Alpha-Beta Pruning: Algorithm and Analysis

Tsan-sheng Hsu

http://www.iis.sinica.edu.tw/~tshsu
Introduction

- **Alpha-beta pruning** is the standard searching procedure used for 2-person perfect-information zero sum games.

- **Definitions:**
 - A *position* p.
 - The *value* of a position p, $f(p)$, is a numerical value computed from evaluating p.
 - Value is computed from the root player’s point of view.
 - Positive values mean in favor of the root player.
 - Negative values mean in favor of the opponent.
 - Since it is a zero sum game, thus from the opponent’s point of view, the value can be assigned $-f(p)$.
 - A *terminal position*: a position whose value can be known.
 - A position where win/loss/draw can be concluded.
 - A position where some constraints are met.
 - A *position* p has d legal moves p_1, p_2, \ldots, p_d.
From the root, number a node in a search tree by a sequence of integers \(a.b.c.d\ldots\)
- Meaning from the root, you first take the \(a\)th branch, then the \(b\)th branch, and then the \(c\)th branch, and then the \(d\)th branch \ldots
- The root is specified as an empty sequence.
- The depth of a node is the length of the sequence of integers specifying it.

This is called “Dewey decimal system.”
Mini-max formulation:

- \(F'(p) = \begin{cases}
 f(p) & \text{if } d = 0 \\
 \max \{G'(p_1), \ldots, G'(p_d)\} & \text{if } d > 0
\end{cases} \)

- \(G'(p) = \begin{cases}
 f(p) & \text{if } d = 0 \\
 \min \{F'(p_1), \ldots, F'(p_d)\} & \text{if } d > 0
\end{cases} \)

- An indirect recursive formula!
- Equivalent to AND-OR logic.
Algorithm: Mini-max

- **Algorithm** $F'(\text{position } p)$ // max node
 - determine the successor positions p_1, \ldots, p_d
 - if $d = 0$, then return $f(p)$ else begin
 - $m := -\infty$
 - for $i := 1$ to d do
 - $t := G'(p_i)$
 - if $t > m$ then $m := t$ // find max value
 - end; return m

- **Algorithm** $G'(\text{position } p)$ // min node
 - determine the successor positions p_1, \ldots, p_d
 - if $d = 0$, then return $f(p)$ else begin
 - $m := \infty$
 - for $i := 1$ to d do
 - $t := F'(p_i)$
 - if $t < m$ then $m := t$ // find min value
 - end; return m

- A brute-force method to try all possibilities!
Algorithm $F'(\text{position } p)$ // max node

- determine the successor positions p_1, \ldots, p_d
- if $d = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 then return $f(p)$ // current board value
 else begin
 $\Delta m := -\infty$ // initial value
 for $i := 1$ to d do // try each child
 begin
 $\Delta t := G'(p_i)$
 if $t > m$ then $m := t$ // find max value
 end
 end
 return m
Algorithm \(G'(\text{position } p) \) // min node

- determine the successor positions \(p_1, \ldots, p_d \)
- if \(d = 0 \) // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 then return \(f(p) \) // current board value
else begin
 \[
 \begin{align*}
 \Delta m &:= \infty \quad // \text{initial value} \\
 \text{for } i &:= 1 \text{ to } d \text{ do } // \text{try each child} \\
 &\text{begin} \\
 &\quad t := F'(p_i) \\
 &\quad \text{if } t < m \text{ then } m := t // \text{find min value} \\
 &\text{end}
 \end{align*}
 \]
end
- return \(m \)
Nega-max formulation:

Let $F(p)$ be the greatest possible value achievable from position p against the optimal defensive strategy.

\[
F(p) = \begin{cases}
 h(p) & \text{if } d = 0 \\
 \max\{-F(p_1), \ldots, -F(p_d)\} & \text{if } d > 0
\end{cases}
\]

\[
h(p) = \begin{cases}
 f(p) & \text{if depth of } p \text{ is 0 or even} \\
 -f(p) & \text{if depth of } p \text{ is odd}
\end{cases}
\]
Algorithm: Nega-max

- Algorithm $F(position \ p)$
 - determine the successor positions p_1, \ldots, p_d
 - if $d = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return $h(p)$ else
 - begin
 - $m := -\infty$
 - for $i := 1$ to d do
 - begin
 - $t := -F(p_i)$ // recursive call, the returned value is negated
 - if $t > m$ then $m := t$ // always find a max value
 - end
 - end
 - return m

- Also a brute-force method to try all possibilities, but with a simpler code.
Intuition for improvements

- **Branch-and-bound:** using information you have so far to cut or prune branches.
 - A branch is cut means we do not need to search it anymore.
 - If you know for sure the value of your result is more than x and the current search result for this branch so far can give you no more than x,
 - then there is no need to search this branch any further.

- **Two types of approaches**
 - **Exact algorithms:** through mathematical proof, it is guaranteed that the branches pruned won’t contain the solution.
 - *Alpha-beta pruning: reinvented by several researchers in the 1950’s and 1960’s.*
 - *Scout.*
 - . . .
 - **Approximated heuristics:** with a high probability that the solution won’t be contained in the branches pruned.
 - *Obtain a good estimation on the remaining cost.*
 - *Cut a branch when it is in a very bad position and there is little hope to gain back the advantage.*
Alpha cut-off:
- On a max node
 - Assume you have finished exploring the branch at 1 and obtained the best value from it as bound.
 - You now search the branch at 2 by first searching the branch at 2.1.
 - Assume branch at 2.1 returns a value that is \leq bound.
 - Then no need to evaluate the branch at 2.2 and all later branches of 2, if any, at all.
 - The best possible value for the branch at 2 must be \leq bound.
 - Hence we should take value returned from the branch at 1 as the best possible solution.
Beta cut-off:

- **On a min node**
 - Assume you have finished exploring the branch at 1.1 and obtained the best value from it as bound.
 - You now search the branches at 1.2 by first exploring the branch at 1.2.1.
 - Assume the branch at 1.2.1 returns a value that is \geq bound.
 - Then no need to evaluate the branch at 1.2.2 and all later branches of 1.2, if any, at all.
 - The best possible value for the branch at 1.2 is \geq bound.
 - Hence we should take value returned from the branch at 1.1 as the best possible solution.
Deep alpha cut-off

- **For alpha cut-off:**
 - For a min node u, the branch of its ancestor (e.g., elder brother of its parent) produces a lower bound V_l.
 - The first branch of u produces an upper bound V_u for v.
 - If $V_l \geq V_u$, then there is no need to evaluate the second branch and all later branches, of u.

- **Deep alpha cut-off:**
 - Def: For a node u in a tree and a positive integer g, $\text{Ancestor}(g, u)$ is the direct ancestor of u by tracing the parent’s link g times.
 - When the lower bound V_l is produced at and propagated from u’s great grand parent, i.e., $\text{Ancestor}(3, u)$, or any $\text{Ancestor}(2i + 1, u)$, $i \geq 1$.
 - When an upper bound V_u is returned from the a branch of u and $V_l \geq V_u$, then there is no need to evaluate all later branches of u.

- We can find similar properties for deep beta cut-off.
Illustration — Deep alpha cut-off

1.1 1.2
V=15
2.1 2.2
\(V \geq 15 \)
2.1.1
2.1.1.1 2.1.1.2
V=7
V \leq 7
V\geq 15

TCG: \(\alpha-\beta \) Pruning, 20131106, Tsan-sheng Hsu ©
Ideas for refinements

- During searching, maintain two values α and β so that
 - α is the current lower bound of the possible returned value;
 - β is the current upper bound of the possible returned value.

- If during searching, we know for sure $\alpha > \beta$, then there is no need to search any more in this branch.
 - The returned value cannot be in this branch.
 - Backtrack until it is the case $\alpha \leq \beta$.

- The two values α and β are called the ranges of the current search window.
 - These values are dynamic.
 - Initially, α is $-\infty$ and β is ∞.
Alpha-beta pruning algorithm: Mini-Max

- Algorithm $F_2'(\text{position } p, \text{ value } \alpha, \text{ value } \beta) \ // \ max \ node$
 - determine the successor positions p_1, \ldots, p_d
 - if $d = 0$, then return $f(p)$ else begin
 - $m := \alpha$
 - for $i := 1$ to d do
 - $t := G_2'(p_i, m, \beta)$
 - if $t > m$ then $m := t$
 - if $m \geq \beta$ then return(m) // beta cut off
 - end; return m

- Algorithm $G_2'(\text{position } p, \text{ value } \alpha, \text{ value } \beta) \ // \ min \ node$
 - determine the successor positions p_1, \ldots, p_d
 - if $d = 0$, then return $f(p)$ else begin
 - $m := \beta$
 - for $i := 1$ to d do
 - $t := F_2'(p_i, \alpha, m)$
 - if $t < m$ then $m := t$
 - if $m \leq \alpha$ then return(m) // alpha cut off
 - end; return m
Initial call: $F^2'(\text{root},-\infty,\infty)$

- $m = -\infty$

- call $G^2'(\text{node 1},-\infty,\infty)$
 - it is a terminal node
 - return value 15

- $t = 15$;
 - since $t > m$, m is now 15

- call $G^2'(\text{node 2},15,\infty)$
 - call $F^2'(\text{node 2.1},15,\infty)$
 - it is a terminal node; return 10
 - $t = 10$; since $t < \infty$, m is now 10
 - alpha is 15, m is 10, so we have an alpha cut off
 - no need to call $F^2'(\text{node 2.2},15,10)$
 - ...

TCG: α-β Pruning, 20131106, Tsan-sheng Hsu
Alpha-beta pruning algorithm: Nega-max

- **Algorithm** F_2(position p, value $alpha$, value $beta$)
 - determine the successor positions p_1, \ldots, p_d
 - if $d = 0$ // a terminal node
 or depth reaches the cutoff threshold // from iterative deepening
 or time is running up // from timing control
 or some other constraints are met // add knowledge here
 - then return $h(p)$ else
 - begin
 \> $m := alpha$
 \> for $i := 1$ to d do
 \> begin
 \> \> $t := -F_2(p_i, -beta, -m)$
 \> \> if $t > m$ then $m := t$
 \> \> if $m \geq beta$ then return(m) // cut off
 \> end
 - end
 - return m
Examples
Lessons from the previous examples

- It looks like for the same tree, different move orderings give very different cut branches.
- It looks like if a node can evaluate a child with the best possible outcome earlier, then it can decide to cut earlier.
 - For a min node, this means to evaluate the child branch that gives the lowest value first.
 - For a max node, this means to evaluate the child branch that gives the highest value first.
Analysis of a possible best case

- **Q:** In the best possible scenario, what branches are cut?

- **Definitions:**
 - A path in a search tree is a sequence of numbers indicating the branches selected in each level using the Dewey decimal system.
 - A position is denoted as a path $a_1.a_2.\cdots.a_\ell$ from the root.
 - A position $a_1.a_2.\cdots.a_\ell$ is **critical** if
 - $a_i = 1$ for all even values of i or
 - $a_i = 1$ for all odd values of i.
 - Note: as a special case, the root is critical.

- **Examples:**
 - $2.1.4.1.2$, $1.3.1.5.1.2$, $1.1.1.2.1.1.1.3$ and 1.1 are critical
 - *Examples: $1.2.1.1.2$ is not critical*
Perfect-ordering tree

- A perfect-ordering tree:

\[F(a_1 \cdots a_\ell) = \begin{cases}
 h(a_1 \cdots a_\ell) & \text{if } a_1 \cdots a_\ell \text{ is a terminal} \\
 -F(a_1 \cdots a_\ell \cdot 1) & \text{otherwise}
\end{cases} \]

- The first successor of every non-terminal position gives the best possible value.
Theorem 1

Theorem 1: F^2 examines precisely the critical positions of a perfect-ordering tree.

Proof sketch:

- Classify the critical positions, a.k.a. nodes.
 - You must evaluate the first branch from the root to the bottom.
 - Alpha cut off happens at odd-depth nodes as soon as the first branch of this node is evaluated.
 - Beta cut off happens at even-depth nodes as soon as the first branch of this node is evaluated.

- For each type of nodes, try to associate them with the types of pruning occurred.
Types of nodes

Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index, if exists, such that $a_j \neq 1$ and ℓ is the last index.

- Def: let $IS_1(a_i)$ be a boolean function so that it is 0 if it is not the value 1 and it is 1 if it is.
 - We call this IS_1 parity of a number.

- If j exists and $\ell > j$, then
 - $a_{j+1} = 1$ because this position is critical and thus the IS_1 parities of a_j and a_{j+1} are different.

- Since this position is critical, if $a_j \neq 1$, then $a_h = 1$ for any h such that $h - j$ is odd.

- We now classify critical nodes into 3 types.
Type 1 nodes

- **Type 1**: the root, or a node with all the a_i are 1;
 - This means j does not exist.
 - Nodes on the leftmost branch.
 - The leftmost child of a type 1 node except the root.
Type 2 nodes

- Classification of critical positions \(a_1.a_2.\cdots.a_j.\cdots.a_\ell\) where \(j\) is the least index such that \(a_j \neq 1\) and \(\ell\) is the last index.

- **type 2**: \(\ell - j\) is zero or even;
 - type 2.1: \(\ell - j = 0\).
 - It is in the form of \(1.1.1.\cdots.1.1.1.a_\ell\) and \(a_\ell \neq 1\).
 - The non-leftmost children of a type 1 node.
 - type 2.2: \(\ell - j > 0\) and is even.
 - It is in the form of \(1.1.\cdots.1.1.a_j.1.a_{j+2}.\cdots.a_{\ell-2}.1.a_\ell\).
 - Note, we will show \(1.1.\cdots.1.1.a_j.1.a_{j+2}.\cdots.a_{\ell-2}.1\) is a type 3 node later.
 - All of the children of a type 3 node.
Type 3 nodes

- Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

- **type 3:** $\ell - j$ is odd;
 - type 3.1: $\ell = j + 1$.
 - It is of the form $1.1.\cdots.1.a_j.1$
 - The leftmost child of a type 2.1 node.
 - type 3.2: $\ell > j + 1$.
 - It is of the form $1.1.\cdots.1.a_j.1.a_{j+2}.1.\cdots.1.a_{\ell-1}.1$
 - The leftmost child of a type 2.2 node.
Comments

- Nodes of the same have common properties.
- These properties can be used in solving other problems.
 - Efficient parallel processing.
- Main techniques used: you cannot have two consecutive non-1 numbers in the ID of a critical node.
Illustration — critical nodes

1 1 1 1 1 1 * 1 * 1

1 1 1 : 1

1: not 1

*: any

TCG: α-β Pruning, 20131106, Tsan-sheng Hsu ©
Type 2.1 nodes

- Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

- type 2: $\ell - j$ is zero or even;
 - type 2.1: $\ell - j = 0$.
 - Then $\ell = j$.
 - It is in the form of $1.1.1.\cdots.1.1.1.a_\ell$ and $a_\ell \neq 1$.
 - The non-leftmost children of a type 1 node.
Type 3.1 nodes

- Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.
- type 3: $\ell - j$ is odd;
 - type 3.1: $\ell = j + 1$.

\triangleright It is of the form $1.1.\cdots.1.a_j.1$ and $a_\ell \neq 1$.

\triangleright The leftmost child of a type 2.1 node.
Type 2.2 nodes

- Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

- type 2: $\ell - j$ is zero or even;
 - type 2.2: $\ell - j > 0$ and is even.
 - The IS1 parties of a_j and a_{j+1} are different.
 \implies Since $a_j \neq 1$, $a_{j+1} = 1$.
 - $(\ell - 1) - j$ is odd:
 \implies The IS1 parties of $a_{\ell-1}$ and a_j are different.
 \implies Since $a_j \neq 1$, $a_{\ell-1} = 1$.
 - It is in the form of $1.1.\cdots.1.1.a_j.1.a_{j+2}.\cdots.a_{\ell-2}.1.a_\ell$.
 - Note, we will show $1.1.\cdots.1.1.a_j.1.a_{j+2}.\cdots.a_{\ell-2}.1$ is a type 3 node later.
 - All of the children of a type 3 node.
Type 3.2 nodes

- Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

- **type 3:** $\ell - j$ is odd;
 - $a_j \neq 1$ and $\ell - j$ is odd
 - Since this position is critical, the IS1 parities of a_j and a_ℓ are different.
 - $\implies a_\ell = 1$
 - $\implies a_{j+1} = 1$
 - It is in the form of
 - 1.1.\cdots.1.a_j.1.a_{j+2}.1.\cdots.1.a_{\ell-1}.1.

- The leftmost child of a **type 2 node**.

- **type 3.1:** $\ell = j + 1$.
 - It is of the form 1.1.\cdots.1.a_j.1
 - The leftmost child of a type 2.1 node.

- **type 3.2:** $\ell > j + 1$.
 - It is of the form 1.1.\cdots.1.a_j.1.a_{j+2}.1.\cdots.1.a_{\ell-1}.1
 - The leftmost child of a type 2.2 node.
Illustration — Types of nodes

- Type 1
- Type 2.1
- Type 2.2
- Type 3.1
- Type 3.2

TCG: α-β Pruning, 20131106, Tsan-sheng Hsu ©
Proof sketch for Theorem 1

Properties (invariants)

- A type 1 position p is examined by calling $F2(p, -\infty, \infty)$
 - p’s first successor p_1 is of type 1
 - $F(p) = - F(p_1) \neq \pm \infty$
 - p’s other successors p_2, \ldots, p_d are of type 2
 - $p_i, i > 1$, are examined by calling $F2(p_i, -\infty, F(p_1))$

- A type 2 position p is examined by calling $F2(p, -\infty, beta)$ where $-\infty < beta \leq F(p)$
 - p’s first successor p_1 is of type 3
 - $F(p) = - F(p_1)$
 - p’s other successors p_2, \ldots, p_d are not examined

- A type 3 position p is examined by calling $F2(p, alpha, \infty)$ where $\infty > alpha \geq F(p)$
 - p’s successors p_1, \ldots, p_d are of type 2
 - they are examined by calling $F2(p_1, -\infty, -alpha)$,
 $F2(p_2, -\infty, -\max\{m_1, alpha\}), \ldots,$ $F2(p_i, -\infty, -\max\{m_{i-1}, alpha\})$ where $m_i = F2(p_i, -\infty, -\max\{m_{i-1}, alpha\})$

- Using an inductive argument to prove all and also only critical positions are examined.
Corollary 1: Assume each position has exactly d successors

- The number of positions examined by the alpha-beta procedure on level i is exactly
 \[d^{\lceil i/2 \rceil} + d^{\lfloor i/2 \rfloor} - 1. \]

Proof:

- There are $d^{\lfloor i/2 \rfloor}$ sequences of the form $a_1 \cdots a_i$ with $1 \leq a_i \leq d$ for all i such that $a_i = 1$ for all odd values of i.
- There are $d^{\lceil i/2 \rceil}$ sequences of the form $a_1 \cdots a_i$ with $1 \leq a_i \leq d$ for all i such that $a_i = 1$ for all even values of i.
- We subtract 1 for the sequence $1.1.\cdots.1.1$ which are counted twice.

Total number of nodes visited is

\[\sum_{i=0}^{\ell} d^{\lceil i/2 \rceil} + d^{\lfloor i/2 \rfloor} - 1. \]
Analysis: average case

- **Assumptions:** Let a random game tree be generated in such a way that
 - each position on level j has probability q_j of being nonterminal
 - has an average of d_j successors

- **Properties of the above random game tree**
 - Expected number of positions on level ℓ is $d_0 \cdot d_1 \cdots d_{\ell-1}$
 - Expected number of positions on level ℓ examined by an alpha-beta procedure assumed the random game tree is perfectly ordered is
 \[
 d_0 q_1 d_2 q_3 \cdots d_{\ell-2} q_{\ell-1} + q_0 d_1 q_2 d_3 \cdots q_{\ell-2} d_{\ell-1} - q_0 q_1 \cdots q_{\ell-1} \text{ if } \ell \text{ is even;}
 \]
 \[
 d_0 q_1 d_2 q_3 \cdots q_{\ell-2} d_{\ell-1} + q_0 d_1 q_2 d_3 \cdots d_{\ell-2} q_{\ell-1} - q_0 q_1 \cdots q_{\ell-1} \text{ if } \ell \text{ is odd}
 \]

- **Proof sketch:**
 - If x is the expected number of positions of a certain type on level j, then $x d_j$ is the expected number of successors of these positions, and $x q_j$ is the expected number of “numbered 1” successors.
 - The above numbers equal to those of Corollary 1 when $q_j = 1$ and $d_j = d$ for $0 \leq j < \ell$.
Perfect ordering is not always best

- Intuitively, we may “think” alpha-beta pruning would be most effective when a game tree is perfectly ordered.
 - That is, when the first successor of every position is the best possible move.
 - This is not always the case!

- Truly optimum order of game trees traversal is not obvious.
When is a branch pruned?

- Assume a node r has two children u and v with u being visited before v using some move ordering.
 - Further assume u produced a new bound $bound$.
- Assume node v has a child w.
 - If the value new returned from w can cause a range conflict with $bound$, then branches of v later than w are cut.
- This means as long as the “relative” ordering of u and v are good enough, then we can have some cut-off.
 - There is no need for r to have the best move ordering.
Theorem 2

Theorem 2: Alpha-beta pruning is optimum in the following sense:

- Given any game tree and any algorithm which computes the value of the root position, there is a way to permute the tree by reordering successor positions if necessary;
- so that every terminal position examined by the alpha-beta method under this permutation is examined by the given algorithm.
- Furthermore if the value of the root is not ∞ or $-\infty$, the alpha-beta procedure examines precisely the positions which are critical under this permutation.
Variations of alpha-beta search

- Initially, to search a tree with the root \(r \) by calling \(F^2(r, -\infty, +\infty) \).
 - What does it mean to search a tree with the root \(r \) by calling \(F^2(r, \alpha, \beta) \)?
 ▶ To search the tree rooted at \(r \) requiring that the returned value to be within \(\alpha \) and \(\beta \).

- In an alpha-beta search with a pre-assigned window \([\alpha, \beta]\):
 - Failed-high means it returns a value that is larger than or equal to its upper bound \(\beta \).
 - Failed-low means it returns a value that is smaller than or equal to its lower bound \(\alpha \).

- Variations:
 - Brute force Nega-Max version: \(F \)
 ▶ Always finds the correct answer according to the Nega-Max formula.
 - Fail hard alpha-beta cut (Nega-Max) version: \(F^2 \)
 - Fail soft alpha-beta cut (Nega-Max) version: \(F^3 \)
Fail hard version

- Original version.
- Algorithm $F^2(position \ p, \ value \ alpha, \ value \ beta)$
 - determine the successor positions p_1, \ldots, p_d
 - if $d = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return $h(p)$ else
 - begin
 - $m := alpha$ // hard initial value
 - for $i := 1$ to d do
 - begin
 - $t := -F^2(p_i, -beta, -m)$
 - if $t > m$ then $m := t$ // the returned value is “used”
 - if $m \geq beta$ then return(m) // cut off
 - end
 - end
 - end
 - return m
Properties and comments

Properties:
- \(\alpha < \beta\)
- \(F_2(p, \alpha, \beta) = \alpha\) if \(F(p) \leq \alpha\)
- \(F_2(p, \alpha, \beta) = F(p)\) if \(\alpha < F(p) < \beta\)
- \(F_2(p, \alpha, \beta) = \beta\) if \(F(p) \geq \beta\)
- \(F_2(p, -\infty, +\infty) = F(p)\)

Comments:
- \(F_2(p, \alpha, \beta)\): find the best possible value according to a nega-max formula for the position \(p\) with the constraints that
 - If \(F(p)\) is less than the lower bound \(\alpha\), then \(F_2(p, \alpha, \beta)\) returns with a value \(\alpha\) from a terminal position whose value is \(\leq \alpha\).
 - If \(F(p)\) is more than the upper bound \(\beta\), then \(F_2(p, \alpha, \beta)\) returns with value \(\beta\) from a terminal terminal position whose value is \(\geq \beta\).

- The meanings of \(\alpha\) and \(\beta\) during searching:
 - For a max node: the current best value is at least \(\alpha\).
 - For a min node: the current best value is at most \(\beta\).

- \(F_2\) always finds a value that is within \(\alpha\) and \(\beta\).
 - The bounds are hard, i.e., cannot be violated.
As long as the value of the leaf node W is less than the current alpha value, the returned value of A will be at least the returned value of W.
Fail soft version

- **Algorithm** $F3(position \ p, \ value \ alpha, \ value \ beta)$
 - determine the successor positions p_1, \ldots, p_d
 - if $d = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return $h(p)$ else
 - begin
 - $m := -\infty$ // soft initial value
 - for $i := 1$ to d do
 - begin
 - $t := -F3(p_i, -beta, -\max\{m, alpha\})$
 - if $t > m$ then $m := t$ // the returned value is “used”
 - if $m \geq beta$ then return(m) // cut off
 - end
 - end
 - return m
Properties and comments

- Properties:
 - $\alpha < \beta$
 - $F_3(p, \alpha, \beta) \leq \alpha$ if $F(p) \leq F_3(p, \alpha, \beta) \leq \alpha$
 - $F_3(p, \alpha, \beta) = F(p)$ if $\alpha < F(p) < \beta$
 - $F_3(p, \alpha, \beta) \geq \beta$ if $F(p) \geq F_3(p, \alpha, \beta) \geq \beta$
 - $F_3(p, -\infty, +\infty) = F(p)$

- F_3 finds a “better” value when the value is out of the search window.
 - Better means a tighter bound.
 - The bounds are soft, i.e., can be violated.
 - When it fails high, F_3 normally returns a value that is higher than that of F_2.
 - Never higher than that of F!
 - When it fails low, F_3 normally returns a value that is lower than that of F_2.
 - Never lower than that of F!
Let the value of the leaf node \(W \) be \(u \).

- If \(u < \text{alpha} \), then the branch at \(W \) will have a returned value of at least \(u \).
Comparisons between F_2 and F_3

- Both versions find the corrected value v if v is within the window $[\alpha, \beta]$.
- Both versions scan the same set of nodes during searching.
 - If the returned value of a subtree is decided by a cut, then F_2 and F_3 return the same value.
- F_3 provides more information when the true value is out of the pre-assigned search window.
 - Can provide a feeling on how bad or good the game tree is.
 - Use this “better” value to guide searching later on.
- F_3 saves about 7% of time than that of F_2 when a transposition table is used to save and re-use searched results [Fishburn 1983].
 - A transposition table is a data structure to record the results of previous searched results.
 - The entries of a transposition table can be efficiently accessed, i.e., read and write, during searching.
 - Need an efficient addressing scheme, e.g., hash, to translate between a position and its address.
Assume the node A can be reached from the starting position using path P_1 and path P_2.

- If W is visited first along P_1 with a bound of $[4000, 5000]$, and returns a value of 200, then
 - the returned value of W, 200, is stored into the transposition table.

- If A is visited again along P_2 with a bound of $[400, 500]$, then a better value of previously stored value of W helps to decide whether the subtree rooted at W needs to be searched again.
F2 and F3: Example (2/2)

- Fail soft version has a chance to record a better value to be used later when this position is revisited.
 - If A is visited again along P_2 with a bound of [400, 500], then
 - it does not need to be searched again, since the previous stored value of W is -200.
 - However, if the value of W is 450, then it needs to be searched again.

- The fail hard version does not store the returned value of W after its first visit since this value is less than α.
Questions

- What move ordering is good?
 - It may not be good to search the best possible move first.
 - It maybe better to cut off a branch with more nodes first.
- How about the case when the tree is not uniform?
- What is the effect of using iterative-deepening alpha-beta cut off?
- How about the case for searching a game graph instead of a game tree?
 - Can some nodes be visited more than once?
References and further readings

