Scout, NegaScout and Proof-Number Search

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Introduction

- It looks like alpha-beta pruning is the best we can do for a generic searching procedure.
 - What else can be done generically?
 - Alpha-beta pruning follows basically the “intelligent” searching behaviors used by humans when domain knowledge is not involved.
 - Can we find some other “intelligent” behaviors used by humans during searching?

- Intuition: MAX node.
 - Suppose we know currently we have a way to gain at least 300 points at the first branch.
 - If there is an efficient way to know the second branch is at most gaining 300 points, then there is no need to search the second branch in detail.
 - Is there a way to search a tree approximately?
 - Is searching approximately faster than searching exactly?

- Similar intuition holds for a MIN node.
SCOUT procedure

- Invented by Judea Pearl in 1980.
- It may be possible to verify whether the value of a branch is greater than a value \(v \) or not in a way that is faster than knowing its exact value.

High level idea:
- While searching a branch \(T_b \) of a MAX node, if we have already obtained a lower bound \(v_\ell \).
 - First TEST whether it is possible for \(T_b \) to return something greater than \(v_\ell \).
 - If FALSE, then there is no need to search \(T_b \). This is called fails the test.
 - If TRUE, then search \(T_b \). This is called passes the test.
- While searching a branch \(T_c \) of a MIN node, if we have already obtained an upper bound \(v_u \)
 - First TEST whether it is possible for \(T_c \) to return something smaller than \(v_u \).
 - If FALSE, then there is no need to search \(T_c \). This is called fails the test.
 - If TRUE, then search \(T_c \). This is called passes the test.
procedure TEST(position p, value v, condition $>$)

// test whether the value of the branch at p is $> v$

- determine the successor positions p_1, \ldots, p_d of p
- if $d = 0$, then // terminal
 - if $f(p) > v$ then // $f()$: evaluating function
 - return TRUE
 - else return FALSE

- if p is a MAX node, then
 - for $i := 1$ to d do
 - if TEST(p_i, v, $>$) is TRUE, then
 - return TRUE // succeed if a branch is $> v$
 - return FALSE // fail only if all branches $\leq v$

- if p is a MIN node, then
 - for $i := 1$ to d do
 - if TEST(p_i, v, $>$) is FALSE, then
 - return FALSE // fail if a branch is $\leq v$
 - return TRUE // succeed only if all branches are $> v$
Illustration of TEST

max

min

max

min

max

TCG: Scout, NegaScout, PN-search, 20131205, Tsan-sheng Hsuc
How to TEST — Discussions

- Condition can be stated as $<$ by properly revising the algorithm.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Equivalent Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{TEST}(p,v,>)$ is TRUE</td>
<td>$\text{TEST}(p,v,\leq)$ is FALSE</td>
</tr>
<tr>
<td>$\text{TEST}(p,v,>)$ is FALSE</td>
<td>$\text{TEST}(p,v,\leq)$ is TRUE</td>
</tr>
<tr>
<td>$\text{TEST}(p,v,\leq)$ is TRUE</td>
<td>$\text{TEST}(p,v,\geq)$ is FALSE</td>
</tr>
<tr>
<td>$\text{TEST}(p,v,\leq)$ is FALSE</td>
<td>$\text{TEST}(p,v,\geq)$ is TRUE</td>
</tr>
</tbody>
</table>

- Practical consideration:
 - Set a depth limit and evaluate the position’s value when the limit is reached.
How to TEST $< v$

procedure TEST(position p, value v, condition $<=$)
 // test whether the value of the branch at p is $< v$

- determine the successor positions p_1, \ldots, p_d of p
- if $d = 0$, then // terminal
 - if $f(p) < v$ then // $f()$: evaluating function
 - return TRUE
 - else return FALSE

- if p is a MAX node, then
 - for $i := 1$ to d do
 - if TEST(p_i, v, $<=$) is FALSE, then
 return FALSE // succeed if a branch is $\geq v$
 - return TRUE // succeed only if all branches $< v$

- if p is a MIN node, then
 - for $i := 1$ to d do
 - if TEST(p_i, v, $<=$) is TRUE, then
 return TRUE // succeed if a branch is $< v$
 - return FALSE // fail only if all branches are $\geq v$
Main SCOUT procedure (1/2)

Algorithm SCOUT(position p)

- determine the successor positions p_1, \ldots, p_d
- if $d = 0$, then return $f(p)$
- else $v = \text{SCOUT}(p_1)$ // SCOUT the first branch
- if p is a MAX node
 - for $i := 2$ to d do
 - if $\text{TEST}(p_i, v, >)$ is TRUE, // TEST first for the rest of the branches
 then $v = \text{SCOUT}(p_i)$ // find the value of this branch if it can be $> v$
- if p is a MIN node
 - for $i := 2$ to d do
 - if $\text{TEST}(p_i, v, <)$ is TRUE, // TEST first for the rest of the branches
 then $v = \text{SCOUT}(p_i)$ // find the value of this branch if it can be $< v$
- return v
Main SCOUT procedure (2/2)

- Note that \(v \) is the current best value at any moment.
- **MAX node:**
 - For any \(i > 1 \), if \(\text{TEST}(p_i, v, >) \) is TRUE,
 - then the value returned by \(\text{SCOUT}(p_i) \) must be greater than \(v \).
 - We say the \(p_i \) passes the test if \(\text{TEST}(p_i, v, >) \) is TRUE.
- **MIN node:**
 - For any \(i > 1 \), if \(\text{TEST}(p_i, v, <) \) is TRUE,
 - then the value returned by \(\text{SCOUT}(p_i) \) must be smaller than \(v \).
 - We say the \(p_i \) passes the test if \(\text{TEST}(p_i, v, <) \) is TRUE.
Discussions for SCOUT (1/2)

- TEST who is called by SCOUT may visit less nodes than alpha-beta.

- Assume $TEST(p, 5, >)$ is called by the root after the first branch is evaluated.
 - It calls $TEST(K, 5, >)$ which skips K’s second branch.
 - $TEST(p, 5, >)$ is FALSE, i.e., fails the test, after returning from the 3rd branch.
 - No need to do SCOUT for the branch p.

- Alpha-beta needs to visit K’s second branch.
SCOUT may pay many visits to a node that is cut off by alpha-beta.
Number of nodes visited (1/3)

- For TEST to return TRUE for a subtree T, it needs to evaluate at least
 - one child for a MAX node in T, and
 - and all of the children for a MIN node in T.
 - If T has a fixed branching factor b and uniform depth d, the number of nodes evaluated is $\Omega(b^{d/2})$.

- For TEST to return FALSE for a subtree T, it needs to evaluate at least
 - one child for a MIN node in T, and
 - and all of the children for a MAX node in T.
 - If T has a fixed branching factor b and uniform depth d, the number of nodes evaluated is $\Omega(b^{d/2})$.
Number of nodes visited (2/3)

- **Assumptions:**
 - Assume a full complete d-ary tree with depth ℓ where ℓ is even.
 - The depth of the root, which is a MAX node, is 0.
- The total number of nodes in the tree is $\frac{d^{\ell+1}-1}{d-1}$.
- The minimum number of nodes visited by TEST when it returns TRUE.

 \[
 \begin{align*}
 &= 1 + 1 + d + d + d^2 + d^2 + d^3 + d^3 + \cdots + d^{\ell/2-1} + d^{\ell/2-1} + d^{\ell/2} \\
 &= 2 \cdot (d^0 + d^1 + \cdots + d^{\ell/2}) - d^{\ell/2} \\
 &= 2 \cdot \frac{d^{\ell/2+1}-1}{d-1} - d^{\ell/2}
 \end{align*}
 \]
- The minimum number of nodes visited by alpha-beta.

 \[
 \begin{align*}
 &= \sum_{i=0}^{\ell} d^{[i/2]} + d^{[i/2]} - 1 \\
 &= \sum_{i=0}^{\ell} d^{[i/2]} + \sum_{i=0}^{\ell} d^{[i/2]} - (\ell + 1) \\
 &= (1 + d + d + \cdots + d^{\ell/2} + d^{\ell/2}) + \\
 &\quad (1 + 1 + d + d + \cdots + d^{\ell/2-1} + d^{\ell/2-1} + d^{\ell/2}) - (\ell + 1)
 \end{align*}
 \]
Number of nodes visited (3/3)
Comparisons

- When the first branch of a node has the best value, then TEST scans the tree fast.
 - The best value of the first \(i - 1 \) branches is used to test whether the \(i \)th branch needs to be searched exactly.
 - If the value of the first \(i - 1 \) branches of the root is better than the value of \(i \)th branch, then we do not have to evaluate exactly for the \(i \)th branch.

- Compared to alpha-beta pruning whose cut off comes from bounds of search windows.
 - It is possible to have some cut-off for alpha-beta as long as there are some relative move orderings are “good.”
 - The moving orders of your children and the children of your ancestor who is odd level up decide a cut-off.
 - The search bound is updated during the searching.
 - Sometimes, a deep alpha-beta cut-off occurs because a bound found from your ancestor a distance away.
A node may be visited more than once.
- First visit is to TEST.
- Second visit is to SCOUT.
 - During SCOUT, it may be TESTed with a different value.
- Q: Can information obtained in the first search be used in the second search?

SCOUT is a recursive procedure.
- A node in a branch that is not the first child of a node with a depth of ℓ.
 - Note that the depth of the root is defined to be 0.
 - Every ancestor of you may initiate a TEST to visit you.
 - It can be visited ℓ times by TEST.
Show great improvements on $depth > 3$ for games with small branching factors.
- It traverses most of the nodes without evaluating them precisely.
- Few subtrees remained to be revisited to compute their exact mini-max values.

Experimental data on the game of Kalah show [UCLA Tech Rep UCLA-ENG-80-17, Noe 1980]:
- SCOUT favors “skinny” game trees, that are game trees with high depth-to-width ratios.
- On depth $= 5$, it saves over 40% of time.
- Maybe bad for games with a large branching factor.
- Move ordering is very important.
 - \triangleright The first branch, if is good, offers a great chance of pruning further branches.
Alpha-beta revisited

- In an alpha-beta search with a window $[\alpha, \beta]$:
 - **Failed-high** means it returns a value that is larger than its upper bound β.
 - **Failed-low** means it returns a value that is smaller than its lower bound α.

- **Null or Zero window search:**
 - Using alpha-beta search with the window $[m, m + 1]$.
 - The result can be either failed-high or failed-low.
 - Failed-high means the return value is at least $m + 1$.
 - Equivalent to $\text{TEST}(p, m, >)$ is true.
 - Failed-low means the return value is at most m.
 - Equivalent to $\text{TEST}(p, m, >)$ is false.
Alpha-Beta + Scout

- Intuition:
 - Try to incorporate SCOUT and alpha-beta together.
 - The searching window of alpha-beta if properly set can be used as TEST in SCOUT.
 - Using a searching window is better than using a single bound as in SCOUT.
 - Can also apply alpha-beta cut if it applies.

- Modifications to the SCOUT algorithm:
 - Traverse the tree with two bounds as the alpha-beta procedure does.
 - A searching window.
 - Use the current best bound to guide the TEST value.
 - Use a fail soft version to get a better result when the returned value is out of the window.
Algorithm $F4'(position \ p, \ value \ \alpha, \ value \ \beta, \ integer \ depth)$

- determine the successor positions p_1, \ldots, p_d
- if $d = 0$ // a terminal node
 - or depth $= 0$ // depth is the remaining depth to search
 - or time is running up // from timing control
 - or some other constraints are met // apply heuristic here
- then return $f(p)$ else
 begin
 ▶ $m := -\infty$ // m is the current best lower bound; fail soft
 $m := \max\{m, G4'(p_1, \alpha, \beta, depth - 1)\}$ // the first branch
 if $m \geq \beta$ then return(m) // beta cut off
 ▶ for $i := 2$ to d do
 ▶ 9: $t := G4'(p_i, m, m + 1, depth - 1)$ // null window search
 ▶ 10: if $t > m$ then // failed-high
 11: if (depth < 3 or $t \geq \beta$)
 12: then $m := t$
 13: else $m := G4'(p_i, t, \beta, depth - 1)$ // re-search
 ▶ 14: if $m \geq \beta$ then return(m) // beta cut off
 end
- return m
Algorithm $G^4'(\text{position } p, \text{ value } \alpha, \text{ value } \beta, \text{ integer } \text{depth})$

- determine the successor positions p_1, \ldots, p_d
- if $d = 0$ // a terminal node
 - or $\text{depth} = 0$ // depth is the remaining depth to search
 - or time is running up // from timing control
 - or some other constraints are met // apply heuristic here
- then return $f(p)$ else
 begin
 $m = \infty$ // m is the current best upper bound; fail soft
 $m := \min\{m, F^4'(p_1, \alpha, \beta, \text{depth} - 1)\}$ // the first branch
 if $m \leq \alpha$ then return(m) // alpha cut off
 for $i := 2$ to d do
 $t := F^4'(p_i, m, m + 1, \text{depth} - 1)$ // null window search
 if $t \leq m$ then // failed-low
 if ($\text{depth} < 3$ or $t \leq \alpha$)
 then $m := t$
 else $m := F^4'(p_i, \alpha, t, \text{depth} - 1)$ // re-search
 end
 if $m \leq \alpha$ then return(m) // alpha cut off
 end
- return m
NegaScout – MiniMax version (1/2)

[3,9]

5 4 7 4 45

5 4 7 4 45

[3,9]

3 5
NegaScout – MiniMax version (2/2)

TCG: Scout, NegaScout, PN-search, 20131205, Tsan-sheng Hsu ©
The NegaScout Algorithm

- Use Nega-MAX format.
- Algorithm $F4(\text{position } p, \text{ value } \alpha, \text{ value } \beta, \text{ integer } \text{depth})$

 - determine the successor positions p_1, \ldots, p_d
 - if $d = 0$ // a terminal node
 - or $\text{depth} = 0$ // depth is the remaining depth to search
 - or time is running up // from timing control
 - or some other constraints are met // apply heuristic here
 - then return $h(p)$ else
 - $m := -\infty$ // the current lower bound; fail soft
 - $n := \beta$ // the current upper bound
 - for $i := 1$ to d do
 - 9: $t := -F4(p_i, -n, -\max\{\alpha, m\}, \text{depth} - 1)$
 - 10: if $t > m$ then
 - 11: if $(n = \beta \text{ or } \text{depth} < 3 \text{ or } t \geq \beta)$
 - 12: then $m := t$
 - 13: else $m := -F4(p_i, -\beta, -t, \text{depth} - 1)$ // re-search
 - 14: if $m \geq \beta$ then return(m) // cut off
 - 15: $n := \max\{\alpha, m\} + 1$ // set up a null window
 - return m
Search behaviors (1/3)

- If the depth is enough or it is a terminal position, then stop searching further.
 - Return $h(p)$ as the value computed by an evaluation function.
 - Note:
 $$h(p) = \begin{cases}
 f(p) & \text{if depth of } p \text{ is 0 or even} \\
 -f(p) & \text{if depth of } p \text{ is odd}
 \end{cases}$$

- Fail soft version.

- For the first child p_1, search using the normal alpha beta window.
 - line 9: normal window for the first child
 - the initial value of m is $-\infty$, hence $-\max\{\alpha, m\} = -\alpha$
 - m is the current best value
 - that is, searching with the normal window $[\alpha, \beta]$
Search behaviors (2/3)

- For the second child and beyond $p_i, i > 1$, first perform a null window search for testing whether m is the answer.
 - line 9: a null-window of $[m, m + 1]$ searches for the second child and beyond.
 - m is best value obtained so far
 - m’s value will be first set at line 12 because $n = \beta$
 - The null window is set at line 15.
 - line 11:
 - $n = \beta$: we are at first iteration.
 - depth < 3: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
 - $t \geq \beta$: we have obtained a good enough value from the failed-soft version to guarantee a beta cut.
Search behaviors (3/3)

- For the second child and beyond $p_i, i > 1$, first perform a null window search for testing whether m is the answer.

 - line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
 - Normally, no need to do alpha-beta or any enhancement on very small subtrees.
 - The overhead is too large on small subtrees.

 - line 13: re-search when the null window search fails high.
 - The value of this subtree is at least t.
 - This means the best value in this subtree is more than m, the current best value.
 - This subtree must be re-searched with the the window $[t, \beta]$.

- line 14: the normal pruning from alpha-beta.
Example for NegaScout
Refinements

- When a subtree is re-searched, it is best to use information on the previous search to speed up the current search.
 - Restart from the position that the value t is returned.
- Maybe want to re-search using the normal alpha-beta procedure.
- $F4$ runs much better with a good move ordering and transposition tables.
 - Order the moves in a priority list.
 - Reduce the number of re-searches.
Performances

- Experiments done on a uniform random game tree [Reinofeld 1983].
 - Normally superior to alpha-beta when searching game trees with branching factors from 20 to 60.
 - Shows about 10 to 20% of improvement.
Comments

- Incooperating both SCOUT and alpha-beta.
- Used in state-of-the-art game search engines.
- The first search, though maybe unsuccessful, can provide useful information in the second search.
 - Information can be stored and then be reused.
Ideas for new search methods

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
 - win, or not win which is lose or draw;
 - lose, or not lose which is win or draw;
 - Call this a binary valued game tree.

- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
 - The value of the root is either 0 or 1.
 - If a branch of the root returns 1, then we know for sure the value of the root is 1.
 - The value of the root is 0 only when all branches of the root returns 0.
 - An AND-OR game tree search.
Which node to search next?

- A most proving node for a node u: a node if its value is 1, then the value of u is 1.
- A most disproving node for a node u: a node if its value is 0, then the value of u is 0.
Assign a **proof number** and a **disproof number** to each node u in a binary valued game tree.

- **proof(u)**: the minimum number of leaves needed to be visited in order for the value of u to be 1.
- **disproof(u)**: the minimum number of leaves needed to be visited in order for the value of u to be 0.
Proof Number: Definition

- **u is a leaf:**
 - If $\text{value}(u)$ is unknown, then $\text{proof}_v(u)$ is the cost of evaluating u.
 - If $\text{value}(u)$ is 1, then $\text{proof}(u) = 0$.
 - If $\text{value}(u)$ is 0, then $\text{proof}(u) = \infty$.

- **u is an internal node with children u_1, \ldots, u_k:**
 - If u is a MAX node,
 \[
 \text{proof}(u) = \min_{i=1}^{i=k} \text{proof}(u_i);
 \]
 - If u is a MIN node,
 \[
 \text{proof}(u) = \sum_{i=1}^{i=k} \text{proof}(u_i).
 \]
Disproof Number: Definition

- **u is a leaf:**
 - If \(\text{value}(u) \) is unknown, then \(\text{proof}_v(u) \) is cost of evaluating \(u \).
 - If \(\text{value}(u) \) is 1, then \(\text{disproof}(u) = \infty \).
 - If \(\text{value}(u) \) is 0, then \(\text{disproof}(u) = 0 \).

- **u is an internal node with children \(u_1, \ldots, u_k \):**
 - if \(u \) is a MAX node,
 \[
 \text{disproof}(u) = \sum_{i=1}^{i=k} \text{disproof}(u_i);
 \]
 - if \(u \) is a MIN node,
 \[
 \text{disproof}(u) = \min_{i=1}^{i=k} \text{disproof}(u_i).
 \]
Illustrations

proof number, disproof number
How to Use these Numbers

- If the numbers are known in advance, then from the root, we search a child u with the value equals to $\min\{\text{proof}(\text{root}), \text{disproof}(\text{root})\}$.

 - Then we find a path from the root towards a leaf recursively as follows,

 ▶ if we try to prove it, then pick a child with the least proof number for a MAX node, and pick any node that has a chance to be proved for a MIN node.

 ▶ if we try to disprove it, then pick a child with the least disproof number for a MIN node, and pick any node that has a chance to be disproved for a MAX node.

- Assume each leaf takes a lot of time to evaluate.

 - For example, the game tree represents an open game tree or an endgame tree.

 - Depends on the results we have so far, pick the next leaf to prove or disprove.

- Need to able to update these numbers on the fly.
PN-search: algorithm

- **loop:** Compute or update proof and disproof numbers for each node in a bottom up fashion.
 - If $\text{proof}(\text{root}) = 0$ or $\text{disproof}(\text{root}) = 0$, then we are done, otherwise
 - $\text{proof}(\text{root}) \leq \text{disproof}(\text{root}):$ we try to prove it.
 - $\text{proof}(\text{root}) > \text{disproof}(\text{root}):$ we try to disprove it.

- $u \leftarrow \text{root}; \{\ast \text{ find the leaf to prove or disprove } \ast\}$
 - if we try to prove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 $u \leftarrow$ leftmost child of u with the smallest non-zero proof number;
 - if current is a MIN node, then
 $u \leftarrow$ leftmost child of u with a non-zero proof number;
 - if we try to disprove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 $u \leftarrow$ leftmost child of u with a non-zero disproof number;
 - if current is a MIN node, then
 $u \leftarrow$ leftmost child of u with the smallest non-zero disproof number;

- Prove or disprove $u; \text{ go to loop;}$
Multi-Valued game Tree

- The values of the leaves may not be binary.
 - Assume the values are non-negative integers.
 - Note: it can be in any finite countable domain.

- Revision of the proof and disproof numbers.
 - $proof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.
 - $proof(u) = proof_1(u)$.
 - $disproof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $< v$.
 - $disproof(u) = disproof_1(u)$.
Multi-Valued Proof Number

- **u is a leaf:**
 - If \(\text{value}(u) \) is unknown, then \(\text{proof}_v(u) \) is cost of evaluating \(u \).
 - If \(\text{value}(u) \geq v \), then \(\text{proof}_v(u) = 0 \).
 - If \(\text{value}(u) < v \), then \(\text{proof}_v(u) = \infty \).

- **u is an internal node with children \(u_1, \ldots, u_k \):**
 - if \(u \) is a MAX node,
 \[
 \text{proof}_v(u) = \min_{i=1}^{i=k} \text{proof}_v(u_i);
 \]
 - if \(u \) is a MIN node,
 \[
 \text{proof}_v(u) = \sum_{i=1}^{i=k} \text{proof}_v(u_i).
 \]
Multi-valued Disproof Number

- **u is a leaf:**
 - If \(\text{value}(u) \) is unknown, then \(\text{proof}_v(u) \) is cost of evaluating \(u \).
 - If \(\text{value}(u) \geq v \) is 1, then \(\text{disproof}_v(u) = \infty \).
 - If \(\text{value}(u) < v \) is 0, then \(\text{disproof}_v(u) = 0 \).

- **u is an internal node with children \(u_1, \ldots, u_k \):**
 - if \(u \) is a MAX node,
 \[
 \text{disproof}_v(u) = \sum_{i=1}^{i=k} \text{disproof}_v(u_i);
 \]
 - if \(u \) is a MIN node,
 \[
 \text{disproof}_v(u) = \min_{i=1}^{i=k} \text{disproof}_v(u_i).\]
Revised PN-search(v): algorithm

- **loop**: Compute or update proof_v and disproof_v numbers for each node in a bottom up fashion.
 - If $\text{proof}_v(\text{root}) = 0$ or $\text{disproof}_v(\text{root}) = 0$, then we are done, otherwise
 - $\text{proof}_v(\text{root}) \leq \text{disproof}_v(\text{root})$: we try to prove it.
 - $\text{proof}_v(\text{root}) > \text{disproof}_v(\text{root})$: we try to disprove it.

- $u \leftarrow \text{root}$; \{ * find the leaf to prove or disprove * \}
 - if we try to prove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero proof_v number;
 - if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with a non-zero proof_v number;

 - if we try to disprove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with a non-zero disproof_v number;
 - if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero disproof_v number;

- Prove or disprove u; go to **loop**;
Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
 - Set the initial value of \(v \) to be 1.
 - \(\text{loop: } \text{PN-search}(v) \)
 - Prove the value of the search tree is \(\geq v \) or disprove it by showing it is \(< v \).
 - If it is proved, then double the value of \(v \) and go to \(\text{loop} \) again.
 - If it is disproved, then the true value of the tree is between \(\lfloor v/2 \rfloor \) and \(v - 1 \).
 - \{ * Use a binary search to find the exact returned value of the tree. * \}
 - \(\text{low} \leftarrow \lfloor v/2 \rfloor; \text{high} \leftarrow v - 1; \)
 - \(\text{while } \text{low} \leq \text{high} \) do
 - if \(\text{low} = \text{high} \), then return \(\text{low} \) as the tree value
 - \(\text{mid} \leftarrow \lfloor (\text{low} + \text{high})/2 \rfloor \)
 - \(\text{PN-search(mid)} \)
 - if it is disproved, then \(\text{high} \leftarrow \text{mid} - 1 \)
 - else if it is proved, then \(\text{low} \leftarrow \text{mid} \)
Comments

- Appears to be good for certain searching certain game trees.
 - Find the easiest way to prove or disprove a conjecture.
 - A dynamic strategy depends on work has been done so far.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.
References and further readings

