) ∪ δ2 (C ∪ S,a),
3. C ′ ∩ S ′ = ∅,
4. S ′ ⊇ δ2 (S,a),
5. C ′ ⊇ δ2 (C \ F ,a), and
6. B′ = C ′ if B = ∅, otherwise B′ = δ2 (B,a) ∩C ′.

Informally, rules 2–5 enforce that (1) the successors of
states in S remain in S ′, (2) the successors of non-accepting
states inC remain inC ′, (3) all accepting states in δt (N ,a) ∪
δ2 (C ∪ S,a) stay in C ′, because S ′ is a set of non-accepting
states, and (4) the rest of the states in δt (N ,a) ∪ δ2 (C ∪ S,a)
are nondeterministically partitioned into C ′ and S ′.

We note that the original definition [12] used yet another
condition: “for all q ∈ C \ F it holds that δ2 (q,a) , ∅.” Since
we assume the input BA to be complete (cf. Section 2), the
condition always holds and hence we drop it. Also note that
in order for the result of the NCSB algorithm to be complete,
we may need to add a sink state (we hide this from the
algorithm to make the presentation clearer). When talking
about the size of the set of states or transitions, we only
consider those states and transitions reachable from QI C .
The best way to get an intuition about the algorithm is

to simulate both accepting and rejecting runs of A in AC .
Let ρ = q0q1 . . .qi . . . be an accepting run of A over some
wordw ∈ Σω and qi be the first accepting state in ρ. Assume
w.l.o.g. that q0 ∈ Q1. It is easy to observe that for any macro-
run Π = (N0,C0, S0,B0) (N1,C1, S1,B1) . . . (Ni ,Ci , Si ,Bi) . . .,
the run ρ is moved from N to C at position i (rule 2 and the
fact that S is disjoint with F), i.e., qk ∈ Nk for all 1 ≤ k ≤ i−1
and qi ∈ Ci . (Moving a run from a set X to another set X ′
can be achieved by moving the corresponding state from X
to X ′.) For any j > i with qj ∈ F , we have the following two
cases (nondeterministic guessing by rules 2–5):
• Case (1): The run ρ is moved from C to S at a posi-
tion j + 1. In this case, Π will be blocked later at the
position of the next occurrence of an accepting state
in ρ (which there are infinitely many), because once ρ
has moved to S , it will stay in S (rule 4). It follows that
Π is finite and, therefore, not an accepting macro-run.
• Case (2): If we assume that ρ stays in C for all such
positions j, then (rule 6) the run ρ will be copied to B
the next time B becomes empty (if it ever happens). But
then B cannot become empty again because ρ will stay
inside it forever (our assumption is that ρ stays in C
forever and hence also in B by rule 6). It follows that
although Π is infinite, it is not an accepting macro-run.

On the other hand, we can show that ifw < L (A), we can
construct from its rejecting runs ρ = q0q1 . . .qi . . .qj . . . an
accepting macro-run Π = (N0,C0, S0,B0) (N1,C1, S1,B1) . . .
(Ni ,Ci , Si ,Bi) . . . (Nj ,Cj , S j ,Bj) . . . of AC . The strategy of
the construction is simple. All such ρ will be moved from N
to C at the first occurrence of an accepting state and then
to S after the last occurrence of an accepting state. Because
all states in C ∪ S ∪ B can only proceed via deterministic
transitions from δ2, there is only one corresponding run for
each of them.

More concretely, we again have two cases: (i) if the run ρ
never touches an accepting state, then ρ will stay inN forever
(rule 1) and (ii) ifqi andqj are the first and the last occurrence
of an accepting state in ρ (it can happen that i = j), then there
is amacro-runwhere ρ is moved fromN toC at position i and
thenmoved to S at position j+1 (rules 2–5).We can show that
the following two conditions hold for such a macro-run Π:
1. Π is non-blocking. From the definition of δC , a macro-
state can become blocking only in one of two cases: (1) the

Automata-based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

successor of a non-accepting state q in C coincides with the
successor of some state in S (rules 3–5) or (2) the successor of
a state in S is accepting (by definition of S and rule 4). The
case (2) will never happen since Πmoves a run to S only after
the last occurrence of an accepting state. Suppose that the
case (1) happens. Then, it means that there is no accepting
state after q in the corresponding run, i.e., q is the successor
of the last accepting state, which should already have been
moved to S , leading to a contradiction. So Π is non-blocking.
2. Π contains infinitely many accepting macro-states. Starting
from any macro-state of Π, no new runs can be moved to B
until it becomes empty (rule 6). Since all runs ρ of A onw
are rejecting, they will be moved to S eventually after the last
accepting state, i.e., no run can stay in B forever. The set B
will eventually become empty and will be reset to C (rule 6).
This will occur infinitely often.

5.2 Eager Guessing as the Source of Inefficiency
In this section, we show that complement automata con-
structed using NCSB-Original are unnecessarily large. Con-
sider the example of an SDBA and its complement in Figure 3
(the figure shows only interesting parts of the automata).

Observe that in Figure 3b, the NCSB-Original algorithm
made a guess at the macro-state ∅,{q′1,q

′
2},{q

′′′
3 },∅ . In fact,

the construction needs to knowwhether ρ is in S orC only for
the purpose of deciding whether a macro-state is accepting
or rejecting (recall that B ⊆ C). In Figure 3b, we can find
several macro-states (shown as) that are redundant
because the guessing of whether to keep a run ρ in C or
move it to S was performed too eagerly.

A good point to do this guessing is to wait for B to become
empty; before that we can simply keep the runs in C ∪ S in
the same set (in Figure 3b, we keep all of them inC in the left-
most branch of the complement automaton). If we do so, then
none of the macro-states needs to be constructed. Note
that their successors can be reconstructed from the macro-
state ∅,{q′1,q

′
2},{q

′′′
3 },∅ . Having arrived at this macro-state,

the guessing of all states inC have been postponed and hence
any of them can nondeterministically either stay in C or be
moved to S (dashed lines in Figure 3b).
To achieve the effect of delaying the guessing, our first

attempt is to redefine the successor relation δC from Defini-
tion 5.1 such that (N ′,C ′, S ′,B′) ∈ δC ((N ,C, S,B),a) iff

1. N ′ = δ1 (N ,a),
2. C ′ ∪ S ′ = δt (N ,a) ∪ δ2 (C ∪ S,a),
3. C ′ ∩ S ′ = ∅,
4. [new] S ′ ⊇ δ2 (S,a) if B = ∅, else S ′ = δ2 (S,a), and
5. [removed]
6. B′ = C ′ if B = ∅, otherwise B′ = δ2 (B,a) ∩C ′

In particular, rule 4 has been exchanged for a new one and
rule 5 has been removed. The new rule 4 enforces that all runs
that are in S remain there and no new runs are added into S
until an accepting macro-state (a macro-state where B = ∅)

is encountered. Additionally, rule 5 from Definition 5.1 has
been removed, so now one can nondeterministically move
any non-accepting states fromC to S when B becomes empty.
The justification is that any run ρ in C must have had its
guessing postponed (recall that if a run is in C , it must have
seen at least one accepting state) and in NCSB-Original could
have been moved to S by now. A complement automaton
constructed using NCSB-Original will have macro-runs cor-
responding to every postponed guessing, i.e., macro-runs
traversing macro-states in Figure 3b. Those macro-
runs eventually reach successors of accepting macro-states
produced by the modified algorithm, which in Figure 3b
correspond to destinations of the dashed transitions.
Unfortunately, the change proposed above is not yet cor-

rect due to the issue that some run ρ in B has no chance to
be moved to S , even for the case when ρ has no accepting
states after the state in B. In such a case, ρ should correspond
to an accepting run in the complement automaton AC , but
B can never become empty. This can be fixed by allowing the
move of the successors of accepting states in B to S nonde-
terministically, i.e., guessing that it is the last occurrence of
an accepting state in the run. This leads to an algorithm with
lazy guessing, which we provide in the following section.

5.3 The NCSB-Lazy Algorithm
Combining the observations in the previous section, we ob-
tain a new SDBA complementation algorithm, called NCSB-
Lazy. The algorithm is obtained by redefining the transition
function δC from Definition 5.1 such that (N ′,C ′, S ′,B′) ∈
δC ((N ,C, S,B),a) iff
• When B = ∅:
a1. N ′ = δ1 (N ,a),
a2. C ′ ∪ S ′ = δt (N ,a) ∪ δ2 (C ∪ S,a),
a3. C ′ ∩ S ′ = ∅,
a4. S ′ ⊇ δ2 (S,a), and
a5. [removed]
a6. B′ = C ′.
• When B , ∅:
b1. N ′ = δ1 (N ,a),
b2. [new] B′ ∪ S ′ = δ2 (B ∪ S,a),
b3. [new] B′ ∩ S ′ = ∅,
b4. S ′ ⊇ δ2 (S,a),
b5. [new] C ′ = (δ2 (C,a) ∪ δt (N ,a)) \ S

′, and
b6. [new] B′ ⊇ δ2 (B \ F ,a).

When B = ∅, the construction works in the same way as the
one presented in Section 5.2. When B , ∅, rules b2–b4 and
b6 enforce that (1) a run in B that touches an accepting state
can be nondeterministically moved to S and (2) a run in S
will remain in S forever. Rule b5 enforces that if a state is
moved from B to S , then it should also be removed from C .

Proposition 5.2. The complement BA constructed by NCSB-
Lazy contains at most as many macro-states as the comple-
ment BA constructed by NCSB-Original.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

q1

q′1

q2

q′2

q3

q′3

q′′3

q′′′3

· · · · · · · · ·

(a) A part of A (we assume that all
shown states are in Q2).

· · ·

∅,{q1,q2,q3},∅,{q3}

∅,{q′1,q
′
2,q
′
3},∅,{q

′
3} ∅,{q′1,q

′
3},{q

′
2},{q

′
3} ∅,{q′2,q

′
3},{q

′
1},{q

′
3} ∅,{q′3},{q

′
1,q
′
2},{q

′
3}

∅,{q′1,q
′
2,q
′′
3 },∅,{q

′′
3 } ∅,{q′1,q

′′
3 },{q

′
2},{q

′′
3 } ∅,{q′2,q

′′
3 },{q

′
1},{q

′′
3 } ∅,{q′′3 },{q

′
1,q
′
2},{q

′′
3 }

∅,{q′1,q
′
2},{q

′′′
3 },∅

∅,{q′1},{q
′
2,q
′′′
3 },∅ ∅,{q′2},{q

′
1,q
′′′
3 },∅

∅,∅,{q′1,q
′
2,q
′′′
3 },∅

· · · · · · · · · · · ·

∅,{q′1,q
′
2},{q

′′′
3 },{q′1,q

′
2}

∅,{q′1},{q
′
2,q
′′′
3 },{q′1}

∅,{q′2},{q
′
1,q
′′′
3 },{q′2}

(b) A part of the complemented automaton AC . Here we only draw macro-states (N ,C, S,B)
starting from (∅, {q1,q2,q3}, ∅, {q3}) and omit the macro-states that keep q′′′3 in C .

Figure 3. An example of inefficiency of eager guessing in NCSB-Original (we assume all transitions are over the symbol a ∈ Σ)

Belowwe give a lemma that will be used in the correctness
proof of NCSB-Lazy.

Lemma 5.3. Consider an SDBA A, its complement AC con-
structed by NCSB-Lazy, a word w ∈ Σω , and a macro-state
p̂ = (N ,C, S,B) from AC . Further, assume that for all runs ρ
overw in A, it holds that

1. if ρ starts from a state q ∈ N ∪C ∪ S , it is rejecting,
2. if ρ starts from a state q ∈ S , it is safe, and
3. if ρ starts from a state q ∈ B, it is not safe.

Then one can construct an accepting macro-run overw inAC .

Proof. Our strategy for constructing an accepting macro-
run Π from p̂ is the following. If B = ∅, we move all safe runs
in C into S and copy all unsafe runs to the B component of
the next macro-state. If B , ∅, we move all runs in B into S
immediately when they become safe, i.e., immediately after
they touch an accepting state for the last time. The other
parts of the construction of Π are deterministic, i.e., one can
construct deterministically every macro-state in Π following
the transition relation of NCSB-Lazy. We now show that Π
is an accepting macro-run in AC by proving two properties.

1. Π is non-blocking. From the definition of the transition
relation of NCSB-Lazy, a macro-state can become blocking
only in one of the following cases: (1) the successor of a non-
accepting state q in B coincides with the successor of some
state in S (rules b3, b4, and b6) and (2) the successor of a state
in S is accepting (by definition of S and rule b4). The case (2)
will never happen since, as defined above, Π moves a run
to S only after the last occurrence of an accepting state.
Suppose that case (1) happens. Then, it means that there is
no accepting state after q in the corresponding run, i.e., q is
the successor of the last accepting state, which should have
already been moved to S , leading to a contradiction.

2. Π contains infinitely many accepting macro-states. Starting
from any macro-state of Π, no new runs can be moved to B
until it becomes empty (rule a6). Since all runs ρ of A onw
are rejecting starting from any states in p̂, they will be moved
to S eventually after the last accepting state, i.e., no run can
stay in B forever. The set B will eventually become empty
and will (infinitely often) be reset to C (rule a6). □

Theorem 5.4. Given an SDBAA, NCSB-Lazy produces a BA
AC such that L (AC) = Σω \ L (A).

Proof. The case thatw ∈ L (A) impliesw < L (AC) can be
proved in a similar way as in NCSB-Original. In particular,
we need to show that any accepting run ρ of A overw will
either stay forever in B or move to S and block the macro-run.
For the case thatw < L (A) impliesw ∈ L (AC), we can

construct an accepting macro-run Π from the runs ρ of A
onw using Lemma 5.3. In order to do so, we need to ensure
that the initial macro-state (Q1 ∩ QI ,Q2 ∩ QI , ∅,Q2 ∩ QI)
satisfies the requirements of Lemma 5.3, i.e., for all runs ρ
overw in A, it holds that

1. if ρ starts from a state q ∈ N ∪C ∪ S , it is rejecting,
2. if ρ starts from a state q ∈ S , it is safe, and
3. if ρ starts from a state q ∈ B, it is not safe.
Requirement 1 is satisfied because w has only rejecting

runs from the initial states QI . Requirement 2 is satisfied
because S = ∅. Requirement 3 is satisfied because all states
in Q2 ∩ QI are also in F (due to our restriction on SDBAs,
cf. Section 2), so runs starting from them are not safe. □

From the experimental results (cf. Section 7), one can see
that although the changes in the algorithm are small, they
induce a large difference in performance. We believe that the
idea of delaying nondeterministic choices can be useful in
other algorithms, such as rank-based BA complementation.

Automata-based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

6 Subsumption-based Pruning in the
Construction of a Difference Automaton

In this section we describe subsumption relations that can
be used to optimize the construction of the difference au-
tomaton described in Section 4. The subsumption relations
are, in a way, similar to the so-called antichain [2, 23] algo-
rithms used in language inclusion and universality testing
over nondeterministic finite automata.

We start by describing the notation used in this section. For
macro-states p̂ = (Np ,Cp , Sp ,Bp) and r̂ = (Nr ,Cr , Sr ,Br), we
define the following two subsumption relations:

p̂ ⊑ r̂
def
⇐⇒ Np ⊇ Nr ∧Cp ⊇ Cr ∧ Sp ⊇ Sr and (4)

p̂ ⊑B r̂
def
⇐⇒ p̂ ⊑ r̂ ∧ Bp ⊇ Br . (5)

LetAO
C
andAL

C
be the complement automata constructed us-

ing NCSB-Original and NCSB-Lazy, respectively. We define
two language inclusion relations ⊆O

L
and ⊆L

L
over macro-

states p̂ and r̂ as follows:

p̂ ⊆O
L
r̂

def
⇐⇒ LAO

C
(p̂) ⊆ LAO

C
(r̂), (6)

p̂ ⊆L
L
r̂

def
⇐⇒ LAL

C
(p̂) ⊆ LAL

C
(r̂). (7)

The main result of this section is that for any macro-states p̂
and r̂ , the following implications hold:

p̂ ⊑ r̂ =⇒ p̂ ⊆O
L
r̂ (Section 6.1) and (8)

p̂ ⊑B r̂ =⇒ p̂ ⊆L
L
r̂ (Section 6.2). (9)

As a consequence, we can use ⊑ and ⊑B in Algorithm 1
(when computing the difference automaton A \ B) for early
termination when checking whether a language of an en-
countered macro-state is empty (lines 3 and 11). In particular,
we change testing (non-)membership of a macro-state q̂ in
the set emp into testing the same in the set ⌈emp⌉ defined as

⌈emp⌉ = {(qA , q̂B) | ∃(qA , r̂B) ∈ emp : q̂
B
⊑′ r̂

B
}, (10)

where ⊑′∈ {⊑,⊑B } depending on the particular algorithm
used for complementation (⊑ for NCSB-Original and ⊑B for
NCSB-Lazy). Note that on line 26, emp can be maintained
in the form of an antichain, i.e., to contain only elements
incomparable w.r.t. ⊑′.

6.1 Subsumption Relation for NCSB-Original
We first show that p̂ ⊑ r̂ =⇒ p̂ ⊆O

L
r̂ for any two macro-

states p̂ = (Np ,Cp , Sp ,Bp) and r̂ = (Nr ,Cr , Sr ,Br). We prove
this fact by constructing a strategy that for any accepting
macro-run from p̂ returns an accepting macro-run from r̂
over the same word. Our proof consists of two parts. First,
we define two new notions of simulation relation, named
early simulations, between traces and states of a BA and
we show that they under-approximate language inclusion.
Second, we prove that both subsumption relations ⊑ and ⊑B
are instances of the corresponding early simulation relations.

6.1.1 Early Simulation
Consider a BA A = (Q,δ ,QI , F) and a pair of traces πp =
p0

w0
−−→p1

w1
−−→ · · · and πr = r0

w0
−−→ r1

w1
−−→ · · · over the word

w = w0w1 . . . ∈ Σω from the states p0 ∈ Q and r0 ∈ Q .
We say that πp is early simulated by πr (or, alternatively, that
πr early simulates πp), denoted as πp ⪯e πr , iff
∀i < j : ((pi ∈ F ∨ i = −1) ∧ pj ∈ F)

=⇒ ∃i < k ≤ j : rk ∈ F ,
(11)

and that πp is early+1 simulated by πr (written πp ⪯e+1 πr) iff

∀i < j : (pi ,pj ∈ F) =⇒ ∃i < k ≤ j : rk ∈ F . (12)

Intuitively, the early+1 simulation requires that between ev-
ery two times πp touches an accepting state, πr also touches
an accepting state; the early simulation further requires that
πr first touches an accepting state not later than πp does.
We extend the proposed notions of simulation to states

as follows. First, we define a strategy as a function σ : Q ×
(Q × Σ ×Q) → (Q × Σ ×Q) such that σ (r ,p

a
−→p ′) = r

a
−→ r ′

where r ′ ∈ δ (r ,a). That is, σ picks a transition from r based
on the transition p

a
−→p ′ selected by the environment. Next,

we lift strategy to traces such that for a trace πp defined as
above, we set σ (r0,πp) = r0

w0
−−→ r1

w1
−−→ · · · where for all i ≥ 0

it holds that σ (ri ,pi
wi
−−→pi+1) = ri

wi
−−→ ri+1. We say that p0

is early (resp. early+1) simulated by r0, denoted as p0 ⪯e r0
(resp. p0 ⪯e+1 r0) iff there exists a strategy σe (resp. σe+1)
such that for every trace πp starting in p0, it holds that πp ⪯e
σe (r0,πp) (resp. πp ⪯e+1 σe+1 (r0,πp)).

The following proposition states that the introduced sim-
ulations under-approximate language inclusion.

Proposition 6.1. Given a BA A, the following holds for the
relations over the states of A:

⪯e ⊆ ⪯e+1 ⊆ ⊆L . (13)

6.1.2 The Subsumption ⊑ is an Early Simulation
Consider an SDBA A and its complement BA AO

C
con-

structed by NCSB-Original, and let us fix the following two
states of AO

C
: p̂ = (Np ,Cp , Sp ,Bp) and r̂ = (Nr ,Cr , Sr ,Br).

Lemma 6.2. The relations ⊑ and ⊑B on AO
C
are an early+1

simulation and an early simulation respectively:

p̂ ⊑ r̂ =⇒ p̂ ⪯e+1 r̂ and (14)

p̂ ⊑B r̂ =⇒ p̂ ⪯e r̂ . (15)

Proof of (14). We use the strategy σ⊑ that for a transition
p̂

a
−→ p̂ ′ = (Np′,Cp′, Sp′,Bp′) chooses a transition r̂

a
−→ r̂ ′ =

(Nr ′,Cr ′, Sr ′,Br ′) that respects all nondeterministic choices
made in p̂

a
−→ p̂ ′. In particular, if the successor q′ of a state

q ∈ Cp ∩ Cr was moved to Sp′ , i.e., q′ = δ2 (q,a) ∈ Sp′ , the
strategy σ⊑ will also move q′ to Sr ′ , otherwise q′ will stay
inCr ′ . Other parts of the construction of r̂ ′ are deterministic

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

(i.e., just follow the definition of δC in Definition 5.1). The
strategy guarantees that (1) p̂ ⊑ r̂ =⇒ p̂ ′ ⊑ r̂ ′ and (2) the
transition r̂

a
−→ r̂ ′ exists (proof omitted due to lack of space).

Next, we show that for any two tracesπp = p̂0
w0
−−→ p̂1

w1
−−→ · · ·

and πr = σ⊑ (r0,πp) = r̂0
w0
−−→ r̂1

w1
−−→ · · · , such that p̂0 = p̂ and

r̂0 = r̂ , the condition πp ⪯e+1 πr is satisfied, i.e., ∀i < j :
(p̂i , p̂j ∈ F

O) =⇒ ∃i < k ≤ j : r̂k ∈ FO holds, where FO is
the set of accepting macro-states of AO

C
.

Claim: For all i ≥ 0, if p̂i ∈ FO , then p̂i+1 ⊑B r̂i+1.
Proof: Let the macro-states p̂i+1 and r̂i+1 be as follows: p̂i+1 =
(Npi+1 ,Cpi+1 , Spi+1 ,Bpi+1) and r̂i+1 = (Nri+1 ,Cri+1 , Sri+1 ,Bri+1).
The following holds: (i) Bpi+1 = Cpi+1 (because p̂i ∈ FO),
(ii) Cpi+1 ⊇ Cri+1 (due to the property of σ⊑, i.e., p̂ ⊑ r̂ =⇒
p̂ ′ ⊑ r̂ ′), and (iii)Cri+1 ⊇ Bri+1 (the property of a macro-state).
It follows that Bpi+1 ⊇ Bri+1 and hence p̂i+1 ⊑B r̂i+1. ■
Claim: If p̂i+1 ⊑B r̂i+1 and p̂j ∈ FO for some i < j , then there
exists some k such that i < k ≤ j and r̂k ∈ FO .
Proof: Since Bpi+1 ⊇ Bri+1 and due to the property of σ⊑ that
every state that is moved from Bpi+1 to Spi+1 in πp will be
by σ⊑ also simultaneously moved from Bri+1 to Sri+1 in πr ,
the set Bri+1 in πr will become empty not later than Bpi+1
becomes empty in πp . ■
The two claims above imply that πp ⪯e+1 πr . □

Proof of (15). We use the same strategy σ⊑ from the proof
of (14).We show that for any two tracesπp = p̂0

w0
−−→ p̂1

w1
−−→ · · ·

and πr = σ⊑ (r0,πp) = r̂0
w0
−−→ r̂1

w1
−−→ · · · , it follows that πp ⪯e

πr , i.e., ∀i < j : ((p̂i ∈ FO ∨ i = −1) ∧ p̂j ∈ FO) =⇒ ∃i <
k ≤ j : r̂k ∈ FO , where FO is the set of accepting macro-
states of AO

C
. First, we change πp ⪯e πr into an equivalent

conjunction of the following two conditions:

∀i < j : (p̂i , p̂j ∈ FO) =⇒ ∃i < k ≤ j : r̂k ∈ FO , (16)

p̂i ∈ F
O =⇒ ∃k ≤ i : r̂k ∈ FO . (17)

We notice that Condition (16) is equivalent to πp ⪯e+1 πr and
since ⊑B is stronger than ⊑, from (14) it follows that p̂ ⪯e+1 r̂ ,
and because the strategy σ⊑ in the proof of (14) is the same,
Condition (16) also holds. Condition (17), on the other hand,
follows from the second claim in the proof of (14). □

The following theorem states that ⊑ and ⊑B are subsump-
tion relations over the macro-states of AO

C
.

Theorem 6.3. The relations ⊑B and ⊑ under-approximate
language inclusion of macro-states in a complement automaton
constructed using NCSB-Original:

⊑B ⊆ ⊑ ⊆ ⊆O
L
. (18)

Proof. Follows from Proposition 6.1 and Lemma 6.2. □

6.2 Subsumption relation for NCSB-Lazy
The BAs produced by NCSB-Lazy are different from the BAs
produced by NCSB-Original. This, in particular, means that
the subsumption relation ⊑ does not under-approximate the
language inclusion ⊆L

L
in BAs produced by NCSB-Lazy.

Remark: Let AL
C
by a BA produced by NCSB-Lazy from A

and p̂ and r̂ be a pair of macro-states ofAL
C
. In general, p̂ ⊑ r̂

does not imply p̂ ⊆L
L
r̂ . In particular, let q be a non-accepting

state of A with only one outgoing transition that is a self-
loop and let p̂ = (∅, {q}, ∅, ∅) and r̂ = (∅, {q}, ∅, {q}). Note
that p̂ ⊑ r̂ (as ⊑ does not relate the B components). Also note
that there exists an accepting macro-run p̂ · (∅, ∅, {q}, ∅)ω

from p̂, while there exists no accepting macro-run from r̂ ,
since the B component of r̂ can never become empty (cf.
condition b6 in Section 5.3). □

Fortunately, the stronger subsumption relation ⊑B still
under-approximates the language inclusion ⊆L

L
, so it can be

used to optimize the difference automaton construction.

Theorem 6.4. The relation ⊑B under-approximates language
inclusion of macro-states in a complement automaton con-
structed using NCSB-Lazy:

⊑B ⊆ ⊆L
L
. (19)

Proof. Let p̂ = (N ,C, S,B) and r̂ = (N ′,C ′, S ′,B′) s.t. p̂ ⊑B r̂ .
For any wordw ∈ LAL

C
(p̂), it is not difficult to observe that

• all runs overw from states in N ∪C ∪ S are rejecting
and the runs from states in N ′∪C ′∪S ′ are their subset,
• all runs overw from states in S are safe, and the runs
from states in S ′ are their subset, and
• all runs over w from states in B are unsafe, and the
runs from states in B′ are their subset.

Hence, we can apply Lemma 5.3 to obtain an accepting
macro-run from r̂ overw in AL

C
. It follows that p̂ ⊆L

L
r̂ . □

7 Experimental Evaluation
We implemented the presented techniques as an extension
of Ultimate Automizer [33] and experimentally evaluated
their performance. The results are presented in Figures 4
and 5. The points in the top/right-most regions of the plot rep-
resent experiments where the corresponding setting timed
out (>300 s) or went out of available memory (4GiB).

In the first set of experiments, shown in Figure 4, we eval-
uated the performance of three versions of the SDBA com-
plementation algorithm: NCSB-Original from [12], NCSB-
Lazy (Section 5.3), and NCSB-Lazy with subsumption (Sec-
tion 6.2). We used the set of all 1159 SDBAs produced by
Ultimate Automizer during termination analysis of all non-
recursive benchmarks (1375 programs) in the Termination
category of SV-Comp [1, 10]2.
2We used 6 different settings and collected all SDBAs produced before
the timeout. Because Ultimate Automizer constructs the difference of

Automata-based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●● ●

●

●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●
●

●●●●● ●●
●

●●●

●

●●●●●●●●●●●●●●●●

●

●●
●

●

●

●●
●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●
●

●

●

●●

●
●

●●●● ●● ●● ●
●

●

●

● ● ●
●

●

●●●● ●●
●

●

●

●●●● ●
●

●

●

●

●● ●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

0e+00 2e+05 4e+050e
+

00
2e

+
05

4e
+

05

NCSB−Original

N
C

S
B

−
La

zy

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●
●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●
●

●

●
●●

●
●

●●●●●●●●● ●●

●

●●● ●
●

●●
●

●

●

●●●●
●

●

●

●

●

●●
●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

0e+00 2e+05

0
10

00
00

25
00

00

NCSB−Lazy
N

C
S

B
−

La
zy

 +
 s

ub
su

m
p

(a) Number of states

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

●●●
●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●
●●●

●●●

●●
●●●
●●●
●

●●●

●●●

●●●

●●●

●

●

●

●

●

●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●

●
●●●

●●●●●●

●●●●●●

●

●

●

●

●●●●●●

●●●

●●●

●●●●●●●●●●●●
●●●

●
●●●

●
●●●

●●●●●●

●

●

●

●

●

●

●●●●●●

●●●

●●●

●●

●

●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●
●

●●●
●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●
●

●

●
●●

●
●

●●●●●●●●● ●●

●

●●
●

● ●

●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●

●

●
●

●

●
●

●

●

●●●●●●●●●●●●●
●

●●●
●

●

●

●●●●●
●

●

●

●

●●●
●

●●●

●

●●●

●

●●

0e+00 2e+06 4e+060e
+

00
2e

+
06

4e
+

06

NCSB−Original

N
C

S
B

−
La

zy

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

●●●
●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●
●●●

●●●

●●
●●●
●●●
●

●●●

●●●

●●●

●●●

●

●

●

●

●

●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●

●●●●●●

●

●

●

●

●●●●●●

●●●

●●●

●●●●●●●●●●●●
●●●

●
●●●

●
●●●

●●●●●●

●

●

●

●

●

●

●●●●●●

●●●

●●●

●●
●

●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●
●●
●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●

●
●

●●
●

●
●●●●●●●●●

●●
●

●●●
●●

●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●

●

●●

●

●●

●

●
●●●●●●●●●●●●●

●
●●●

●

●

●

●●●●●
●

●

●

●

●●●
●

●●●

●

●●●

●

●●

0e+00 2e+06 4e+060e
+

00
2e

+
06

4e
+

06

NCSB−Lazy

N
C

S
B

−
La

zy
 +

 s
ub

su
m

p

(b) Number of transitions

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●

●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●

●
●
●

●●●●●●●
●●●●●●●

●●●●●●●

●

●
●

●
●●●●●

●
●●

●●●

●●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●●

●●●

●

●●

●●●●●●
●●●

●
●

●

●●●●●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●
●

●●

●

●

●

●

●●●●●●
●●●

●

●

●

●●●●●●●●●●●●
●
●●●●
●●

●
●●●

●●●●●●

●

●

●

●

●

●

●●●●●●
●

●
●

●

●
●

●●

●

●●●●●●●●
●

●●
●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●
● ●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●
●

●●●
●

●●●●●●●●●
●

●

● ●●
●

●●●●● ●● ●●●
●●

●

●● ● ●

●

●●●●●●●●●●●●●●●●

●
●

●

●●●

●
●●

●●●●●●

●

●●

●

●●

●

●
●●●●●●●●●●●●●

●
●●● ●

●

●

●●●●●
●

●

●

●

●●●
●

●
●●

●

●●●

●

●●

0 10 20 30 40 50

0
10

20
30

40
50

NCSB−Original

N
C

S
B

−
La

zy

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●
●●●●●●●●●
●●●

●
●

●
●

●
●

●●●

●●●
●●●

●●●

●●●

●●●●●●●●●
●●

●

●●●●●●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●
●●●

●●
●

●●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●

●
●●
●●●●●●●●●●●
●●

●

●●●
●
●

●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●
●

●●
●

●●
●

●●
●

●

●

●●●●●
●

●

●

●

●●●
●
●●●

●

●●●

●

●●

0 50 150 250

0
50

15
0

25
0

NCSB−Lazy

N
C

S
B

−
La

zy
 +

 s
ub

su
m

p

(c) Execution time [s]

Figure 4. Comparing the performance of NCSB-Lazy with
NCSB-Original and evaluating the effect of subsumption

Figure 4a shows that NCSB-Lazy significantly improves
the number of states of the complemented automata, and that
the subsumption can save even more states. In Figure 4b, we
see that in the majority of cases, NCSB-Lazy also reduces the
number of transitions. This is not guaranteed though; in sev-
eral cases, the number of transitions increased. Subsumption
is also not so helpful in reducing the number of transitions.
In Figure 4c, we observe that in most cases, NCSB-Lazy also
reduces the execution time. On the other hand, subsumption
does not help that much as it brings significant overhead.
Nevertheless, subsumption always produces fewer states in
the BA language difference operation, which is an impor-
tant factor for the overall performance of the termination
analysis. More precisely, the average numbers of States and
Transitions for the three settings are the following:
NCSB-Original: 4,700 S and 122,200 T
NCSB-Lazy: 2,900 S and 132,300 T
NCSB-Lazy + Subsumption: 1,600 S and 111,700 T

automata on the fly, if the construction does not finish before the timeout,
the SDBA is not fully built and so cannot be used for this experiment.

●●
●

●

●

●●●●●●●●●
●

●● ●
●

●

●●●●

●

● ●●●●●

●
●

● ●

●●

●

●●

●
●
●●●

●
●●●●● ●● ●●●●●● ●● ●●●●●●●● ●

●

●●●●●●
●

●
●●

●
●

●●●●●
●

●

●

●

●●
●

●

●

●
●●

●

●

●

●●●●

●

●

●

●●●●●

●

●

●●

●
●

●

●

●

●

●● ●●●

●

●●●

●●

●
●

●

●

●

●●●
●●

●● ●●●

●

●

●●● ●●●

●

●●●●●●● ●●●●
●

●●

●

●●●●●●● ●●

●

●

●●●

●

●●●
●

●●

●●
●●

●● ●●●●●●●●●

●

●

● ●

●

●
●●●●●●● ●●●●●●●●●●
● ●● ●●●●●●●● ●●●●● ● ●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●

●

●

●

●

●●
●

●●

●●●●●

●

●
●

●

●

●●

●

●
●

●

●●
● ●●●●

●

●

●●

●●●●●

●

●

●●

●

●●

●

●●●●

●

●

●●

●
●●
●

●

●

●●
●●●●

●

●

●

●●

●

●●

●

●
●●

●
●

●●

●
●●

●●

●

●
●

●
●●

●

●● ●●

●●

●

●
●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●●● ●●●●●●●

●

●●

●

●

●

●●

●●● ●
●●●●

●

●●●● ●●●●

●

●

●●

●

● ●

●

●
●

●●●

●

●●

●

●
●●●●● ●●●●

●

●● ●●

●

●
● ●●●●●●●

●
●●

●

●●●

●

●●●●●●●●

●

●●●● ●●●●

●

●

●
●

●● ●● ●
●●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ● ●●● ●● ●● ●●●● ●● ●●●●● ●●●●● ●● ●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●● ● ●●● ●● ●●● ●●●● ●●● ●●●● ●●●● ●●

●●● ●●●●
●●●●●●
●

●

●
●●●

●

●● ●● ●

●

●
●●
●

● ●●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●
●●

●

●●

●

●
●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●● ●●

●●

●

●

●●

● ●●●

●

●●

●

●●●●

●

●●

●

●

● ●●●●●●

●

●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●

●●

●

●

●

●

●●

●
●

●●

●

●

●●●

●

● ●

●●

●●

●

●

●

●

●

●●●●●●● ● ●

●

●

●●

●●
●

●

●●●● ●

●

●●

●

●

●

●

●

●
●●●●●●●●●●●●●

●

● ●●● ●●●●●●●●●
●●●●●● ●●● ●

●●●
●●

●●● ●● ●●●●
●●●
●●●●

●

●

●

●●●

●●

●●
●
●
●●● ●● ●

●●●●●

●

●●●●● ●●●●●●●● ●●●●●●●●●●

●●
●

●

●

●

●●
●●

●

● ●

●●

●

●

●

●

●

●

●●

●●●●
●

● ●
●

●
●

●●●●●●
●

●
●

●●●●●● ●●
●

●●● ●

●

●

●

●

●

●●

●

●●●
● ●●●●

●
●●
●●
●●

●

●

●

●

●

●●

●
●

●
●

● ●●● ●

●

●

●

●

●

● ●●● ●●●● ●●●●●●●●●●

0 50 150 250

0
50

15
0

25
0

Single−stage

M
ul

ti−
st

ag
e

●●
●

●

●

●●●●●●
●

●●
●

●●●
●

●

●●●●

●

●●●●●●

●
●

●

●

●●

●

●●

●
●●●●

●
●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●
●

●
●●

●

●

●●●●●
●

●

●

●

●●
●

● ●

●
●
●

●

●
●

●●
●●

●

●

●

●●●●●

●

●
●●

●
●

●●

●

●

●

●

●●●

●

●●●

●

●●
●

●

●

●

●●●
●●

●●●●●

●

●

●●●●●●

●

●●●●●●●●●●●
●

●●

●

●●●●●●●●●

●

●

●●●

●

●●●
●

●●

●●●
●

●●●●●●●●●●●

●

● ●●●

●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●

●●●●●

●

●
●

●

●

●●

●

●●

●

●●●●●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●●●
●

●

●

●●●●●●

●

●

●

●●

●

●●

●

●●●●●

●

●

●●●
●●

●

●●
●

●●

●

●●
●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●
●

●

●

●

●

●●●●
●

●

●

●●●●●●●●●●

●

●●

●

●

●

●●

●●●●
●●●●

●

●
●●●●●●●

●

●

●● ●●●

●

●
●

●●●

●

●●

●

●
●●●●●●●●●

●

●●●●

●

●
●

●●●●●●●
●

●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●

●●

●●
●●●●●

●●
●

●●●
●●●

●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●

●

●●●
●

●●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●

●
●

●●

●●●

●

●
●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●●●●

●●

●

●

●●

●●●●

●

●●

●

●●●●

●

●●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●●

●●

●●

●

●

●●●

●

●●

●
●

●●

●

●

●

●

●

●●●●●●●●●

●

● ●

●

●●
●

●

●●●●●

●

●●

●

●

●

●

●

●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●
●●

●●●●●●●●●
●●●●●●●

●
●

●

●●●

●●

●●●●
●●●●●●

●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●● ●
●

●
●

●

●

●●
●●

●
●

●

●●
●

●

●

●

●

●
●●●●●●

●
●●

●

●
●●●●●●●

●
●

●
●●●●●●

●●
●

●●●● ●●
●

●
●

●●
●●●●●●●●●

●
●●

●●
●●

●

●
●●

●

●●

●
●

●
●

●●●●●

● ●

●

●

●

●●●●●●●●●●●●●●●●●●

0 50 150 250

0
50

15
0

25
0

Multi−stage

M
ul

ti−
st

ag
e

+
 o

pt

Figure 5. Evaluating the performance of the multi-stage
approach and the optimized difference operation [s]

In the next experiment, we evaluated the performance
of the proposed optimizations within program termination
analysis. We again use all non-recursive programs from the
Termination category of SV-Comp. In the left-hand side of
Figure 5, we evaluated the performance of the multi-stage
approach w.r.t. the single-stage approach (which always di-
rectly generalizes a counterexample to a nondeterministic
moduleMnondet). For the multi-stage approach, we first eval-
uated three different generalization sequences:

(i) Muvω →Mfin →Msemi →Mnondet (we skipMdet)
(ii) Muvω →Mfin →Mdet →Mnondet (we skipMsemi)
(iii) Muvω →Mfin →Mdet →Msemi →Mnondet

All of them solved roughly the same amount of examples
(±2 in the set of 1375 programs) when the SDBA difference
optimization was not used. Therefore, we chose option (i),
which produces the most SDBAs, so we can exploit the full
potential of our optimizations. Using this option, the analysis
of 1375 programs generated 6375 finite-trace modules, 1200
semideterministic modules, and 3 nondeterministic modules.
We can see that the multi-stage approach solves significantly
more cases than the single-stage approach (fewer points in
the up-most region of the plot). The improvement is obtained
mainly by avoiding the construction ofMnondet , which has
a costly complementation procedure. The occasional slow-
down can still happen since different counterexample gener-
alization constructions produce BAs with different languages
(in the subsequent steps, we then obtain different counterex-
amples, giving rise to a different global search space).
In the right-hand side of Figure 5, we evaluated the per-

formance of the proposed optimizations of the difference au-
tomaton construction (“Multi-stage + opt” uses NCSB-Lazy
+ subsumption to complement SDBAs). We can observe that
there are some cases where the version with optimizations
has a worse time or even times out, but the version without
optimizations can solve them. This can happen because of
one of the following reasons: (1) the subsumption techniques
impose overhead on the execution time or (2) NCSB-Lazy
produces more transitions than NCSB-Original.We can, how-
ever, clearly see that the proposed optimizations are indeed
helpful in the overall performance of the termination anal-
ysis, as the number of solved cases is significantly higher
than for the version without them.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

In particular, the number of benchmarks that timeouted
or ran out of memory is for the various settings as follows:

Single-stage: 691
Multi-stage without optimizations: 296
Multi-stage with Subsumption: 253
Multi-stage with NCSB-Lazy: 250
Multi-stage with NCSB-Lazy + Subsumption: 249

One can see that both NCSB-Lazy and Subsumption are
already quite useful to improve the overall performance, but
the best result is obtained by turning all optimizations on.

8 Related Work
To the best of our knowledge, there is no other tool imple-
menting a termination analysis closely related to the algo-
rithm implemented in Ultimate Automizer. Hence, our
evaluation in Section 7 was focussed on different variations
of this algorithm. For a comparison with other tools, we
rather refer to the results of the independent competition
on software verification SV-Comp. In SV-Comp 2018 [10] the
Ultimate Automizer team used the optimizations that were
presented in this paper and won the Termination category.3
For the sake of completeness, we give a brief overview of
other termination analyses that make use of automata or
that have participated in SV-Comp.
One line of research is based on the size-change princi-

ple [4, 5, 37]. In this technique, one examines the flow of
values among variables in each code block, which values
are bounded from below (e.g., by the condition of an if
statement), which values are not increasing, and which val-
ues are decreasing. The basic idea of this approach is that
if on each (infinite) path there is at least one value that is
bounded from below, never increasing, and infinitely often
decreasing, then the program terminates. This property is
inferred using one of two techniques. One is based on BAs,
the other is based on Ramsey’s theorem. In contrast to our
approach, there is only one BA, in general not semideter-
ministic. The BA is, however, reverse-deterministic, which
also allows a more efficient language inclusion check [24].
Although this approach and the approach implemented in
Ultimate Automizer both use BAs, they are not closely
connected. Using size-change termination, one always has
a fixed domain of constraints, which is used to track decreas-
ing values, whereas in Ultimate Automizer we may use
ranking functions to track the values of arbitrary expressions.
Furthermore, Ultimate Automizer infers the ranking func-
tions on-demand and splits the program into components
where these ranking functions serve as termination proofs.

Another line of research is based on transition invari-
ants [45]. There, the basic idea is that if the transitive closure
of the program’s transition relation is a subset of a union
of well-founded relations, then the program is terminating.

3https://sv-comp.sosy-lab.org/2018/results/results-verified/

In this line of research, soundness is also proved via Ram-
sey’s theorem. The approach has been first implemented
in the Terminator tool [17], and later also in T2 [15] and
CPAchecker [11, 41]. The set of well-founded relations used
there is obtained from a set of functions, where each of them
is a ranking function for a set of paths in the program. Ter-
minator constructs this set of functions incrementally in
the following CEGAR-style algorithm. The tool lets a safety
checker analyze if, in each loop location, at least one of
the functions is a ranking function. If not, a lasso-shaped
counterexample is obtained and its termination is analyzed
by techniques specialized for lasso-shaped programs [6–
9, 14, 16, 32, 39, 44]. If the counterexample is spurious, i.e.,
the lasso-shaped program is terminating, a ranking function
of this paths is constructed and added to the set of func-
tions. This process is repeated until a real counterexample
is found or the safety checker detected that, for each path,
one of the functions is a ranking function. A bottleneck of
this approach is that the safety checks become costlier over
time since the set of ranking functions is growing. In Ulti-
mate Automizer, this bottleneck is shifted from a program
analysis task to an automata theory task. We never have
to combine several ranking functions since the program is
decomposed into several modules and there is only one func-
tion for eachmodule. This comes at the price that the number
of modules is growing over time, so the automata operations
that are applied to these modules also become costlier.
The AProVe tool [28] first applies several transforma-

tions (e.g., removing pointers [48]) to translate a program
into an integer term rewriting system. Afterwards, it ap-
plies various techniques to analyze termination of the result-
ing system [25, 29]. Termination can also be analyzed via
an abstract interpretation framework [21]. Several abstract
domains have been developed [20, 49, 52, 53] and imple-
mented in the FuncTion tool [50]. In contrast to Ultimate
Automizer, which is decomposing the set of program traces,
there are also tools that decompose the state space of the
program, such as HipTNT+ [36] and SeaHorn [51]. Decom-
posing the state space allows them to infer ranking functions
for each component separately.

Acknowledgments
We thank the reviewers for their suggestions, which signifi-
cantly helped to improve the readability of the paper. The
work on this paper was supported by the Czech Science
Foundation project 17-12465S, the IT4IXS: IT4Innovations
Excellence in Science project (LQ1602), the FIT BUT project
FIT-S-17-4014, the National Natural Science Foundation of
China (Grants No. 61532019, 61650410658, 61761136011), the
CAS/SAFEA International Partnership Program for Creative
Research Teams, the CDZ project CAP (GZ 1023), and the
Ministry of Science and Technology of Taiwan (project 106-
2221-E-001-009-MY3).

https://sv-comp.sosy-lab.org/2018/results/results-verified/

Automata-based Algorithms for Program Termination Checking PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

References
[1] Software Verification Competition (SV-Comp) Benchmarks. https:

//github.com/sosy-lab/sv-benchmarks. Accessed: 2017-11-01.
[2] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr,

and Tomáš Vojnar. 2010. When Simulation Meets Antichains: On
Checking Language Inclusion of Nondeterministic Finite (Tree) Au-
tomata. In Proceedings of 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’10).
Springer-Verlag, Berlin, Heidelberg, 158–174. https://doi.org/10.1007/
978-3-642-12002-2_14

[3] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Check-
ing. The MIT Press.

[4] Amir M. Ben-Amram. 2010. Size-Change Termination, Monotonicity
Constraints and Ranking Functions. Logical Methods in Computer
Science 6, 3 (2010). http://arxiv.org/abs/1005.0253

[5] Amir M. Ben-Amram. 2011. Monotonicity Constraints for Termination
in the Integer Domain. Logical Methods in Computer Science 7, 3 (2011).
https://doi.org/10.2168/LMCS-7(3:4)2011

[6] Amir M. Ben-Amram and Samir Genaim. 2013. On the Linear Rank-
ing Problem for Integer Linear-Constraint Loops. In Proceedings of
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’13). ACM, New York, NY, USA, 51–62.
https://doi.org/10.1145/2429069.2429078

[7] Amir M. Ben-Amram and Samir Genaim. 2014. Ranking Functions
for Linear-Constraint Loops. J. ACM 61, 4 (2014), 26:1–26:55. https:
//doi.org/10.1145/2629488

[8] Amir M. Ben-Amram and Samir Genaim. 2015. Complexity of
Bradley-Manna-Sipma Lexicographic Ranking Functions. In Proceed-
ings of 27th International Conference on Computer Aided Verification
(CAV’15), Vol. 9207. Springer, Cham, 304–321. https://doi.org/10.1007/
978-3-319-21668-3_18

[9] Amir M. Ben-Amram and Samir Genaim. 2017. On Multiphase-Linear
Ranking Functions. In Proceedings of 29th International Conference
on Computer Aided Verification (CAV’17), Vol. 10427. Springer, Cham,
601–620. https://doi.org/10.1007/978-3-319-63390-9_32

[10] Dirk Beyer. 2017. Software Verification with Validation of Results -
(Report on SV-Comp 2017). In Proceedings of 23rd International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’17). Springer-Verlag New York, Inc., New York, NY,
USA, 331–349. https://doi.org/10.1007/978-3-662-54580-5_20

[11] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool
for Configurable Software Verification. In Proceedings of 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11). Springer-
Verlag, Berlin, Heidelberg, 184–190. http://dl.acm.org/citation.cfm?id=
2032305.2032321

[12] František Blahoudek, Matthias Heizmann, Sven Schewe, Jan Strejček,
and Ming-Hsien Tsai. 2016. Complementing Semi-deterministic Büchi
Automata. In Proceedings of 22nd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’16).
Springer Berlin Heidelberg, Berlin, Heidelberg, 770–787. https://doi.
org/10.1007/978-3-662-49674-9_49

[13] Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Albert Oliv-
eras, Enric Rodríguez-Carbonell, and Albert Rubio. 2017. Proving
Termination Through Conditional Termination. In Proceedings of 23rd
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’17), Vol. 10205. Springer, Berlin, Hei-
delberg, 99–117. https://doi.org/10.1007/978-3-662-54577-5_6

[14] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Linear
Ranking with Reachability. In Proceedings of 17th International Confer-
ence on Computer Aided Verification (CAV’05). Springer-Verlag, Berlin,
Heidelberg, 491–504. https://doi.org/10.1007/11513988_48

[15] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir
Piterman. 2016. T2: Temporal Property Verification. In Proceedings of

22nd International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’16), Vol. 9636. Springer, Berlin,
Heidelberg, 387–393. https://doi.org/10.1007/978-3-662-49674-9_22

[16] Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M.
Wintersteiger. 2013. Ranking function synthesis for bit-vector relations.
Formal Methods in System Design 43, 1 (2013), 93–120. https://doi.org/
10.1007/s10703-013-0186-4

[17] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Ter-
mination Proofs for Systems Code. In Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’06). ACM, New York, NY, USA, 415–426. https:
//doi.org/10.1145/1133981.1134029

[18] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2011. Prov-
ing Program Termination. Commun. ACM 54, 5 (2011), 88–98. https:
//doi.org/10.1145/1941487.1941509

[19] Byron Cook, Abigail See, and Florian Zuleger. 2013. Ramsey vs. Lexi-
cographic Termination Proving. In Proceedings of 19th International
Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS’13). Springer-Verlag, Berlin, Heidelberg, 47–61.
https://doi.org/10.1007/978-3-642-36742-7_4

[20] Nathanaël Courant and Caterina Urban. 2017. Precise Widen-
ing Operators for Proving Termination by Abstract Interpretation.
In Proceedings of 23rd International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’17),
Vol. 10205. Springer, Berlin, Heidelberg, 136–152. https://doi.org/10.
1007/978-3-662-54577-5_8

[21] Patrick Cousot and Radhia Cousot. 2012. An Abstract Interpre-
tation Framework for Termination. In Proceedings of 39th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’12). ACM, New York, NY, USA, 245–258. https:
//doi.org/10.1145/2103656.2103687

[22] Jean-Michel Couvreur. 1999. On-the-fly Verification of Linear Tem-
poral Logic. In Proceedings of International Symposium on Formal
Methods (FM’99). Springer-Verlag, London, UK, UK, 253–271. https:
//doi.org/10.1007/3-540-48119-2_16

[23] Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. 2006. Antichains: A New Algorithm for Checking
Universality of Finite Automata. In Proceedings of 18th International
Conference on Computer Aided Verification (CAV’06), Vol. 4144. Springer,
Berlin, Heidelberg, 17–30. https://doi.org/10.1007/11817963_5

[24] Seth Fogarty and Moshe Y. Vardi. 2012. Büchi Complementation and
Size-Change Termination. Logical Methods in Computer Science 8, 1
(2012). https://doi.org/10.2168/LMCS-8(1:13)2012

[25] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and
Stephan Falke. 2009. Proving Termination of Integer Term Rewriting.
In Proceedings of 20th International Conference on Rewriting Techniques
and Applications (RTA’09). Springer-Verlag, Berlin, Heidelberg, 32–47.
https://doi.org/10.1007/978-3-642-02348-4_3

[26] Andreas Gaiser and Stefan Schwoon. 2009. Comparison of Algorithms
for Checking Emptiness of Büchi Automata. In Annual Doctoral Work-
shop on Mathematical and Engineering Methods in Computer Science
(MEMICS’09), Vol. 13. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany. http://drops.dagstuhl.de/opus/volltexte/2009/2349

[27] Pierre Ganty and Samir Genaim. 2013. Proving Termination Start-
ing from the End. In Proceedings of 25th International Conference on
Computer Aided Verification (CAV’13), Vol. 8044. Springer-Verlag New
York, Inc., New York, NY, USA, 397–412. https://doi.org/10.1007/
978-3-642-39799-8_27

[28] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian
Emmes, Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin
Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski,
and René Thiemann. 2017. Analyzing Program Termination and Com-
plexity Automatically with AProVe. J. Autom. Reasoning 58, 1 (2017),
3–31. https://doi.org/10.1007/s10817-016-9388-y

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-642-12002-2_14
http://arxiv.org/abs/1005.0253
https://doi.org/10.2168/LMCS-7(3:4)2011
https://doi.org/10.1145/2429069.2429078
https://doi.org/10.1145/2629488
https://doi.org/10.1145/2629488
https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-662-54580-5_20
http://dl.acm.org/citation.cfm?id=2032305.2032321
http://dl.acm.org/citation.cfm?id=2032305.2032321
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/s10703-013-0186-4
https://doi.org/10.1007/s10703-013-0186-4
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1145/1941487.1941509
https://doi.org/10.1145/1941487.1941509
https://doi.org/10.1007/978-3-642-36742-7_4
https://doi.org/10.1007/978-3-662-54577-5_8
https://doi.org/10.1007/978-3-662-54577-5_8
https://doi.org/10.1145/2103656.2103687
https://doi.org/10.1145/2103656.2103687
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/11817963_5
https://doi.org/10.2168/LMCS-8(1:13)2012
https://doi.org/10.1007/978-3-642-02348-4_3
http://drops.dagstuhl.de/opus/volltexte/2009/2349
https://doi.org/10.1007/978-3-642-39799-8_27
https://doi.org/10.1007/978-3-642-39799-8_27
https://doi.org/10.1007/s10817-016-9388-y

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Y. Chen, M. Heizmann, O. Lengál, Y. Li, M. Tsai, A. Turrini, and L. Zhang

[29] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan
Falke. 2006. Mechanizing and Improving Dependency Pairs. J.
Autom. Reasoning 37, 3 (2006), 155–203. https://doi.org/10.1007/
s10817-006-9057-7

[30] Patrice Godefroid. 1996. Partial-Order Methods for the Verification
of Concurrent Systems - An Approach to the State-Explosion Problem.
Springer. https://doi.org/10.1007/3-540-60761-7

[31] William R. Harris, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani.
2010. Alternation for Termination. In Proceedings of 17th International
Conference on Static Analysis (SAS’10). Springer-Verlag, Berlin, Heidel-
berg, 304–319. http://dl.acm.org/citation.cfm?id=1882094.1882113

[32] Matthias Heizmann, Jochen Hoenicke, Jan Leike, and Andreas Podelski.
2013. Linear Ranking for Linear Lasso Programs. In Proceedings of
15th International Symposium on Automated Technology for Verification
and Analysis (ATVA’13), Vol. 8172. Springer, Cham, 365–380. https:
//doi.org/10.1007/978-3-319-02444-8_26

[33] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2014.
Termination Analysis by Learning Terminating Programs. In Proceed-
ings of 26th International Conference on Computer Aided Verification
(CAV’14). Springer-Verlag New York, Inc., New York, NY, USA, 797–813.
https://doi.org/10.1007/978-3-319-08867-9_53

[34] Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and
ChristophM.Wintersteiger. 2010. TerminationAnalysis with Composi-
tional Transition Invariants. In Proceedings of 22nd International Confer-
ence on Computer Aided Verification (CAV’10). Springer-Verlag, Berlin,
Heidelberg, 89–103. https://doi.org/10.1007/978-3-642-14295-6_9

[35] Robert P. Kurshan. 1987. Complementing Deterministic Büchi Au-
tomata in Polynomial Time. J. Comput. Syst. Sci. 35, 1 (1987), 59–71.
https://doi.org/10.1016/0022-0000(87)90036-5

[36] Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. 2015. Termi-
nation and Non-termination Specification Inference. In Proceedings
of 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’15). ACM, New York, NY, USA, 489–498.
https://doi.org/10.1145/2737924.2737993

[37] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The size-
change principle for program termination. In Proceedings of 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’01). ACM, New York, NY, USA, 81–92. https://doi.org/10.1145/
360204.360210

[38] Wonchan Lee, Bow-Yaw Wang, and Kwangkeun Yi. 2012. Termi-
nation Analysis with Algorithmic Learning. In Proceedings of 24th
International Conference on Computer Aided Verification (CAV’12).
Springer-Verlag, Berlin, Heidelberg, 88–104. https://doi.org/10.1007/
978-3-642-31424-7_12

[39] Jan Leike and Matthias Heizmann. 2015. Ranking Templates for Linear
Loops. Logical Methods in Computer Science 11, 1 (2015). https://doi.
org/10.2168/LMCS-11(1:16)2015

[40] Max Michel. 1988. Complementation is more difficult with automata on
infinite words. Technical Report. CNET, Paris.

[41] Sebastian Ott. 2016. Implementing a Termination Analysis using
Configurable Software Analysis. Master’s Thesis, University of Passau,
Software Systems Lab.

[42] Oded Padon, JochenHoenicke, Giuliano Losa, Andreas Podelski, Mooly
Sagiv, and Sharon Shoham. 2018. Reducing Liveness to Safety in
First-Order Logic. ACM Program. Lang. 2, POPL (2018), 26:1–26:33.
https://doi.org/10.1145/3158114

[43] Doron Peled. 1993. All from One, One for All: on Model Checking
Using Representatives. In Proceedings of 5th International Conference
on Computer Aided Verification (CAV’93). Springer-Verlag, London, UK,
409–423. http://dl.acm.org/citation.cfm?id=647762.735490

[44] Andreas Podelski and Andrey Rybalchenko. 2004. A Complete Method
for the Synthesis of Linear Ranking Functions. In Proceedings of 5th
International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’04), Vol. 2937. Springer, Berlin, Heidelberg, 239–
251. https://doi.org/10.1007/978-3-540-24622-0_20

[45] Andreas Podelski and Andrey Rybalchenko. 2004. Transition Invari-
ants. In Proceedings of 19th Annual IEEE Symposium on Logic in Com-
puter Science (LICS’04). IEEE Computer Society, Washington, DC, USA,
32–41. https://doi.org/10.1109/LICS.2004.50

[46] Andreas Podelski, Andrey Rybalchenko, and ThomasWies. 2008. Heap
Assumptions on Demand. In Proceedings of 20th International Confer-
ence on Computer Aided Verification (CAV’08). Springer-Verlag, Berlin,
Heidelberg, 314–327. https://doi.org/10.1007/978-3-540-70545-1_31

[47] Corneliu Popeea and Andrey Rybalchenko. 2012. Compositional Ter-
mination Proofs for Multi-threaded Programs. In Proceedings of 18th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’12). Springer-Verlag, Berlin, Heidel-
berg, 237–251. https://doi.org/10.1007/978-3-642-28756-5_17

[48] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-
chermann. 2017. Automatically Proving Termination and Memory
Safety for Programs with Pointer Arithmetic. J. Autom. Reasoning 58,
1 (2017), 33–65. https://doi.org/10.1007/s10817-016-9389-x

[49] Caterina Urban. 2013. The Abstract Domain of Segmented Ranking
Functions. In Proceedings of 24th International Symposium on Static
Analysis (SAS’13), Vol. 7935. Springer, Berlin, Heidelberg, 43–62. https:
//doi.org/10.1007/978-3-642-38856-9_5

[50] Caterina Urban. 2015. FuncTion: An Abstract Domain Functor for
Termination - (Competition Contribution). In Proceedings of 21st Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’15). Springer-Verlag New York, Inc., New
York, NY, USA, 464–466. https://doi.org/10.1007/978-3-662-46681-0_46

[51] Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai. 2016. Syn-
thesizing Ranking Functions from Bits and Pieces. In Proceedings
of 22nd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’16). Springer-Verlag
New York, Inc., New York, NY, USA, 54–70. https://doi.org/10.1007/
978-3-662-49674-9_4

[52] Caterina Urban and Antoine Miné. 2014. An Abstract Domain to
Infer Ordinal-Valued Ranking Functions. In Proceedings of 23rd Euro-
pean Symposium on Programming Languages and Systems (ESOP’14).
Springer-Verlag New York, Inc., New York, NY, USA, 412–431. https:
//doi.org/10.1007/978-3-642-54833-8_22

[53] Caterina Urban and Antoine Miné. 2014. A Decision Tree Abstract
Domain for Proving Conditional Termination. In Proceedings of 21st
International Symposium on Static Analysis (SAS’14), Vol. 8723. Springer,
Cham, 302–318. https://doi.org/10.1007/978-3-319-10936-7_19

[54] Antti Valmari. 1991. Stubborn Sets for Reduced State Space Generation.
In Proceedings of 10th International Conference on Applications and
Theory of Petri Nets: Advances in Petri Nets (ICATPN’89). Springer,
491–515. https://doi.org/10.1007/3-540-53863-1_36

https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/3-540-60761-7
http://dl.acm.org/citation.cfm?id=1882094.1882113
https://doi.org/10.1007/978-3-319-02444-8_26
https://doi.org/10.1007/978-3-319-02444-8_26
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-642-14295-6_9
https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.1007/978-3-642-31424-7_12
https://doi.org/10.1007/978-3-642-31424-7_12
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.1145/3158114
http://dl.acm.org/citation.cfm?id=647762.735490
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1109/LICS.2004.50
https://doi.org/10.1007/978-3-540-70545-1_31
https://doi.org/10.1007/978-3-642-28756-5_17
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1007/978-3-642-38856-9_5
https://doi.org/10.1007/978-3-642-38856-9_5
https://doi.org/10.1007/978-3-662-46681-0_46
https://doi.org/10.1007/978-3-662-49674-9_4
https://doi.org/10.1007/978-3-662-49674-9_4
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-319-10936-7_19
https://doi.org/10.1007/3-540-53863-1_36

	Abstract
	1 Introduction
	2 Preliminaries
	3 Multi-Stage Generalization of Certified Modules
	3.1 The Multi-Stage Approach to Construct M

	4 Building Difference of a GBA and a BA
	4.1 Removing Useless States in a GBA

	5 Efficient Complementation of SDBAs
	5.1 The NCSB-Original Algorithm
	5.2 Eager Guessing as the Source of Inefficiency
	5.3 The NCSB-Lazy Algorithm

	6 Subsumption-based Pruning in the Construction of a Difference Automaton
	6.1 Subsumption Relation for NCSB-Original
	6.2 Subsumption relation for NCSB-Lazy

	7 Experimental Evaluation
	8 Related Work
	Acknowledgments
	References

