
 

 

 

  

Abstract—This paper studies the evolutionary planning 

strategies for mobile robots to move smoothly along efficient 

collision-free paths in known static environments. The cost of 

each candidate path is composed of the path length and a 

weighted sum of penetration depth to vertices of polygonal 

obstacles. The path is composed of a pre-specified number of 

cubic spiral segments with constrained curvature. Comparison 

of the path planning performance between two Pareto-optimal 

schemes, the parallel genetic algorithm scheme based on the 

island method (PGA) and the non-dominated sorting genetic 

algorithm (NSGA-II), are conducted in terms of success rate in 

separate runs and path length whenever collision-free paths are 

found. Numerical simulation results are presented for three 

types of obstacles: polygons, walls, and combinations of both.  

I. INTRODUCTION 

LOBAL or local path planning for a mobile robot 

between two locations rich in obstacles has been studied 

by complicated numerical methods such as [2] and [3]. The 

approaches that apply the genetic algorithms, such as [4]-[7], 

can find piecewise linear paths for a mobile robot without 

complicated mathematical formulations. Usually, the 

evolutionary planners contain specially designed operators 

that are complex and case-dependent. However, the turning 

constraint, including smoothness and curvature, for the 

car-like robot is normally unaccounted for [18].  

Besides, a feasible path should also be of minimum 

length and/or minimum energy, these requirements lead to a 

multi-objective optimization problem (MOOP) with 

conflicting objectives [13-17]. In recent years, the idea of 

Pareto-optimality [16] is introduced to solve MOOP with the 

advantage that multiple tradeoff solutions can be obtained in 

a single run. 

In our previous work [11], a parallel genetic algorithm 

(PGA) scheme based on the island model was applied to find 

collision-fee paths composed of a pre-specified number of 

cubic spiral segments. The method inherently encodes the 

curvature-continuity constraint into the candidate paths. 

In this paper, we propose a new intrinsic cost for the 

evolutionary path design strategy that incorporates obstacle 

penetration-depth to evaluate the degree of collision. The 

candidate paths are composed of cubic spiral segments. 

Tradeoff between penetration-depth of obstacles and path 

 
 

length renders the problem two-objective. Search 

performance of the proposed scheme is compared with the 

non-dominated sorting genetic algorithm (NSGA-II) [19], a 

popular Pareto-based evolutionary method.  

The remainder of the paper is organized as follows. 

Section II briefly reviews the cubic spiral method and 

introduce a new penetration-depth based intrinsic cost for 

obstacle avoidance. The path searching algorithms based on 

evolutionary multiobjective optimization with 

non-smoothness handling, mainly PGA and NSGA-II, are 

presented in Section III. Comparisons and simulations are 

presented in Section IV. Finally we make a conclusion in 

Section V.  

II. PRELIMINARIES 

Let ( )θ,, yxq ≡  represent a configuration of the mobile 

robot where (x, y) and θ denotes the position and orientation, 

respectively. The path followed by a unit-speed mobile robot 

starting from the initial configuration ( )000 ,, θyx  is governed 

by integrating the nonholonomic kinematic constraints, 
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where x, y and θ represent the function of position in x-axis 
and y-axis and orientation of robot through a path, s is the 

path length, and is set as 0 at the initial point of robot (x0 , y0). 

κ  is the curvature function. 

A. Two objectives for path optimization 

The cost of travel  is path length and the cost of obstacle 

avoidance, which can be represented by the intrinsic cost by 

assuming that the robot is a point to avoid time-consuming 

collision detection between rigid objects [3]. When used in 

environments of varying geometric shapes and sizes,  we see 

some defects in the original definition of intrinsic cost, which 

only calculates how many intersections. As Fig. 1 shown, 

similar paths (represented by solid and dashed lines) cross a 

thin or a large obstacle (compared to the length of a path 

segment) will have the same intrinsic cost. Nonetheless, the 

solid path is visually more proximate to collision-free  than  
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Fig. 1 Definition of penetration-depth based intrinsic cost for 

obstacle avoidance 

 

 

the dashed path. To invoke the measure of proximity to 

collision-free into a path to be evaluated, we design a 

modified intrinsic cost in the following. Refer to  Fig. 1. 

Suppose there are n sampling nodes  
nqq ,,1 Λ  of a path 

segment intersecting a designated obstacle. For convenience, 

every path segment  of different length is sampled as the same 

number of nodes Ns. The normalized intrinsic cost  for i-th 

path segment is defined as ,,1,/ segSii NiNnr Λ== where ni 

represents the number of nodes of i-th path segment that are  

within a designated obstacle, 
segN is a prespecified number 

of path segments. For each segment, we measure the 

penetration depth  as the minimum distance from the middle 

node qm to all vertices of the intersecting obstacle, 
mdmin

, as 

the proximity to collision-free. Note that if the number of 

intersected nodes is odd, qm would be unique. On the other 

hand, if the number is even, there are two median nodes, i.e. 

qm and qm+1, to derive two minimum distances, mdmin
 and 1

min

+md . 

Their arithmetic average is the proximity to collision-free.  

The general form of newly designed intrinsic cost function 

can thus be defined as: 
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where ri and Di of i-th path segment are defined as:  
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where subscript i denotes i-th path segment. 

B. Review of Cubic Spiral Method 

For smooth path generation, the path is made up of cubic 

spiral segments, which is curvature continuous. 

1). Cubic Spiral: By definition, cubic spiral is a set of 

trajectories that the direction function θ is a cubic 

polynomial of curve length l. Its angle, which describes 

how much the curve turns from the initial orientation to 

final orientation, is denoted by 

 

( ) ( )0θθα −= l                            (2) 

 

From the first equation of (1) and the boundary 

conditions at s=0 and s=l, we have (Lemma 2, [1]), 

 

( ) ( )sls
l
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3
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If the length of a cubic spiral is 1, its size is given by 

(Lemma3, [1])  
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Due to similarity of all cubic spirals, the value D(α) can 

be computed and then derive the curve’s length l by the 

following equation (Proposition 8, [1]), 

 

( )αD

d
l =                                  (5) 

 

where d is the distance of two configurations. 

 

2). Concept of Symmetric Configurations: For an arbitrary 

configuration q, [q] denotes its position (x, y), and (q) its 

direction θ. For a configuration pair (q1, q2), the size is 

the distance between the two points [q1] and [q2], and the 

angle is the deflection angle between the two 

orientations (q1) and (q2). In [1], a symmetric mean q of 

any configuration pair (q1, q2) is a configuration that 

leads (q1, q) and (q, q2) are both symmetric pairs. All 

symmetric means of a configuration pair (q1, q2) forms a 

circle if (q1) ≠ (q2) or a line connecting q1 and q2 if (q1) = 

(q2) (Proposition 3, [1]). It is noted that the symmetric 

property is very important in this method because a cubic 

spiral can connect two symmetric configurations.  

 

3). Original cubic spiral path planning method 

The cubic spiral method can connect two given 

configuration q1 and q2 according to the following steps: 

I. If q1 and q2 are symmetric, connect these two 

configurations with a cubic spiral directly. 

II. Else, connect these two configurations with a 

specified symmetric mean 

(i)Non-parallel case: 

START 

GOAL 

q1 q2 
qn-1 qn … 

qm 

md min

obstacle 
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If (q1) ≠ (q2), we should define the center of the 

circle that go through the given configurations q1 

and q2. 
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Thus the position of symmetric mean [qs] can be 

defined as: 
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where β1 and β2 are represent the orientations from 

pc to q1 and q2 respectively. The orientation of the 

symmetric mean can be defined according to the 

position of symmetric mean [1]. 

(ii)Parallel case: 

If (q1) = (q2) = θ, 
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where [q1] = (x1,y1), [q2] = (x2,y2), 
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For a given start configuration, a cubic spiral can be defined 

by the size d and deflected angle α, which has: its length via 
(5), its curvature function by (3) and its terminal 

configuration from equation (1). In addition, when the size of 

cubic spiral is negative, we can plan the backward motion of 

the robot according to equation (3) and (1) with l negative.  

III. CUBIC SPIRAL PATH PLANNING VIA EVOLUTIONARY 

MULTI-OBJECTIVE OPTIMIZATION 

A. Individual representation: candidate path 

A path segment is defined by a continuous mapping 

C→]1,0[:τ  where ))(),(),(()( ssysxsq θ= denotes robot 

configuration with s arc length. A path is composed of a set of 

path segments connected via a pre-specified number of 

intermediate configurations. In this paper, we use cubic spiral 

as a path segment for a uni-cycle mobile robot, which is 

kinematically feasible. More specifically, a path is designed 

as a concatenation of  three smooth subpaths, each is 

composed by several cubic spiral segments: subpaths S, G, M 

(Fig.2), which inherently encodes the curvature-continuity 

constraint into the path representation. The subpath S is 

composed of cubic spiral segments, planned forwardly from 

START through a prespecified number of intermediate 

configurations. Similarly, the subpath G is planned 

backwardly from GOAL. 

 
Fig. 2 A path is composed by three subpaths, each is 

composed by cubic spiral segments: subpaths S, G, M 

 

 

Finally, S and G are connected by two cubic spiral segments 

defined via a symmetric mean [1], i.e. subpath M. If we 

define the subpaths S and G by N cubic spiral segments, i.e. N 

control points, the chromosome would consist of 2N+1 genes 

(the size and deflected angle for each cubic spiral segment in 

S and G, and the position ratio of symmetric mean for 

subpath M). The composition of genes for a single 

chromosome p is, excluding the given START and GOAL 

configurations 

 

p = [d1 α1 ; d2 α2;…; dN αN ; γSym], N: even number     (6) 

 

B. Island-based PGA with migration[11] 

PGA based on island model is a parallelization scheme of 

genetic algorithms that can reduce the execution time. Since 

each island  is run to follow a different solution trajectory, the 

island model may help to promote genetic diversity.  The 

island model may have synchronous/asynchronous migration 

of individuals. This scheme divides the population into 

several communicating subpopulations each evolving via 

SGA in an island with a common pool serving as a migration 

center (Fig.3), created by cross-fertilization among the 

individuals of different islands. For every M generations (M 

is called migration frequency/interval), migration takes place. 

A fraction of subpopulations (called migration rate) of 

individuals of each island is selected based on their ranks to 

send to the common pool, and gathered. Then the common 

pool redistributes the individuals randomly onto the different 

islands. The size of the common pool equals the migration 

size (the number of individuals that migrate) of each island 

times the number of islands. Performance of island based 

PGA is affected by four factors: number of migrants, 

migration interval and the selection and replacement strategy 

of individuals. The following paragraphs describe the detail 

of the PGA. 
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Fig.3 The migration policy of PGA based on island model 

 

1). Fitness Definition: Rank-based Assignment & Pareto 

Ranking  

Fast non-dominance sorting method proposed by [19]  is used 

to rank the individuals in a population. Higher ranks will be 

given higher indices. The solutions of highest rank are termed 

as Pareto-frontier. 

2). Selection 

The roulette-wheel selection operator is employed. For 

faster convergence, elitism is used to retain some preferred 

individuals at each generation. One of the most popular 

criteria to select representative solutions from the 

Pareto-frontier is the min-max method [9]. The main idea of 

this method is to select a point within the two ends of 

Pareto-frontier that the maximum deviation of objectives is 

minimized. For a m objectives problem, if there are k number 

of solutions p1 ~ pk within the Pareto-frontier, we can select a 

min-max picked solution according to 

( ) ( ) ( )1 2 1 2 1 21 2
min max , ,..., ,max , ,..., ,...,max , ,...,m m m k

z z z z z z z z z  
  

where the deviations ( ) ( )minmaxmin

iiiii fffpfz −−= .  

3). Genetic Operations: Crossover and Mutation 

The crossover is implemented in this work as a linear 

interpolation between two chromosomes, also called 

arithmetic crossover [10]. The following equation shows the 

interpolation operation between two distinct chromosomes: 

( ) ( )1 1 1 2 1 2 2 1 1 1' 1 , ' 1θ θ γ θ γ θ θ γ θ γ= ⋅ + ⋅ − = ⋅ + ⋅ − ,where γ1 is a 

randomly generated real number between 0 and 1. Please 

note that γ1 is different in different genes.Mutation is a 

mechanism introduced to explore new searching directions. 

Assuming θmax and θmin be the bounds of candidate solutions, 

the resultant descendant generated by the mutation operation 

will be ( )minmax2min' θθγθθ −⋅+= ,where θ stands for a 

chromosome in a population, γ2 is a random number between 

0 and 1.  

4). Non-smoothness handling 

The cubic spiral would be a spiral curve for certain values 

of deflected angle and size. As this situation occurs in the 

evolution of paths, a  non-smooth path  is generated when we 

connect the subpaths S and G by a subpath M, since there is 

no guarantee that the deflected angle between last nodes at 

subpaths S and G is smaller than the specific value, as shown 

by dot circle of Fig. 4 .  It implies that a generated path is 

likely to be non-smooth during evolution . Thus the path 

problem we tackle with is a constraint-handling optimization 

problem. However, this type of constraint is very difficult to 

be reflected in the design space defined by p in (6), thus we 

only can make a boolean discrimination for every individuals 

(i.e., only indicating smooth or non-smooth). This results in 

two categories of population at every generation, i.e. smooth 

and non-smooth solutions. For the proposed PGA, we 

generate the offspring  based on two rankings: The first is a 

ranking for total populations, the second is a ranking only for 

smooth solutions, to make the evolution to preserve the 

diversity of searching. In our implementation, these paths 

from these two rankings have the same probability to be 

selected, therefore smooth paths have more chances to be 

selected for further genetic operations.  

 
 

Fig. 4 Example of a non-smooth path (with 6 control points). 

 

C. Sub-goals manipulation operator [11] 

For the mobile robot path planning problem, it is 

important to consider how to elaborate an infeasible path into 

a more acceptable path. The subgoals manipulation operator 

operates on the infeasible paths segments that cross the 

obstacles in order to accelerate the evolution to find out the 

collision-free paths. The operator locally mutates those nodes 

in a predefined neighborhood, so that this local refinement of 

path shape occurs in the sun-regions.  

IV. SIMULATION RESULTS 

For empirical comparison of path planning performance of 

various schemes to make clear which scheme performs better, 

four performance indices are considered: The success rate 

represents the number of specific runs that find out at least 

one feasible path for  20 independent runs. The best and 

worst path means the path with minimum and maximum 

length within those feasible paths in every single run of 20 

runs and average length and standard deviation from all 

success runs. The initialization of candidate paths respects 

the following predefined range: size d: [20, diagonal distance 

of map/ N-2];deflected orientation α: [ –π, π]; position ratio 

of symmetric mean γ: [0.2, 0.8], and are the same for all 

simulations 
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Static Environment-1 (map size: 600*500) 

 

Fig. 5 Testing environment 

 

A. Comparison of the preservation strategies: Table 1 

Four different preservation strategies are implemented: two 

Min-Max picked solutions and two solutions with respective 

minimum objectives (Strategy-1); three Min-Max picked 

solution and a solution with minimum intrinsic cost 

(Strategy-2); four random selections from the Pareto-front 

(Strategy-3); two random selections from the Pareto-front 

and the solutions with respective minimum objectives 

(Strategy-4). Table 1 shows that 

(a) new vs. old intrinsic cost: We could see that using new 

intrinsic cost as the cost of obstacle avoidance is more 

effective in achieving higher success rate than old intrinsic 

cost, since the colliding paths and collision-free  paths are 

increasingly discriminatory. However,  using old intrinsic 

cost often finds a shorter path in case of successful runs than 

using new intrinsic cost.  

(b) comparison of preservation strategies: Strategy-I, which 

preserves the boundary solutions and has a good spread of 

non-dominated solutions, outperforms in the average and 

standard deviation of path length for all testing environments. 

Consequently, Strategy-I is adopted for PGA preservation 

scheme in later comparison. 

 

B. Comparison for island-based PGA with NSGA-II: Table 

2, Table 3 

In this subsection, PGA with different migration intervals, 

NSGA-II is implemented to this problem. The 

implementation of NSGA-II follows the description of [19], 

includes the parameters: crossover rate, mutation rate, and 

distribution indices for crossover and mutation operators. All 

schemes are incorporated with sub-goals manipulation 

operator. For the migration intervals, the PGA with 5 

intervals (denoted as PGA(5) in the following) has better 

result than the others. PGA(5) performs well in the wall-like 

obstructed maps and NSGA-II performs better in 

environments containing only polygonal obstacles. 

For further comparison of PGA(5) and NSGA-II, another 

obstructed environments mixed with wall-like and polygonal 

obstacles (Fig. 6) are tested. Table 3 demonstrates the results 

of this comparison. NSGA-II indeed has poor performance 

when there exist wall-like obstacles (e.g.  Environment-3). 

This might be resulted from the crowded comparison 

Table. 1 Comparison of different preservation strategies in 

Fig. 5- 6 Control Points, new/old intrinsic cost(SGA, Pop 

size: 90, max generation:150, crossover/mutation rate: 

0.85/0.1, number of manipulations of infeasible paths: 10% 

of population size/per generation) 

 
 1         2 3 4 

 

Success rate 

(/20 Runs) 

20/5 20/12 19/12 20/13 

Best path 
827.43/81

0.14 

826.92/795.

40 

830.08/788.

53 

824.70/798.

82 

Worst path 
878.13/87

1.69 

961.56/991.

82 

998.92/914.

64 

1090.80/79

8.82 

Average length    
± SD of best paths 

846.94 

±10.73/83

4.23 

±25.22 

861.15 

±41.01/856.

06 

±54.86 

857.69 

±39.08/838.

53 

±38.60 

855.38 

±58.00/839.

91 

±43.73 

 

 

Start Goal
    

Start
Goal

 
Static Environment-2                  Static Environment-3 

 

Fig. 6 Another testing environments (map size: 600*600) 
 

 

Table 2 Comparison of path planning performance in Fig.6 

 
 PGA(1) PGA(3) PGA(5) NSGA-II* 

Environment-3     

Success rate(/20 Runs) 15 14 12 4 

Best path 734.07 728.29 735.59 747.51 

Worst path 1097.60 954.80 857.94 857.39 

Average length    
± SD of best paths 

810.75 

±103.98 

778.29 

±54.95 

772.97 

±34.82 

802.52 

±53.11 

Environment-4     

Success rate(/20 Runs) 13 19 19 15 

Best path 771.98 781.45 778.23 782.39 

Worst path 849.17 1497.05 881.99 947.33 

Average length    
± SD of best paths 

800.19 

±19.97 

882.88 

±185.30 

804.33 

±22.74 

835.18 

±52.25 

*The crossover and mutation probabilities are 0.9 and 1/Nd (where Nd is the 

number of genes) respectively. Distribution indices for crossover and 

mutation operator are defined as 20=cη  and 20=mη . 

 

 

operator of NSGA-II, since this operator might neglect many 

possible solutions. For the PGA, the success rates for each 

map are more stable than the NSGA-II. The NSGA-II 

performs dramatically well in the average length and STD 

than the PGA in Environment-2. 
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Table 3 

Environment-2 with more multiple wall-like obstacles 

(8 Control Points) 

 PGA(5) NSGA-II 

Success rate(/20 Runs) 18 19 

Best path 705.32 605.23 

Worst path 1222.37 780.87 

Average length    
± SD of best paths 

978.42 

±94.51 

632.88 

±52.02 

Environment-3 with equal number of wall-like and polygon 

obstacles (8 Control Points) 

Success rate(/20 Runs) 20 12 

Best path 833.86 840.54 

Worst path 991.71 1080.04 

Average length    
± SD of best paths 

898.88 

±53.69 

940.04 

±69.85 

 

 

C. Summary of simulations 

The evolutionary path planner based on PGA are more robust 

in successfully finding a safe smooth and  shorter path, while 

NSGA-II achieves better distributed approximation of 

Pareto-front, but may degrade its searching performance 

greatly in some environments containing wall-like obstacles. 

In reality, the population size can be increased to yield better 

results. On the other hand, since the NSGA-II has higher 

computation complexity due to the sorting of combined 

populations, PGA would solves the problem more efficiently.  

V. CONCLUSION 

In this paper, two Pareto-based evolutionary multi-objective 

optimization schemes, PGA with migration intervals 5 and 

NSGA-II are employed in this comparative study to solve a 

bi-objective optimization problem for generating a smooth 

path to move a mobile robot  safely from a start configuration 

to a goal configuration in completely known static 

environments containing polygonal and wall-like obstacles. 

The cubic spiral segments are used to compose a 

curvature-continuous directed planar curve. A modified 

intrinsic cost function incorporating the penetration depth 

into obstacle avoidance is effective for identifying which 

paths are closer to collision-free, thus raising the success rate 

in searching a feasible path via multi-objective evolution. 

Our comparative study based on simulations show that PGA 

is more robust over all testing environments, while NSGA-II 

has better-distributed approximation to Pareto-front, but may 

degrade greatly in some environments containing wall-like 

obstacles. Combining the merits of both schemes is currently 

under investigation. 
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