Optimization

ASU Textbook Chapter 9

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Introduction

For some compiler, the intermediate code is a pseudo code of a virtual machine.

- Interpreter of the virtual machine is invoked to execute the intermediate code.
- No machine-dependent code generation is needed.
- Usually with great overhead.
- Example:
 - Pascal: *P-code for the virtual P machine.*
 - JAVA: *Byte code for the virtual JAVA machine.*

Optimization.

- Machine-dependent issues.
- Machine-independent issues.
Machine-dependent issues (1/2)

- **Input and output formats:**
 - The formats of the intermediate code and the target program.

- **Memory management:**
 - Alignment, indirect addressing, paging, segment, …
 - Those you learned from your assembly language class.

- **Instruction cost:**
 - Special machine instructions to speed up execution.
 - Example:
 - Increment by 1.
 - Multiplying or dividing by 2.
 - Bit-wise manipulation.
 - Operators applied on a continuous block of memory space.
 - Pick a fastest instruction combination for a certain target machine.
Register allocation: in-between machine dependent and independent issues.

- C language allows the user to management a pool of registers.
- Some language leaves the task to compiler.
- Idea: save mostly used intermediate result in a register. However, finding an optimal solution for using a limited set of registers is NP-hard.
- Example:

 \[
 \begin{align*}
 t := a + b & \quad \text{load} \quad \text{R0},a \\
 & \quad \text{load} \quad \text{R1},b \\
 & \quad \text{add} \quad \text{R0},b \\
 & \quad \text{add} \quad \text{R0},\text{R1} \\
 & \quad \text{store} \quad \text{R0},\text{T} \\
 & \quad \text{store} \quad \text{R0},\text{T}
 \end{align*}
 \]

- Heuristic solutions: similar to the ones used for the swapping problem.
Machine-independent issues

- Dependence graphs.
- Basic blocks and flow graphs.
- Structure-preserving transformations.
- Algebraic transformations.
- Peephole optimization.
Dependence graphs

Issues:
- In an expression, assume its dependence graph is given.
- We can evaluate this expression using any topological ordering.
- There are many legal topological orderings.
- Pick one to increase its efficiency.

Example:

```
order#1   reg#   order#2   reg#
E2        1      E6        1
E3        2      E5        2
E5        3      E4        1
E6        4      E3        2
E4        3      E1        1
E1        2      E2        2
E0        1      E0        1
```

On a machine with only 2 free registers, some of the intermediate results in order#1 must be stored in the temporary space.
- STORE/LOAD takes time.
Basic blocks and flow graphs

- **Basic block**: a sequence of code such that
 - jump statements, if any, are at the end of the sequence;
 - codes in other basic block can only jump to the beginning of this sequence, but not in the middle.
 - Example:
 - $t_1 := a \ast a$
 - $t_2 := a \ast b$
 - $t_3 := 2 \ast t_2$
 - **goto outer**

- **Flow graph**: Using a flow chart-like graph to represent a program where nodes are basic blocks and edges are flow of control.
How to find basic blocks

How to find leaders, which are the first statements of basic blocks?

- The first statement of a program is a leader.
- For each conditional and unconditional goto, its target is a leader;
 its next statement is also a leader.

Using leaders to partition the program into basic blocks.

Ideas for optimization:

- Two basic blocks are equivalent if they compute the same expressions.
- Use transformation techniques below to perform machine-independent optimization.
Finding basic blocks — examples

- **Example:** Three-address code for computing the dot product of two vectors a and b.
 - $prod := 0$
 - $i := 1$
 - $loop$: $t_1 := 4 \times i$
 - $t_2 := a[t_1]$
 - $t_3 := 4 \times i$
 - $t_4 := b[t_3]$
 - $t_5 := t_2 \times t_4$
 - $t_6 := prod + t_5$
 - $prod := t_6$
 - $t_7 := i + 1$
 - $i := t_7$
 - $if i \leq 20$ goto loop
 - \ldots

- There are three blocks in the above example.
DAG representation of a basic block

- Inside a basic block:
 - Expressions can be expressed using a DAG that is similar to the idea of a dependence graph.
 - Graph might not be connected.

- Example:

1. \(t_1 := 4 \times i \)
2. \(t_2 := a[t_1] \)
3. \(t_3 := 4 \times i \)
4. \(t_4 := b[t_3] \)
5. \(t_5 := t_2 \times t_4 \)
6. \(t_6 := prod + t_5 \)
7. \(prod := t_6 \)
8. \(t_7 := i + 1 \)
9. \(i := t_7 \)
10. if \(i \leq 20 \) goto (1)
Structure-preserving transformations (1/2)

- Techniques: using the information contained in the flow graph and DAG representation of basic blocks to do optimization.

 - Common sub-expression elimination.
 - Dead-code elimination: remove unreachable codes.
 - Renaming temporary variables: better usage of registers and avoiding using unneeded temporary variables.
Structure-preserving transformations

- Interchange of two independent adjacent statements, which might be useful in discovering the above three transformations.

 - Same expressions that are too far away to store E_1 into a register.
 \[
 \begin{align*}
 t_1 &:= E_1 \\
 t_2 &:= \text{const} \quad \text{// swap t2 and tn} \\
 &\ldots \\
 t_n &:= E_1
 \end{align*}
 \]

 - Example:
 \[
 \begin{align*}
 t_1 &:= E_1 \\
 t_2 &:= t_1 + t_n \quad \text{// cannot swap t2 and tn} \\
 &\ldots \\
 t_n &:= E_1
 \end{align*}
 \]

 - Note: The order of dependence cannot be altered after the exchange.

 \[
 \begin{align*}
 t_1 &:= E_1 \\
 t_2 &:= t_1 + t_n \quad \text{// cannot swap t2 and tn} \\
 &\ldots \\
 t_n &:= E_1
 \end{align*}
 \]
Algebraic transformations

- **Algebraic identities:**
 - \(x + 0 = 0 + x = x \)
 - \(x - 0 = x \)
 - \(x \times 1 = 1 \times x = x \)
 - \(x/1 = x \)

- **Reduction in strength:**
 - \(x^2 = x \times x \)
 - \(2.0 \times x = x + x \)
 - \(x/2 = x \times 0.5 \)

- **Constant folding:**
 - \(2 \times 3.14 = 6.28 \)

- **Standard representation for subexpression by commutativity and associativity:**
 - \(n \times m = m \times n. \)
 - \(b < a = a > b. \)
Peephole optimization (1/2)

- **Idea:**
 - Statement by statement translation might generate redundant codes.
 - Locally improve the target code performance by examine a short sequence of target instructions (called a peephole) and do optimization on this sequence.
 - Complexity depends on the “window size”.

- **Techniques: remove redundant codes.**
 - Redundant loads and stores.
 - \(\text{MOV} \ R_0, a \)
 - \(\text{MOV} \ a, R_0 \)
 - Unreachable codes.
 - An unlabeled instruction immediately following an unconditional jump may be removed.
 - If statements based on constants: If debug then · · ·.
More techniques:

- Flow of control optimization:

 \[
 \text{goto } L1 \quad \text{goto } L2
 \]

 \[
 \ldots\ldots\ldots\ldots\ldots\ldots
 \]

 \[
 L1: \text{goto } L2 \quad L1: \text{goto } L2
 \]

- Algebraic simplification.
- Use of special machine idioms.
- Better usage of registers.
- Loop unwrapping.
Correctness after optimization

- When side effects are expected, different evaluation orders may produce different results for expressions.

- Assume E_5 is a procedure call with the side effect of changing some values in E_6.
- LL and LR parsing produce different results.
- Watch out precisions when doing algebraic simplification.
 - if $(x = 321.00000123456789 - 321.00000123456788) > 0$ then · · ·
- Need to make sure code before and after optimization produce the same result.
- Complications arise when debugger is involved.