Theory of Computer Games: Concluding Remarks

Tsan-sheng Hsu

http://www.iis.sinica.edu.tw/~tshsu
Abstract

- Introducing practical issues.
 - The open book.
 - The graph history interaction (GHI) problem.
 - Smart usage of resources.
 - time during searching
 - memory
 - coding efforts
 - debugging efforts
 - Opponent models

- How to combine what we have learned in class together to get a working game program.
During the open game, it is frequently the case
- branching factor is huge;
- it is difficult to write a good evaluating function;
- the number of possible distinct positions up to a limited length is small as compared to the number of possible positions encountered during middle game search.

Acquire game logs from
- books;
- games between masters;
- games between computers;

Use off-line computation to find out the value of a position for a given depth that cannot be computed online during a game due to resource constraints.

...
Assume you have collected r games.
- For each position in the r games, compute the following 3 values:
 - win: the number of games reaching this position and then wins.
 - loss: the number of games reaching this position and then loss.
 - draw: the number of games reaching this position and then draw.

When r is large and the games are trustful, then use the 3 values to compute a value and use this value as the value of this position.

Comments:
- Pure statistically
- You program may not be able to take over when the open book is over.
- It is difficult to acquire large amount of “trustful” game logs.
- Automatically analysis of game logs written by human experts. [Chen et. al. 2006]
- Using high-level meta-knowledge to guide the way in searching:
 - Dark chess: adjacent attack of the opponent’s Cannon. [Chen and Hsu 2013]
The graph history interaction (GHI) problem [Campbell 1985]:
- In a game graph, a position can be visited by more than one paths.
- The value of the position depends on the path visiting it.
- In the transposition table, you record the value of a position, but not the path leading to it.
 - Values computed from rules on repetition cannot be used later on.
 - It takes a huge amount of storage to store the path visiting it.
GHI problem – example

• $A \rightarrow B \rightarrow E \rightarrow I \rightarrow J \rightarrow H \rightarrow E$ is loss because of rules of repetition.
 ▶ Memorized H is loss.

• $A \rightarrow B \rightarrow D$ is a loss.

• $A \rightarrow C \rightarrow F \rightarrow H$ is loss because H is recorded as loss.

• A is loss because both branches lead to loss.

• However, $A \rightarrow C \rightarrow F \rightarrow H \rightarrow E \rightarrow G$ is win.
Using resources

- **Time** [Hyatt 1984] [Šolak and Vučković 2009]
 - For human:
 - More time is spent in the beginning when the game just starts.
 - Stop searching a path further when you think the position is stable.
 - Pondering:
 - Use the time when your opponent is thinking.
 - Guessing and then pondering.

- **Memory**
 - Using a large transposition table occupies a large space and thus slows down the program.
 - A large number of positions are not visited too often.
 - Using no transposition table makes you to search a position more than once.

- **Other resources.**
Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.

- What will happen when there are two strategies or evaluating functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$
 - “better” means closer to the real value $f(p)$
 - for some positions q, $f_2(q)$ is better than $f_1(q)$

- If you are using f_1 and you know your opponent is using f_2, what can be done to take advantage of this information?
 - This is called OM (opponent model) search [Carmel and Markovitch 1996].
 - In a MAX node, use f_1.
 - In a MIN node, use f_2.
Opponent models – comments

Comments:
- Need to know your opponent model precisely.
- How to learn the opponent on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.
Putting everything together

- **Game playing system**
 - Use some sorts of open book.
 - Middle-game searching: usage of a search engine.
 - Main search algorithm
 - Enhancements
 - Evaluating function: knowledge
 - Use some sorts of endgame databases.
Assume during a selfplay experiment, two copies of the same program are playing against each other.

- Since two copies of the same program are playing against each other, the outcome of each game is an independent random trial and can be modeled as a trinomial random variable.
- Assume for a copy playing first,

\[
Pr(game_{first}) = \begin{cases}
 p & \text{if won the game} \\
 q & \text{if draw the game} \\
 1 - p - q & \text{if lose the game}
\end{cases}
\]

- Hence for a copy playing second,

\[
Pr(game_{last}) = \begin{cases}
 1 - p - q & \text{if won the game} \\
 q & \text{if draw the game} \\
 p & \text{if lose the game}
\end{cases}
\]
Outcome of selfplay games

- Assume 2n games, \(g_1, g_2, \ldots, g_{2n} \) are played.
 - In order to offset the initiative, namely first player’s advantage, each copy plays first for \(n \) games.
 - We also assume each copy alternatives in playing first.
 - Let \(g_{2i-1} \) and \(g_{2i} \) be the \(i \)th pair of games.

- Let the outcome of the \(i \)th pair of games be a random variable \(X_i \) from the prospective of the copy who plays \(g_{2i-1} \).
 - Assume we assign a score of \(x \) for a game won, a score of 0 for a game drawn and a score of \(-x\) for a game lost.

- The outcome of \(X_i \) and its occurrence probability is thus

\[
Pr(X_i) = \begin{cases}
 p(1 - p - q) & \text{if } X_i = 2x \\
 pq + (1 - p - q)q & \text{if } X_i = x \\
 p^2 + (1 - p - q)^2 + q^2 & \text{if } X_i = 0 \\
 pq + (1 - p - q)q & \text{if } X_i = -x \\
 (1 - p - q)p & \text{if } X_i = -2x
\end{cases}
\]
How good we are against the baseline?

Properties of X_i.

- The mean $\mathbb{E}(X_i) = 0$.
- The standard deviation of X_i is

$$\sqrt{\mathbb{E}(X_i^2)} = \sqrt{2pq + (2q + 8p)(1 - p - q)},$$

and it is a multi-nominally distributed random variable.

When you have played n pairs of games, what is the probability of getting a score of s, $s > 0$?

- Let $X[n] = \sum_{i=1}^{n} X_i$.
 - **The mean of $X[n]$, $\mathbb{E}(X[n])$, is 0.**
 - **The standard deviation of $X[n]$, σ_n, is**

$$x\sqrt{n}\sqrt{2pq + (2q + 8p)(1 - p - q)},$$

- If $s > 0$, we can calculate the probability of $Pr(|X[n]| \leq s)$ using well known techniques from calculating multi-nominal distributions.
Practical setup

- Parameters that are usually used.
 - $x = 1$.
 - For Chinese chess, q is about 0.3161, $p = 0.3918$ and $1 - p - q$ is 0.2920.

 - This means the first player has a better chance of winning.

- The mean of $X[n]$, $E(X[n])$, is 0.
- The standard deviation of $X[n]$, σ_n, is

\[
x \sqrt{n} \sqrt{2pq + (2q + 8p)(1 - p - q)} = \sqrt{1.16n}.
\]
Results (1/3)

| $Pr(|X[n]| \leq s)$ | $s = 0$ | $s = 1$ | $s = 2$ | $s = 3$ | $s = 4$ | $s = 5$ | $s = 6$ |
|---------------------|--------|--------|--------|--------|--------|--------|--------|
| $n = 10, \sigma_{10} = 3.67$ | 0.108 | 0.315 | 0.502 | 0.658 | 0.779 | 0.866 | 0.924 |
| $n = 20, \sigma_{20} = 5.19$ | 0.076 | 0.227 | 0.369 | 0.499 | 0.613 | 0.710 | 0.789 |
| $n = 30, \sigma_{30} = 6.36$ | 0.063 | 0.186 | 0.305 | 0.417 | 0.520 | 0.612 | 0.693 |
| $n = 40, \sigma_{40} = 7.34$ | 0.054 | 0.162 | 0.266 | 0.366 | 0.460 | 0.546 | 0.624 |
| $n = 50, \sigma_{50} = 8.21$ | 0.049 | 0.145 | 0.239 | 0.330 | 0.416 | 0.497 | 0.571 |
Results (2/3)

| \(P_r(|X[n]| \leq s) \) | \(s = 7 \) | \(s = 8 \) | \(s = 9 \) | \(s = 10 \) | \(s = 11 \) | \(s = 12 \) | \(s = 13 \) |
|--------------------------|------------|------------|------------|------------|------------|------------|------------|
| \(n = 10, \sigma_{10} = 3.67 \) | 0.960 | 0.981 | 0.991 | 0.997 | 0.999 | 1.000 | 1.000 |
| \(n = 20, \sigma_{20} = 5.19 \) | 0.851 | 0.899 | 0.933 | \textbf{0.958} | 0.974 | 0.985 | 0.991 |
| \(n = 30, \sigma_{30} = 6.36 \) | 0.761 | 0.819 | 0.865 | 0.902 | 0.930 | \textbf{0.951} | 0.967 |
| \(n = 40, \sigma_{40} = 7.34 \) | 0.693 | 0.753 | 0.804 | 0.847 | 0.883 | 0.912 | 0.934 |
| \(n = 50, \sigma_{50} = 8.21 \) | 0.639 | 0.699 | 0.753 | 0.799 | 0.839 | 0.872 | 0.900 |
Results (3/3)

| $P_r(|X[n]| \leq s)$ | $s = 14$ | $s = 15$ | $s = 16$ | $s = 17$ | $s = 18$ | $s = 19$ | $s = 20$ |
|----------------------|----------|----------|----------|----------|----------|----------|----------|
| $n = 10, \sigma_{10} = 3.67$ | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| $n = 20, \sigma_{20} = 5.19$ | 0.995 | 0.997 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000 |
| $n = 30, \sigma_{30} = 6.36$ | 0.978 | 0.986 | 0.991 | 0.994 | 0.997 | 0.998 | 0.999 |
| $n = 40, \sigma_{40} = 7.34$ | **0.952** | 0.966 | 0.976 | 0.983 | 0.989 | 0.992 | 0.995 |
| $n = 50, \sigma_{50} = 8.21$ | 0.923 | 0.941 | **0.956** | 0.967 | 0.976 | 0.983 | 0.988 |

TCG: Putting everything together, 20131224, Tsan-sheng Hsu ©
Statistical behaviors

- Hence assume you have two programs that are playing against each other and have obtained a score of $s + 1$, $s > 0$, after trying n pairs of games.
 - Assume $Pr(|X[n]| \leq s)$ is say 0.95.
 - Then this result is meaningful, that is a program is better than the other, because it only happens with a low probability of 0.05.
 - Assume $Pr(|X[n]| \leq s)$ is say 0.05.
 - Then this result is not very meaningful, because it happens with a high probability of 0.95.

- In general, it is a very rare case, e.g., less than 5% of chance that it will happen, that your score is more than $2\sigma_n$.
 - For our setting, if you perform n pairs of games, and your net score is more than $2 \times \sqrt{1.16} \times \sqrt{n} \simeq 2.154 \sqrt{n}$, then it means something statistically.

- You can also decide your “definition” of “a rare case”.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu ©
Concluding remarks

Consider your purpose of studying a game:

- It is good to solve a game completely.
 - You can only solve a game once!

- It is better to acquire the knowledge about why the game wins, draws or loses.
 - You can learn lots of knowledge.

- It is even better to discover knowledge in the game and then use it to make the world a better place.
 - Fun!
References and further readings (1/2)
