A finite automaton has a finite set of control states.
A finite automaton reads input symbols from left to right.
A finite automaton accepts or rejects an input after reading the input.
Finite Automaton M_1

Figure 2 shows the state diagram of a finite automaton M_1. M_1 has

- **3 states**: q_1, q_2, q_3;
- **a start state**: q_1;
- **a accept state**: q_2;
- **6 transitions**: $q_1 \xrightarrow{0} q_1, q_1 \xrightarrow{1} q_2, q_2 \xrightarrow{1} q_2, q_2 \xrightarrow{0} q_3, q_3 \xrightarrow{0} q_2, q_3 \xrightarrow{1} q_2$.

Bow-Yaw Wang (Academia Sinica)
Consider an input string 1100.

M_1 processes the string from the start state q_1.

It takes the transition labeled by the current symbol and moves to the next state.

At the end of the string, there are two cases:

- If M_1 is at an accept state, M_1 outputs accept;
- Otherwise, M_1 outputs reject.

Strings accepted by M_1: $1, 01, 11, 1100, 1101, \ldots$.

Strings rejected by M_1: $0, 00, 10, 010, 1010, \ldots$.
A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

- \(Q\) is a finite set of states;
- \(\Sigma\) is a finite set called alphabet;
- \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function;
- \(q_0 \in Q\) is the start state; and
- \(F \subseteq Q\) is the set of accept states.

Accept states are also called final states.

The set of all strings that \(M\) accepts is called the language of machine \(M\) (written \(L(M)\)).

- Recall a language is a set of strings.

We also say \(M\) recognizes (or accepts) \(L(M)\).
A finite automaton $M_1 = (Q, \Sigma, \delta, q_1, F)$ consists of

- $Q = \{q_1, q_2, q_3\}$;
- $\Sigma = \{0, 1\}$;
- $\delta : Q \times \Sigma \rightarrow Q$ is

\[
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
q_1 & q_1 & q_2 \\
q_2 & q_3 & q_2 \\
q_3 & q_2 & q_2 \\
\end{array}
\]

- q_1 is the start state; and
- $F = \{q_2\}$.

Moreover, we have

\[
L(M_1) = \{w : \text{ w contains at least one 1 and an even number of 0's follow the last 1}\}
\]
Figure 3 shows $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where δ is

$$
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
q_1 & q_1 & q_2 \\
q_2 & q_2 & q_2 \\
\end{array}
$$

What is $L(M_2)$?

- $L(M_2) = \{w : w \text{ ends in a } 1\}$.
Figure 3 shows $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where δ is

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_2</td>
</tr>
</tbody>
</table>

What is $L(M_2)$?

- $L(M_2) = \{w : w \text{ ends in a } 1\}$.
Finite Automaton M_3

Figure 4 shows $M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ where δ is

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_2</td>
</tr>
</tbody>
</table>

What is $L(M_3)$?

- $L(M_3) = \{w : w$ is the empty string ϵ or ends in a 0$\}$.
Finite Automaton M_3

Figure 4 shows $M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ where δ is

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_2</td>
</tr>
</tbody>
</table>

What is $L(M_3)$?

$\Rightarrow L(M_3) = \{w : w$ is the empty string ϵ or ends in a $0\}$.
Finite Automaton M_5

Figure 5 shows $M_5 = (\{q_0, q_1, q_2\}, \{0, 1, 2, \langle \text{RESET} \rangle \}, \delta, q_0, \{q_0\})$.

Strings accepted by M_5:
0, 00, 12, 21, 012, 102, 120, 021, 201, 210, 111, 222, ...

M_5 computes the sum of input symbols modulo 3. It resets upon the input symbol $\langle \text{RESET} \rangle$. M_5 accepts strings who sum is a multiple of 3.
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and $w = w_1w_2 \cdots w_n$ a string where $w_i \in \Sigma$ for every $i = 1, \ldots, n$.

We say M accepts w if there is a sequence of states r_0, r_1, \ldots, r_n such that:

1. $r_0 = q_0$;
2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for $i = 0, \ldots, n - 1$; and
3. $r_n \in F$.

M recognizes language A if $A = \{w : M$ accepts $w\}$.

Definition 1

A language is called a **regular language** if some finite automaton recognizes it.
Definition 2

Let A and B be languages. We define the following operations:

- **Union**: $A \cup B = \{ x : x \in A \text{ or } x \in B \}$.
- **Concatenation**: $A \circ B = \{ xy : x \in A \text{ and } y \in B \}$.
- **Star**: $A^* = \{ x_1x_2\cdots x_k : k \geq 0 \text{ and every } x_i \in A \}$.

- Note that $\epsilon \in A^*$ for every language A.
Theorem 3

The class of regular languages is closed under the union operation. That is, $A_1 \cup A_2$ is regular if A_1 and A_2 are.

Proof.

Let $M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i for $i = 1, 2$. Construct $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = Q_1 \times Q_2 = \{(r_1, r_2) : r_1 \in Q_1, r_2 \in Q_2\}$;
- $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$;
- $q_0 = (q_1, q_2)$;
- $F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) : r_1 \in F_1 \text{ or } r_2 \in F_2\}$.

Why is $L(M) = A_1 \cup A_2$?
When a machine is at a given state and reads an input symbol, there is precisely one choice of its next state.

This is called deterministic computation.

In nondeterministic machines, multiple choices may exist for the next state.

A deterministic finite automaton is abbreviated as DFA; a nondeterministic finite automaton is abbreviated as NFA.

A DFA is also an NFA.

Since NFA allow more general computation, they can be much smaller than DFA.
On input string baa, N_4 has several possible computation:

- $q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_2 \xrightarrow{a} q_2$;
- $q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_2 \xrightarrow{a} q_3$; or
- $q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{a} q_1$.

Figure: NFA N_4
Nondeterministic Finite Automaton – Formal Definition

- For any set Q, $\mathcal{P}(Q) = \{ R : R \subseteq Q \}$ denotes the power set of Q.
- For any alphabet Σ, define Σ_ϵ to be $\Sigma \cup \{ \epsilon \}$.
- A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
 - Q is a finite set of states;
 - Σ is a finite alphabet;
 - $\delta : Q \times \Sigma_\epsilon \rightarrow \mathcal{P}(Q)$ is the transition function;
 - $q_0 \in Q$ is the start state; and
 - $F \subseteq Q$ is the accept states.
- Note that the transition function accepts the empty string as an input symbol.
NFA N_4 – Formal Definition

- $N_4 = (Q, \Sigma, \delta, q_1, \{q_1\})$ is a nondeterministic finite automaton where
 - $Q = \{q_1, q_2, q_3\}$;
 - Its transition function δ is

<table>
<thead>
<tr>
<th></th>
<th>ϵ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>${q_3}$</td>
<td>\emptyset</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>q_2</td>
<td>\emptyset</td>
<td>${q_2, q_3}$</td>
<td>${q_3}$</td>
</tr>
<tr>
<td>q_3</td>
<td>\emptyset</td>
<td>${q_1}$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over Σ. We say N accepts w if w can be rewritten as $w = y_1y_2 \cdots y_m$ with $y_i \in \Sigma_\epsilon$ and there is a sequence of states r_0, r_1, \ldots, r_m such that

- $r_0 = q_0$;
- $r_{i+1} \in \delta(r_i, y_{i+1})$ for $i = 0, \ldots, m - 1$; and
- $r_m \in F$.

Note that finitely many empty strings can be inserted in w.

Also note that one sequence satisfying the conditions suffices to show the acceptance of an input string.

Strings accepted by N_4: a, baa, \ldots.
Equivalence of NFA’s and DFA’s

Theorem 4

Every nondeterministic finite automaton has an equivalent deterministic finite automaton. That is, for every NFA N, there is a DFA M such that $L(M) = L(N)$.

Proof.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA. For $R \subseteq Q$, define $E(R) = \{ q : q$ can be reached from R along 0 or more ϵ transitions $\}$. Construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ where

- $Q' = \mathcal{P}(Q)$;
- $\delta'(R, a) = \{ q \in Q : q \in E(\delta(r, a))$ for some $r \in R\}$;
- $q'_0 = E(\{q_0\})$;
- $F' = \{ R \in Q' : R \cap F \neq \emptyset \}$.

Why is $L(M) = L(N)$?
A DFA Equivalent to N_4

Figure: A DFA Equivalent to N_4
Theorem 5

The class of regular languages is closed under the union operation.

Proof.

Let \(N_i = (Q_i, \Sigma, \delta_i, q_i, F_i) \) recognize \(A_i \) for \(i = 1, 2 \). Construct \(N = (Q, \Sigma, \delta, q_0, F) \) where

- \(Q = \{q_0\} \cup Q_1 \cup Q_2 \);
- \(F = F_1 \cup F_2 \); and

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{q_1, q_2\} & q = q_0 \text{ and } a = \epsilon \\
\emptyset & q = q_0 \text{ and } a \neq \epsilon
\end{cases}
\]

Why is \(L(N) = L(N_1) \cup L(N_2) \)?
Closure Properties – Revisited

Theorem 6
The class of regular languages is closed under the concatenation operation.

Proof.
Let $N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i for $i = 1, 2$. Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ where

- $Q = Q_1 \cup Q_2$; and

\[\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\
\delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \epsilon \\
\delta_2(q, a) & q \in Q_2
\end{cases}\]

Why is $L(N) = L(N_1) \circ L(N_2)$?
Theorem 7

The class of regular languages is closed under the star operation.

Proof.
Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{q_0\} \cup Q_1$;
- $F = \{q_0\} \cup F_1$; and
- $\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\
\delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon \\
\{q_1\} & q = q_0 \text{ and } a = \epsilon \\
\emptyset & q = q_0 \text{ and } a \neq \epsilon
\end{cases}$

Why is $L(N) = [L(N_1)]^*$?
The class of regular languages is closed under complementation.

Proof.
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A. Consider $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$. We have $w \in L(M)$ if and only if $w \not\in L(\overline{M})$. That is, $L(\overline{M}) = \overline{A}$ as required.
Regular Expressions

Definition 9

R is a regular expression if R is

- a for some $a \in \Sigma$;
- ϵ;
- \emptyset;
- $(R_1 \cup R_2)$ where R_i's are regular expressions;
- $(R_1 \circ R_2)$ where R_i's are regular expressions; or
- (R_1^*) where R_1 is a regular expression.

- We write R^+ for $R \circ R^*$. Hence $R^* = R^+ \cup \epsilon$.
- Moreover, write R^k for $R \circ R \circ \cdots \circ R$.
 - Define $R^0 = \epsilon$. We have $R^* = R^0 \cup R^1 \cup \cdots \cup R^n \cup \cdots$.
- $L(R)$ denotes the language described by the regular expression R.
- Note that $\emptyset \neq \{\epsilon\}$.
Examples of Regular Expressions

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language $L(R)$.
 - $L(0^*10^*) = \{w : w \text{ contains a single } 1\}$.
 - $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one } 1\}$.
 - $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length}\}$.
 - $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$.
 - $1^*\emptyset = \emptyset$.
 - $\emptyset^* = \{\epsilon\}$.
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.
Examples of Regular Expressions

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language $L(R)$.
- $L(0^*10^*) = \{w : w \text{ contains a single 1}\}$.
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one 1}\}$.
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}$.
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$.
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}$.
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.
Examples of Regular Expressions

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language $L(R)$.
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}$.
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one } 1\}$.
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}$.
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$.
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}$.
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.
Examples of Regular Expressions

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language $L(R)$.
 - $L(0^*10^*) = \{w : w$ contains a single $1\}$.
 - $L(\Sigma^*1\Sigma^*) = \{w : w$ has at least one $1\}$.
 - $L((\Sigma\Sigma)^*) = \{w : w$ is a string of even length $\}$.
 - $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$.
 - $1^*\emptyset = \emptyset$.
 - $\emptyset^* = \{\epsilon\}$.
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.
Examples of Regular Expressions

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language $L(R)$.
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}$.
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one } 1\}$.
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length}\}$.
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$.
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}$.
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.
Examples of Regular Expressions

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language $L(R)$.
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}$.
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one } 1\}$.
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length }\}$.
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$.
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}$.
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.
Examples of Regular Expressions

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language $L(R)$.
- $L(0^*10^*) = \{w : w \text{ contains a single 1}\}$.
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one 1}\}$.
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length}\}$.
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$.
- $1^*\emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}$.
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.
Lemma 10

If a language is described by a regular expression, it is regular.

Proof.

We prove by induction on the regular expression R.

- $R = a$ for some $a \in \Sigma$. Consider the NFA $N_a = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$ where
 $\delta(r, y) = \begin{cases} \{q_2\} & r = q_1 \text{ and } y = a \\ \emptyset & \text{otherwise} \end{cases}$

- $R = \epsilon$. Consider the NFA $N_\epsilon = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ where
 $\delta(r, y) = \emptyset$ for any r and y.

- $R = \emptyset$. Consider the NFA $N_\emptyset = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ where
 $\delta(r, y) = \emptyset$ for any r and y.

- $R = R_1 \cup R_2$, $R = R_1 \circ R_2$, or $R = R_1^*$. By inductive hypothesis and the closure properties of finite automata.
Regular Expressions and Finite Automata

| |
|---|---|
| \(a\) | ![Diagram for \(a\)](image)
| \(b\) | ![Diagram for \(b\)](image)
| \(ab\) | ![Diagram for \(ab\)](image)
| \(ab \cup a\) | ![Diagram for \(ab \cup a\)](image)
| \((ab \cup a)^*\) | ![Diagram for \((ab \cup a)^*\)](image)

Bow-Yaw Wang (Academia Sinica)
Lemma 11

If a language is regular, it is described by a regular expression.

For the proof, we introduce a generalization of finite automata.
A generalized nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, q_{\text{start}}, q_{\text{accept}})$ where
- Q is the finite set of states;
- Σ is the input alphabet;
- $\delta : (Q - \{q_{\text{accept}}\}) \times (Q - \{q_{\text{start}}\}) \rightarrow \mathcal{R}$ is the transition function, where \mathcal{R} denotes the set of regular expressions;
- q_{start} is the start state; and
- q_{accept} is the accept state.

A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1w_2\cdots w_k$ where $w_i \in \Sigma^*$ and there is a sequence of states r_0, r_1, \ldots, r_k such that
- $r_0 = q_{\text{start}}$;
- $r_k = q_{\text{accept}}$; and
- for every i, $w_i \in L(R_i)$ where $R_i = \delta(q_{i-1}, q_i)$.
Proof of Lemma.

Let M be the DFA for the regular language. Construct an equivalent GNFA G by adding $q_{\text{start}}, q_{\text{accept}}$ and necessary ϵ-transitions.

CONVERT (G):

1. Let k be the number of states of G.
2. If $k = 2$, then return the regular expression R labeling the transition from q_{start} to q_{accept}.
3. If $k > 2$, select $q_{\text{rip}} \in Q \setminus \{q_{\text{start}}, q_{\text{accept}}\}$. Construct $G' = (Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$ where
 - $Q' = Q \setminus \{q_{\text{rip}}\}$;
 - for any $q_i \in Q' \setminus \{q_{\text{accept}}\}$ and $q_j \in Q' \setminus \{q_{\text{start}}\}$, define $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup R_4$ where $R_1 = \delta(q_i, q_{\text{rip}})$, $R_2 = \delta(q_{\text{rip}}, q_{\text{rip}})$, $R_3 = \delta(q_{\text{rip}}, q_j)$, and $R_4 = \delta(q_i, q_j)$.
4. return CONVERT (G').
Lemma 13

For any GNFA G, $\text{CONVERT} \ (G)$ is equivalent to G.

Proof.

We prove by induction on the number k of states of G.

- $k = 2$. Trivial.

- Assume the lemma holds for $k - 1$ states. We first show G' is equivalent to G. Suppose G accepts an input w. Let $q_{\text{start}}, q_1, q_2, \ldots, q_{\text{accept}}$ be an accepting computation of G. We have

 $q_{\text{start}} \xrightarrow{w_1} q_1 \cdots q_{i-1} \xrightarrow{w_i} q_i \xrightarrow{w_{i+1}} q_{\text{rip}} \cdots q_{\text{rip}} \xrightarrow{w_{j-1}} q_{\text{rip}} \xrightarrow{w_j} q_j \cdots q_{\text{accept}}.$

 Hence $q_{\text{start}} \xrightarrow{w_1} q_1 \cdots q_{i-1} \xrightarrow{w_i} q_i \xrightarrow{w_{i+1} \cdots w_j} q_j \cdots q_{\text{accept}}$ is a computation of G'. Conversely, any string accepted by G' is also accepted by G since the transition between q_i and q_j in G' describes the strings taking q_i to q_j in G. Hence G' is equivalent to G. By inductive hypothesis, $\text{CONVERT} \ (G')$ is equivalent to G'.
Regular Expressions and Finite Automata

(a) DFA M

(b) GNFA G

(c) GNFA

(d) GNFA
Theorem 14

A language is regular if and only if some regular expression describes it.
Lemma 15

If \(A \) is a regular language, then there is a number \(p \) such that for any \(s \in A \) of length at least \(p \), there is a partition \(s = xyz \) with

1. for each \(i \geq 0 \), \(xy^i z \in A \);
2. \(|y| > 0 \); and
3. \(|xy| \leq p \).

Proof.

Let \(M = (Q, \Sigma, \delta, q_1, F) \) be a DFA recognizing \(A \) and \(p = |Q| \).
Consider any string \(s = s_1s_2 \cdots s_n \) of length \(n \geq p \). Let \(r_1 = q_1, \ldots, r_{n+1} \) be the sequence of states such that \(r_{i+1} = \delta(r_i, s_i) \) for \(1 \leq i \leq n \). Since \(n + 1 \geq p + 1 = |Q| + 1 \), there are \(1 \leq j < l \leq p + 1 \) such that \(r_j = r_l \) (why?). Choose \(x = s_1 \cdots s_{j-1}, y = s_j \cdots s_{l-1}, \) and \(z = s_l \cdots s_n \).

Note that \(r_1 \xrightarrow{x} r_j, r_j \xrightarrow{y} r_l, \) and \(r_l \xrightarrow{z} r_{n+1} \in F \). Thus \(M \) accepts \(xy^i z \) for \(i \geq 0 \). Since \(j \neq l, |y| > 0 \). Finally, \(|xy| \leq p \) for \(l \leq p + 1 \).
Example 16

\[B = \{0^n1^n : n \geq 0\} \text{ is not a regular language.} \]

Proof.

Suppose \(B \) is regular. Let \(p \) be the pumping length given by the pumping lemma. Choose \(s = 0^p1^p \). Then \(s \in B \) and \(|s| \geq p\), there is a partition \(s = xyz \) such that \(xy^i z \in B \) for \(i \geq 0 \).

- \(y \in 0^+ \) or \(y \in 1^+ \). \(xz \not\in B \). A contradiction.
- \(y \in 0^+1^+ \). \(xyyz \not\in B \). A contradiction.

Corollary 17

\[C = \{w : w \text{ has an equal number of 0's and 1's}\} \text{ is not a regular language.} \]

Proof.

Suppose \(C \) is regular. Then \(B = C \cap 0^*1^* \) is regular.
Example 18

\(F = \{ww : w \in \{0, 1\}^*\} \) is not a regular language.

Proof.

Suppose \(F \) is a regular language and \(p \) the pumping length. Choose \(s = 0^p10^p1 \). By the pumping lemma, there is a partition \(s = xyz \) such that \(|xy| \leq p \) and \(xy^iz \in F \) for \(i \geq 0 \). Since \(|xy| \leq p \), \(y \in 0^+ \). But then \(xz \not\in F \). A contradiction.
Example 19

\[D = \{1^{n^2} : n \geq 0\} \] is not a regular language.

Proof.

Suppose \(D \) is a regular language and \(p \) the pumping length. Choose \(s = 1^{p^2} \). By the pumping lemma, there is a partition \(s = xyz \) such that \(|y| > 0, |xy| \leq p \), and \(xy^iz \in D \) for \(i \geq 0 \).

Consider the strings \(xyz \) and \(xy^2z \). We have \(|xyz| = p^2 \) and
\[
|xy^2z| = p^2 + |y| \leq p^2 + p < p^2 + 2p + 1 = (p + 1)^2.
\]
Since \(|y| > 0 \), we have \(p^2 = |xyz| < |xy^2z| < (p + 1)^2 \). Thus \(xy^2z \not\in D \). A contradiction. \(\square \)
Example 20

\[E = \{ 0^i 1^j : i > j \} \text{ is not a regular language.} \]

Proof.

Suppose \(E \) is a regular language and \(p \) the pumping length. Choose \(s = 0^{p+1} 1^p \). By the pumping lemma, there is a partition \(s = xyz \) such that \(|y| > 0, |xy| \leq p \), and \(xy^iz \in E \) for \(i \geq 0 \). Since \(|xy| \leq p, y \in 0^+ \). But then \(xz \not\in E \) for \(|y| > 0 \). A contradiction.