Theory of Computer Games: An A.I. Oriented Introduction

Tsan-sheng Hsu

http://www.iis.sinica.edu.tw/~tshsu
A.I. and game playing

 • Artificial Intelligence (A.I.) is the study of ideas that enable computers to be intelligent.
 • One central goal of A.I. is to make computers more useful (to human beings).
 • Another central goal is to understand the principles that make intelligence possible.
 ▶ Making computers intelligent helps us understand intelligence.
 ▶ Intelligent computers are more useful computers.

• Elaine Rich 1983.
 • Intelligence requires knowledge.
 • Games hold an inexplicable fascination for many people, and the notion that computers might play games has existed at least as long as computers.
 • Reasons why games appeared to be a good domain in which to explore machine intelligence.
 ▶ They provide a structured task in which it is very easy to measure success or failure.
 ▶ They did not obviously require large amount of knowledge.
Intelligence – Turing Test

- **How to define intelligence**
 - Cannot define “intelligence.”
 - Imitation of human behaviors.

- **The Turing test**
 - If a machine is intelligent, then it cannot be distinguished from a human.
 - Use this feature to filter out computer agents for online systems or online games.
 - CAPTCHA: Completely Automated Public Turing test to tell Computers and Humans Apart
 - It is a good test if designed “intelligently” to distinguish between human and non-human.
 - Loebner Prize Contest Yearly.

- **Problems:**
 - Are all human behaviors intelligent?
 - Can human perform every possible intelligent behavior?
 - Human intelligence \(= \) Intelligence.
Shifting goals

- **From Artificial Intelligence to Machine Intelligence.**
 - Lots of things can be done by either human and machines.
 - Something maybe better be done by machines.
 - Some other things maybe better be done by human.
 - Try to get the best out of every possible worlds!

- **From imitation of human behaviors to doing intelligent behaviors.**

- **From general-purpose intelligence to domain-dependent Expert Systems.**

- **From solving games, to understand intelligence, and then to have fun.**
 - *Recreational*
 - *Educational*
Early ages: The Maelzel’s Chess Automaton

- **Late 18th century.**
 - The *Turk*.
 - Invented by a Hungarian named Von Kempelen (\(\sim 1770\)).
 - Chess-playing “machine.”
 - Operated by a concealed human chess-master.
 - “Arguments” made by the famous writer Edgar Allen Poe in “Maelzel’s Chess Player”.
 - It is as easy to design a machine which will invariably win as one which wins occasionally.
 - Since the Automaton was not invincible it was therefore operated by a human.
 - Burned in a fire at an USA museum (year 1854).
 - “Recently” (year 2003) reconstructed in California, USA.
Early ages: Endgame chess-playing machine

- 1912
 - Made by Torres y Quevedo.
 - *El Ajedrecista (The Chess Player)*
 - *Debut during the Paris World Fair of 1914*
 - Plays an endgame of king and rook against king.
 - The machine played the side with king and rook and would force checkmate in a few moves however its human opponent played.
 - An explicit set of rules are known for such an endgame.
 - Very advanced automata for that period of time.
Early ages: China

- Not much materials can be found (by me)!
 - Some automatic machines in a human form for entertainments.
 - Not much for playing “games”.
- Shen, Kuo, (沈括 夢溪筆談) (~ 1086)
 - Analyzed the state space of the game Go.
Computer games are studied by the founding fathers of Computer Science

- C.E. Shannon, 1950, Computer Chess paper
- Arthur Samuel began his 25-year quest to build a strong checkers-playing program at 1952
 ▶ A human “simulation” of a chess algorithm given in the paper.

Computer games are also studied by great names of Computer Science who may not seem to have a major contribution in the area of Computer games or A.I.

- D. E. Knuth (1979)
- K. Thompson (1983)
- B. Liskov (2008)
- J. Pearl (2012)
Early days: A.I. was plagued by over-optimistic predictions.
- Mini-Max game tree search
- Alpha-Beta pruning

1970’s and 1980’s.
- Concentrated on Western chess.
- Brute-force approach.
 - The CHESS series of programs by the Northwestern University: CHESS 1.0 (1968), ..., CHESS 4.9 (1980)
- Theoretical breakthrough: Analysis of Alpha-Beta pruning by Knuth and Moore at 1975.
- Building faster search engines.
- Chess-playing hardware.

Early 1980’s until 1990’s.
- Advances in theory of heuristic searches.
 - Scout, NegaScout, Proof number search
 - Search enhancements such as null moves and singular extensions
 - Machine learning
1990’s until now

- Witness a series of dramatic computer successes against the best of humanity.
- Parallelization.
 - Computer Go: about 1 dan in the year 2010 and improve steadily since then.
 - The program Zen beat a 9-dan professional master at March 17, 2012.
 - First game: five stone handicap and won by 11 points.
 - Second game: four stones handicap and won by 20 points.
 - Try to find applications in other games.
Taxonomy of games

- According to number of players
 - Single player games: puzzles
 - Two-player games
 - Multi-player games

- According to state information obtained by each player
 - Perfect-information games: all players have all the information they need to make a correct decision.
 ▶ Imperfect-information games: some information is only available to selected players, for example you cannot see the opponent’s cards in Poker.

- According to rules of games known in advance
 - Complete information games: the “rules” of the game are fully known by all players in advance.
 ▶ Incomplete-information games: partial rules are not given in advance for some players.

- According to whether players can fully control the playing of the game.
 - Stochastic games: there is an element of chance such as dice rolls.
 ▶ Deterministic games: the players have a full control over the games.
Computational complexities of games

- **Single-player games are often called** puzzles.
 - They have a single decision maker.
 - They are enjoyable to play.
 - A puzzle should have a solution which
 - is aesthetically pleasing;
 - gives the user satisfaction in reaching it.
 - Many puzzles are proven to be NP-complete.
 - 24 puzzles including Light Up, Minesweeper, Solitaire and Tetris are NP-complete [G. Kendall et al. 2008].

- Many 2-player games are either PSPACE-complete or EXPTIME-complete.
 - Othello is PSPACE-complete, and Checkers and Chess are EXPTIME-complete [E.D. Demaine & R.A. Hearn 2001].
New frontiers

- **Traditional games**: using paper and pencil, board, cards, and stones.

- **Interactive computer games**
 - Text-based interface during early days.
 - 2-D graphics during the 1980’s with the advance of personal computers.
 - 3-D graphics with sound and special effects today.

- **Human with the helps of computer software and hardware.**

- **On-line games**: players compete against other humans or computer agents.

- **Challenges**:
 - Better user interface: such as Wii and holographic display.
 - Developing realistic characters.
 - *So far very primitive: simple rule-based systems and finite-state machines.*
 - *Need researches in “human intelligence.”*
 - Educational purpose.

- **Physical games played by machines**: RoboCup.
Concluding remarks

 - Programming computers to play games is but one stage in the development of an understanding of the methods which must be employed for the machine simulation of intellectual behavior.
 - As we progress in this understanding it seems reasonable to assume that these newer techniques will be applied to real-life situations with increasing frequency, and the effort devoted to games ... will decrease.
 - Perhaps we have not yet reached this turning point, and we may still have much to learn from the study of games.
References and further readings

