Theory of Computer Games

電腦對局理論

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Goal

- **Course name:** Theory of Computer Games

 電腦對局理論

- **Prerequisite:** Computer Programming, and Data Structure and Algorithms.

- **Goal:** This course introduces techniques for computers to play various games which include Chinese chess and Go.

- **Disclaimers:**
 - NOT yet a course on game theory.
 - NOT yet a course on video games.
 - NOT yet a course on war game simulations.

- **Web page:**
 http://www.iis.sinica.edu.tw/~tshsu/tcg/2015
About this course

- **Time and Place:** Every Thursday from 2:20pm to 5:20pm at Room 105 (NTU CSIE building).

 Sep 17 24
 Oct 1 8 15 22 29

- **Dates:**

 Nov 5 12 19 26
 Dec 3 10 17 24 31
 Jan 7 21

- **Format:**

 - Lectures.
 - Presentations for homework projects.
 - Invited lectures: Thursday Dec. 10, 2015
 - Chinese chess
 - Go
 - . . .
 - Student presentation: the last few lectures if time allows.

- **Class materials**

 - Class notes.
 - Collection of papers.
Acknowledgements

- Thanks to the students of this course for providing constructive feedbacks on the slides.

- Special thanks the following persons.
 - Yuh-Jie Chen (class of 2008)
 - Jennya Chang (class of 2011)
 - Jessica Lin (class of 2011)
 - 許祐程 (TA of the 2012 class)
Evaluation (1/3)

- **Homework (30%)**
 - One homework project about single-agent search (15%)
 - About single agent search.
 - Pick your own game, implement, and then present the result.
 - One homework project about Monte-Carlo simulation (15%)
 - About 2 player games.
 - Your program against TA’s program.

- **Written exam: midterm exam (30%)**
Evaluation (2/3)

- **Final project (40%)**
 - A computer game program for Chinese Dark Chess.
 - A sample code with GUI will be provided.
 - The usage of this sample code is restricted for anything related to this course only.
 - The 9th NTU-TCG Cup.
 - Submitted package: Code + documents.

- **Class participation (bonus)**
Evaluation (3/3)

- Presentation/Report of a research paper on game tree search.
 - If we have more than 16 students, then
 - Bonus for selected students who are obviously falling behind.
 - If we have less than 17 students, then
 - This is required for each student.
 - This will be 10% of your score in which case the two programming homework each take 10%.

- If time allows, give an in-class presentation.
 - Discussion before presentation.
 - 30-minute talk.
 - ≤ 30 slides in PDF format.
 - 10–15 minutes of Q & A.
 - Each student asks ≥ 1 non-trivial question.
 - Submit your revised set of slides one week later.

- If time does not allow, a written report.
 - Pick a paper related to the course.
 - Write a report with at least 1000 words in PDF format.
 - Summary of results in the paper.
 - Comments about this paper, its strength, weakness and potential improvements.
Lecturing format

For each topic
 - The first and most influential papers are introduced.
 - A list of recent and latest papers is provided for further readings and/or topics for presentations.
Topics

- **Introduction**: an A.I. oriented overview
- **Single-player games**
 - Homework 1
- **Two-player perfect information games**
 - Introduction
 - Alpha-beta and extensions
 - Midterm exam
 - Monte-Carlo based methods
 - Homework 2
- **Practical considerations**
 - Memorizing knowledge
 - Advanced pruning techniques
 - Parallel
 - The graph-history interaction (GHI) problem
 - Opponent model
 - Timing control
 - Hardware enhancements
 - Final project
Introduction and an A.I. oriented overview

- Relations between computer games and Artificial Intelligence.
 - Why we study computer games?
 - Why we play or study games?

- History [SvdH02] [Sha50a]
 - The Turk, a chess playing “machine” at 1780’s [LN82]
 - The endgame playing machine at 1910’s [McC04]
 - C. E. Shannon (1950) [Sha50b] and A. Samuel (1960) [Sam60]

- Games that machines have beaten human champions [SvdH02] [Sch00]
 - Chess [CHH02]
 - Othello [Bur97]
 - Checker [SLLB96]
 - ...
Single-player games

- Games that can be played by one person [DH09]
 - combinatorial games such as 15-puzzle or Sukodu
 - other solitaire

- Classical approaches [Kor85] [KF02] [CS98]
 - Brute-force, BFS, DFS and its variations including DFID
 - Bi-directional search
 - A*
 - IDA*
 - IDA* with databases

- Disk-based approach [KS05]
Two-player perfect information games (1/2)

- A survey of current status [vdHUvR02]

- Classical approaches
 - Alpha-beta search and its analysis [KM75]
 - Scout and Negascout [Pea80] [Rei83] [Fis83]
 - MTD(f): Best-first fixed-depth search [PSPdB96] [Pea80] if time allowed

- Enhancements to the classical approaches
 - Aspiration search
 - Quiescence search [Bea90]
 - Move ordering and other techniques [Sch89] [AN77] [Hsu91]
 - Further pruning techniques [SP96] including null move pruning and late move reduction
 - Proof-number search [AvdMvdH94] if time allowed

- Parallel alpha-beta based game tree search [Bro96] [FMM94] [HM02] [HSN89] [Hya97] [Man01]
Two-player perfect information games (2/2)

- Monte-Carlo game tree search \([BPW^{+}12]\)
 - Original ideas \([Bru93]\)
 - Best first game tree growing
 - UCT
 - Pruning techniques
 - Online knowledge \([BH04]\) \([YYK^{+}06]\)
 - Offline knowledge \([ST09]\) \([HCL10a]\)
 - Parallel Monte-Carlo game tree search \([CJ08]\) \([CWvdH08]\)

- Case study:
 - Computer Chinese chess \([YCYH04]\)
 - Computer Chinese dark chess \([CSH10]\) if time allowed
Other games – if time allowed

- Games with imperfect information and stochastic behaviors [FBM98]
 - Backgammon
 - Bridge
- Multi-player games [Stu06]
 - Poker
 - Majon
Practical considerations (1/2)

- **Transposition tables**
 - Recording prior-search results to avoid researching
 - Design of a good hash function
 - Zobrist’s hash function \[Zob70\]

- **Open-game [Hy"a99] [Bur99] and endgame databases [Tho86] [Tho96] [WLH06]**
 - Off-line collecting of knowledge
 - Computation done in advance

- **The graph-history interaction (GHI) problem [Cam85] [BvdHU98] [WHH05]**
 - The value of a position depends on the path leading to it.
 - Position value is dynamic and static.
Practical considerations (2/2)

- **Opponent model** [CM96]
 - How to take advantage of knowing the playing style of your opponent.

- **Timing and resource usage control** [Hyao84] [HGN85] [MS93]
 - Using time wisely
 - *Use too little time in the opening may be fatal.*
 - *Use too much time in opening may be fatal, too.*
 - *Knowledge from real tournament environments* [vV09].
 - *For Monte-Carlo type of search* [HCL10b].

- **Hardware enhancements** [DL04]
- **Parallelization** [Bro96] [Man01]
Concluding remarks

- Search chance nodes
- How to put everything together
- How to test your implementation
Resources (1/5)

- **ICGA web site**
 - http://ticc.uvt.nl/icga/
 - Formally as ICCA (International Computer Chess Association)
 - *Between 1977 and 2001.*
 - **International Computer Games Association**
 - *Since 2002.*
 - **Host of Computer Olympiad**
 - *International competition of games played by computers*
 - *1989 at London, United Kingdom (1st)*
 - …
 - *2004 at Ramat-Gan, Israel (9th)*
 - *2005 at Taipei, Taiwan (10th)*
 - …
 - *2011 at Tilburg, the Netherlands (16th)*
 - *2013 at Yokohama, Japan (17th)*
 - *2015 at Leiden, the Netherlands (18th)*
Resources (2/5)

- **TCGA web site**
 - Taiwan Computer Games Association
 - Since 2011.
 - http://tcga.ndhu.edu.tw
 - Annual June conference and tournaments

- **TAAI game tournaments**
 - Taiwan AI Association
 - http://www.taai.org.tw/TAAI/
 - Annual conference since 2001
 - Annual November game tournament since 2009
Resources (3/5)

- **Proceedings of IJCAI**
 - International Joint Conference on Artificial Intelligence
 - Covers all areas of A.I.
 - Computer games occupy only a small session now
 - Since 1969, odd numbered of years

- **Proceedings of AAAI**
 - Association for the Advancement of A.I.
 - Covers all areas of A.I.
 - Computer games occupy only a small session now
 - Since 1980
Resources (4/5)

- **Proceedings of the ACG conference**
 - Advances in Computer Games International Conference
 - Every (if possible) odd numbered of year
 - ...
 - 1999 at Paderborn, Germany (9th)
 - 2003 at Graz, Austria (10th)
 - 2005 at Taipei, Taiwan (11th)
 - 2009 at Pamplona, Spain (12th)
 - 2011 at Tilburg, the Netherlands (13th)
 - 2015 at Leiden, the Netherlands (14th)

- **Proceedings of the CG conference**
 - Computers and Games International Conference
 - Since 1998, almost even numbered of years

- **Proceedings of IEEE CIG**
 - Computational Intelligence and Games International Conference
 - Since 2005, every year.
 - Video game, classical games, ...
Resources (5/5)

- **Artificial Intelligence**
 - Flagship journal
 - Since 1970

- **ICGA journal**
 - Quarterly publication since 1977

- **The A.I. magazine**
 - Journal for AAAI
 - Since 1980

- **IEEE Transactions on Computational Intelligence and A.I. in Games**
 - An IEEE journal
 - Quarterly publication since 2009
References

ferencing on Chinese chess endgames. In H. Jaap van den Herik,
X. Xu, Z. Ma, and M. H.M. Winands, editors, Lecture Notes in
Computer Science 5131: Proceedings of the 6th International Con-
ference on Computers and Games, pages 180–191. Springer-Verlag,

of Chinese chess endgame knowledge base. In H. Jaap van den
Herik and P. Spronck, editors, Lecture Notes in Computer Sci-
ence 6048: Proceedings of the 12th Advances in Computer Games

straction in Chinese chess endgame databases. In H. Jaap van den
Herik, H. Iida, and A. Plaat, editors, Lecture Notes in Computer
Science 6515: Proceedings of the 7th International Conference
on Computers and Games, pages 176–187. Springer-Verlag, New
York, NY, 2011.

[SBB⁺07] Jonathan Schaeffer, Neil Burch, Yngvi Bjornsson, Akihiro Kishi-

