Parallel Game Tree Search

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Abstract

- Use multiprocessor shared-memory or distributed memory machines to search the game tree in parallel.
- Questions:
 - Is it possible to search multiple branches of the game tree at the same time while also getting benefits from the searching window introduced in alpha-beta search?
 - What can be done to parallelize Monte-Carlo based game tree search?
- Tradeoff between overheads and benefits.
 - Communication
 - Computation
 - Synchronization
- Can achieve reasonable speed-up using a moderate number of processors on a shared-memory multiprocessor machine.
Comments on parallelization

- Parallelization can add more computation power, but synchronization introduces overhead and may be difficult to implement.

- Synchronization methods
 - Message passing, such as MPI
 - Shared memory cells
 - Avoid a record becoming inconsistent because one is reading the first item, but the last item is being written.
 - Memory locked before using.
 - It may be efficient to broadcast a message.

- Locking the whole transposition table is definitely too costly.
 - The ability to lock each record.
 - Lockless transposition table technique.

- A global transposition table v.s. distributed transposition tables.
Speed-up (1/2)

- **Speed-up**: the amount of performance improvement gotten in comparison to the amount of hardware you used.
 - Assume the amount of resources, e.g., time, consumed is T_n when you use n when you use n processors.
 - Speed-up $= \frac{T_1}{T_n}$ using n processors.

- Speed-up is a function of n and can be expressed as $sp(n)$.
 - **Scalability**: whether you can obtain “reasonable” performance gain when n gets larger.

- Choose the “resources” where comparisons are made.
 - The elapsed time.
 - The total number of nodes visited.
 - The scores.
 - …

- Choose the game trees where experiments are performed.
 - Artificial constructed trees with a pre-specified average branching factor and depth.
 - Real game trees.
Three different setups for experiments.

- Use the sequential algorithm P_{seq} for the baseline of comparison.
- Use the best sequential algorithm P_{best} for the baseline of comparison.
- Use a 1-processor version of your parallel program $P_{1,par}$ as the baseline of comparison.
 - It is usually the case that $P_{1,par}$ is much slower than P_{best}.
 - It is often the case that $P_{1,par}$ is slower than P_{seq}.
- Use an optimized sequential version of your parallel program $P_{1,opt}$ as the baseline of comparison.
 - It is also usually the case that $P_{1,opt}$ is slower than P_{best}.

Choose the game trees where experiments are performed.

- Artificial constructed trees with a pre-specified average branching factor and depth.
- Real game trees.
Amdahl’s law

- The best you can do about parallelization [G. Amdahl 1967].
- Assume a program needs to execute T instructions and and x of them can be parallelized.
 - Assume you have n processors and an instruction takes a unit of time.
 - Parallel processing time is

 $$\geq T - x + \frac{x}{n} + O_n \geq T - x.$$

 where O_n is the overhead cost in doing parallelization with n processors.
 - Speed-up is

 $$\leq \frac{T}{T - x}.$$

- If 20% of the code cannot be parallelized, then your parallel program can be at most 5 times faster no matter how many processors you have.
- Depending on O_n, it may not be wise to use too many processors.
Load balancing and speed-up factor

- **Load balancing**
 - The ratio between the amount of the largest work on a PE and the amount of the lightest work on another PE.
 - Good load balancing is a key to have a good speed-up factor.

- **Speed-up factor**: ratio between the parallel version with a given number of processors and the baseline version.

- **Is it possible to achieve super linear speed-up?**
 - Super linear speed-up means you can make the code to run N times faster using less than N times about of hardware.
 - Yes, on badly ordered game trees.
 - Not in real game trees with a reasonable good algorithm.
Super-linear speed-up (1/3)

- **Sequential alpha-beta search with a pre-assigned window** $[0, 5]$:
 - Visited 13 nodes.
Super-linear speed-up (2/3)

- Parallel alpha-beta search with a pre-assigned window $[0, 5]$ on two processors:
 - P2: visited 5 nodes, and then the root performs a beta cut.
 - P1: being terminated by the root after 5 nodes are visited.

```
max
min
max
min
P1
1 1 2
P2
10 10 13
```

```
[0,5]
10
min
max
min
max
min
1 2 10
13 1
-3
-10
```

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu ©
Super-linear speed-up (3/3)

- Total sequential time: visited 13 nodes.
- Total parallel time for 2 processors: visited 6 nodes.
- We have achieved a super-linear speed-up.
Parallelization can achieve super-linear speed-up only if the solution is not found by enumerating all possibilities.

- For example: finding an entry of 1 in an array in parallel.

If the solution is found by exhaustively examining all possibilities, then there is no chance of getting a super-linear speed-up.

- For example: the problem of counting the total number of 1’s in an array.

Overhead in parallelization comes from how much work should each processor “talks” to each other in order to decide the solution.

- Trivially parallelizable: almost no need to talk to each other.
Why is it possible to obtain a super-linear speed-up in searching a game tree using alpha-beta based algorithm?
- Assume some cut-off happens during the execution.
- Parallel algorithms offer a chance of getting a different “move ordering”.
- It is possible to find a solution faster.

It is also possible to get poor speed-up if the “move ordering” of the parallel version is bad.
- You may perform unnecessary work, e.g., searching a branch that will be cut in the future.

For Monte-Carlo based search algorithm, super-linear speed-up maybe obtain by trying out different PV branches at the same time.
- Increase the chance of finding the right branch.
Parallel $\alpha-\beta$ search

- Three major approaches: depend on what tasks can be parallelized and the model of parallelism.
 - Principle variation splitting (PV split)
 - Central control or global synchronization model of parallelism.
 - Young Brothers Wait Concept (YBWC)
 - Client-server model of parallelism.
 - Dynamic Tree Splitting (DTS)
 - Peer-to-peer model of parallelism.
Classification of nodes (1/2)

- Classify nodes in a game tree according to [Knuth & Moore 1975].
Classify nodes (2/2)

- **Type 1 (PV): principle variation.**
 - Nodes in the leftmost branch.
 - PV nodes need to be searched first to establish a good search bound.
 - After the first child is searched, the rest of its children can be searched in parallel.

- **Type 2 (CUT): cut nodes.**
 - Children of type-1 and type-3 nodes.
 - Because children of a cut node may be cut, it is not wise to perform searches in parallel for children of a cut node.

- **Type 3 (ALL): all nodes.**
 - The first branch of a cut node.
 - All children of an all node need to be explored.
 - It is better to search these children in parallel.
Algorithm PVS:
- Execute the first branch to get a PV branch $n_1, n_2, n_3, \ldots, n_d$ where n_d is a leaf node.
- for $i = d - 1$ down to 1 do
 - Update the bound information using information backed-up from n_{i+1}
 - for each non-PV branch of n_i do in parallel
 - A processor gets a branch and searches
 - Update the bounds when a branch is done
Comments for PV splitting

- **Comments:**
 - Parallelism is done on type-2 branches of a type-1 node.
 - May not be able to use a large number of processors efficiently.
 - **Load balancing** is not good.
 - The ratio between the amount of the largest work on a PE and the amount of the lightest work on another PE.
 - Synchronization overhead is large.
 - When the first branch is usually not the best branch, then the overhead is huge.
 - Achieve a speed-up of 4.1 for 8 processors and 4.6 for 16 processors.
 - Poor scalability.
 - Limited speed-up: within 5.

- **Improvements:**
 - When a processor is idle, it helps out a busy processor by sharing its tasks.
 - Observe some improvements, but not much.
Young brothers wait concept (1/2)

- **Concept:** at each node, when the first branch is explored and a bound is obtained, then all the other branches can be executed in parallel.
 - **Split point:** a node whose value of the first branch is known.
 - **Highest split point** of a tree: a split point whose depth is the least.
 - A processor is assigned and **owns** a subtree rooted at a node.
 - *This processor is the server of this subtree.*
 - An idle processor asks a server for a subtree to search.
 - *This processor is a client of this server.*
Algorithm \textit{YBWC}:

- Let P_1 own the root of the game tree and begin to search using alpha-beta pruning until the tree is completely searched.
 - \textit{During searching, maintain the split point information.}
- While the game tree is not searched completely, do
 - In parallel for each processor P_i do
 - If P_i is idle, it looks for server processors with split points.
 - P_i gets a branch from a highest split point and owns this subtree.
 - P_i begins to search using alpha-beta pruning and maintain the split point information.
 - When a subtree owned by P_i has been searched, returns the information to the server processor where it gets the job from.
 - P_i is idle again.
Comments for YBWC

Comments:

- Can utilize many processors.
- Parallelism is done on almost all nodes.
- It is possible to use non-shared-memory architectures.
 - For example: distributed memory machines.
 - Speed-up: 137 using 256 processors.
 - Scalability is moderate.
 - Load balancing is not always good.

- The cost of splitting a node needs to be calculated to avoid splitting small trees.
Dynamic tree splitting (DTS)

- **Concepts:**
 - Peer-to-peer approach so that no one owns any subtree.
 - The processor who finished last on a split point reports the value to the parent of the split point.
 - More criteria for the selections of split points.
DTS: Classification of nodes

- **D-PV**: a node that has the same alpha and beta values as the root.
- **D-CUT**: a minimizing node with the same beta as the root or a maximizing node with the same alpha as the root.
 - On a **MAX** node,
 - if some branches are searched, then the returned values from the branches may update the lower bound.
 - If the lower bound is highered (updated), then it is possible to visit less nodes.
 - Hence it may not be cost effective to parallelize.
 - Note: It takes time to initialize a new job.
 - On a **MIN** node,
 - if some branches are searched, then the returned values from the branches may update the upper bound.
 - If the upper bound is lowered (updated), then it is possible to visit less nodes.
 - Hence it may not be cost effective to parallelize.
 - Note: It takes time to initialize a new job.
- **D-ALL**: any node that is neither D-PV nor D-CUT.
 - Nothing much is known here.
Split point: confidence

- A confidence factor is associated with each D-CUT and D-ALL node.
 - Means the chance of being a node of the specified type.
- If many moves (up to a limit of 3) have been searched at a D-CUT node, then the confidence that it is a D-CUT node decreases.
- If several moves have been searched at a D-ALL node, then the confidence that it is a D-ALL node increases.
DTS: Split point

Criteria for a split point:
- The node must be of type D-PV, D-ALL with a high confidence or or D-CUT with a low confidence.
- If it is a D-PV node, its first branch must have been searched.
- Set thresholds for confidence factors.
 - A D-ALL node with a high confidence factor remains to be a candidate for a split point.
 - Can also fork a D-ALL node with the highest confidence factor first.
 - A D-CUT node with a low confidence factor may be a split point.

Note:
- Nodes that are higher up in the tree (closer to the root) represent more work.
- You want to fork a branch that are higher up and with a larger confidence factor for D-ALL, or with a smaller confidence factor for D-CUT.
- Use the above information to compute a global priority.
DTS: Algorithm

- **Algorithm** *DTS*:
 - Initialize a global job list with the root as the only available job.
 - while the job list is not empty do
 - *Idle processors look for jobs with the highest priority in the global job list.*
 - *A working processor maintains its own split point information at the global job list.*
 - *A working processor updates bounds when a job is finished and then becomes idle.*

- **Comments:**
 - Used by several state-of-the-art chess programs.
 - Spend a bit more time to decide whether a node is a split point or not.
 - *Takes some time to tune for the best parameters.*
 - Speed-up factor is very good: 3.7 for 4 processors, 6.6 for 8 processors and 11.1 for 16 processors.
 - Load balancing is good.
 - Scalability is reasonable.
DTS is currently being used by most Chess-like programs.

It also takes time to find the system parameters for DTS to work well.
- The threshold for confidence factors.
- Dynamically adjusting of the confidence factors.
Memory issues (1/2)

- During searching, each process needs to maintain the following information.
 - Local data: such as the current depth, current best move.
 - Data that can be used later: such as the hash information.

- Distributed memory model.
 - Maintain each own data in a private memory area.
 - Exchange information when needed.
 - Using message passing to probe a hash entry.
 - Using message passing to return the value of a probe.

- Shared memory model.
 - Maintain each local data in a private memory area.
 - Maintain the re-used information in a global area.
 - Current read is often allowed in the model.
 - Lock the cell when it needs to write.
Memory issues (2/2)

- Advantage and disadvantage
 - Distributed memory model.
 - *Coding is easy.*
 - *Slow response time.*
 - Shared memory model.
 - *Overhead in locking.*
 - *Fast response time when there is no extensive memory contention.*

- Often used techniques: Lockless transposition tables.
 - Allow concurrent read.
 - Do not assume writing of an entry is atomic.
Lockless transposition table

- **Scenario**
 - Assume each entry of the transposition table H contains two parts where reading/writing each part is atomic.
 - $\text{Position_signature: 64 bits } \rightarrow H_1$.
 - $\text{Data: 64 bits } \rightarrow H_2$.
 - Assume the hash key hash_key is the rightmost h, say $h = 32$, bits of $\text{Position_signature}$.

- To read or write an hash entry given a position P, you do the followings.
 - Compute $\text{Position_signature}(P)$ and $\text{Data}(P)$.
 - Let $\text{hash_key}(P)$ be the rightmost h bits of $\text{Position_signature}(P)$.
 - Read or write $H_1(\text{hash_key}(P))$.
 - Read or write $H_2(\text{hash_key}(P))$.

- **Problem:** The hash entry is corrupted if P is being visited at the same time by two processes C_1 and C_2 so that
 - C_1 writes $H_1(\text{hash_key}(P))$.
 - C_2 writes $H_2(\text{hash_key}(P))$.
Algorithm for writing an entry

- Compute \(\text{Position_signature}(P) \) and \(\text{Data}(P) \).
- Let \(\text{hash_key}(P) \) be the rightmost \(h \) bits of \(\text{Position_signature}(P) \).
- write: \(H_1(\text{hash_key}(P)) \leftarrow \text{Position_signature}(P) \oplus \text{Data}(P) \).
- write: \(H_2(\text{hash_key}(P)) \leftarrow \text{Data}(P) \).

Algorithm for reading an entry

- Compute \(\text{Position_signature}(P) \).
- Let \(\text{hash_key}(P) \) be the rightmost \(h \) bits of \(\text{Position_signature}(P) \).
- read: \(W_1 \leftarrow H_1(\text{hash_key}(P)) \)
- read: \(W_2 \leftarrow H_2(\text{hash_key}(P)) \)
- reconstruct: \(W_1 \leftarrow W_1 \oplus W_2 \)
- verify: check whether \(W_1 = \text{Position_signature}(P) \)
 - if they equal, then use this entry
 - if they do not equal, then the entry is corrupted.
Why this works

- \(H_1(\text{hash_key}(P)) = \text{Position_signature}(P) \oplus \text{Data}(P) \).
- \(H_2(\text{hash_key}(P)) = \text{Data}(P) \).
- \(H_1(\text{hash_key}(P)) \oplus H_2(\text{hash_key}(P)) = \text{Position_signature}(P) \).
- If \(H_1(i) \) and \(H_2(i) \) are written by two different processes with \(\text{Data}(P_1) \) and \(\text{Data}(P_2) \), then it will probably not produce the right position signature.

Comments:
- May have errors because of hash collisions.
- It is not too difficult to extend this method to an hash table with more than 2 entries.
Parallel Monte-Carlo tree search

- Leaf parallelization.
- Root parallelization.
- Tree parallelization with global synchronization.
- Tree parallelization with local synchronization.
MCTS with UCT

- **Algorithm MCTS:**
 1. Obtain an initial game tree
 2. Repeat the following sequence N_{total} times
 - 2.1: Selection
 - From the root, pick a PV path to a leaf such that each node has best UCB “score” among its siblings
 - May decide to “trust” the score of a node if it is visited more than a threshold number of times.
 - May decide to “prune” a node if its score is too bad now to save time.
 - 2.2: Expansion
 - From a best leaf, expand it by one level.
 - Use some node expansion policy to expand.
 - 2.3: Simulation
 - For the expanded leaves, perform some trials (playouts).
 - May decide to add knowledge into the trials.
 - 2.4: Back propagation
 - Update the “scores” for nodes using a good back propagation policy.
 - Pick a child of the root with the best score as your move.
MCTS: example

Selection	Expansion	Simulation	Propagation

0 | 0 | 0 | 0

\[\frac{6}{30} + x_1 \]

\[\frac{1}{10} + x_2 \]

\[\frac{3}{10} + x_3 \]

\[\frac{2}{10} + x_4 \]

\[\frac{9}{50} + x_5 \]

\[\frac{1}{10} + x_6 \]

\[\frac{6}{30} + x_7 \]

\[\frac{2}{10} + x_8 \]

\[\frac{2}{10} + x_9 \]

\[\frac{1}{10} + x_0 \]

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu ©
Leaf parallelization

- Algorithm $\text{PMCTS}_{\text{leaf}}$:
 - Select the best leaf.
 - Perform Expansion in sequential.
 - Perform Simulation, i.e., multiple trials, in parallel on the same leaf.
 - Perform Back propagation in sequential.

- Comments:
 - Coding is very easy.
 - Good parallelization for performing a large number of trials.
 - Can utilize a large number of PE’s.
 - The best leaf may no longer be the best after only a few more trials.
Root parallelization

- **Algorithm PMCTS\textsubscript{root}**:
 - Duplicate k copies of the current game tree.
 - Perform Monte-Carlo tree simulation on each copy in parallel for a few trials.
 - Combine the copies into one copy by merging statistics on nodes and put the information into the current game tree.

- **Comments**:
 - Coding is easy.
 - Can utilize as many PE’s as available.
 - May need to make sure that each tree does not pick the same best leaf.
 - Need to have a mechanism to properly choose the best leaves among all trees.
 - Avoid duplicated efforts.
Tree parallelization — global synchronization

- **Algorithm PMCTS\(_Tg\):**
 - Use only one game tree.
 - Perform Selection, Expansion and Simulation in parallel.
 - Different threads may work on different nodes in parallel.
 - Need a mechanism to ensure threads are not working on the same leaf.
 - Use a global lock to make sure the game tree is writable by one thread during the Back propagation phase.

- **Comments:**
 - Speed-up is bad.
Algorithm PMCTS^T_{ℓ}:
- Make every node of the game tree as a global variable.
- Perform Selection, Expansion, Simulation and Back propagation in parallel.
 - Different threads may work on different nodes in parallel.
 - Need a mechanism to ensure threads are not working on the same leaf.
- Use a lock to make sure each node is writable by one thread during Back propagation.

Comments:
- Heavy O.S. overhead.
- Unsure about the scalability.
Problems of parallel Monte-Carlo search

- Each iteration of a Monte-Carlo simulation is a Markov chain process.
 - You need to know the result of the previous trial to decide the current selection.
 - Making trials in parallel has a larger statistical error.
 - May explore the wrong branch if synchronization is done only after a lot of trials.
 - May not have too much parallelism if synchronization is done after only a few trials.

- The cost of synchronization.
 - Shared global variable.
 - Cost of lock and unlock.
 - Memory bandwidth.
 - Network bandwidth.

- The cost of programming.
Parallel Monte-Carlo search: Analysis

- **Amdahl’s law**: assume a program needs to execute T instructions and and x of them can be parallelized. can be parallelized.
 - Assume you have n processors and an instruction take a unit of time.
 - Parallel processing time $\geq T - x + x/n + p_n \geq T - x$ where p_n is the cost for overhead in doing parallelization with n processors.
 - Speed-up $\leq T/(T - x)$.

 \triangleright If 20% of the code cannot be parallelized, then your parallel program can be at most 5 times faster no matter how many processors you have.

- Leaf and root parallelization both have a large portion that is not parallelizable.
- Global or local synchronization has a large overhead.

Comments
- Need a better parallel implementation.
- Need a better way to deal with the increasing error in doing more samplings.
Concluding remarks

- Need to think about tradeoff between costs in doing parallelism and benefits of saving in searching efforts because of parallelism.
- May need to think how to maintain distributed transposition tables.
- May need to think about the machine architecture.
 - Shared-memory vs. distributed memory.
 - Fine grain or coarse grain.
 - Whether the parallel version is stable or not?
 - Ease of debugging.
 - Ease of coding.
References and further readings (1/2)

References and further readings (2/2)