Theory of Computer Games: Concluding Remarks

Tsan-sheng Hsu

徐讎昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Abstract

- **Practical issues.**
 - The open book.
 - Smart usage of resources.
 - time during searching
 - memory
 - coding efforts
 - debugging efforts
 - Putting everything together.

- **Some advanced research issues.**
 - The graph history interaction (GHI) problem.
 - Opponent models.
 - Searching chance nodes.

- **How to test your program?**
During the open game, it is frequently the case
- branching factor is huge;
- it is difficult to write a good evaluating function;
- the number of possible distinct positions up to a limited length is small as compared to the number of possible positions encountered during middle game search.

Acquire game logs from
- books;
- games between masters;
- games between computers;

▷ Use off-line computation to find out the value of a position for a given depth that cannot be computed online during a game due to resource constraints.
Assume you have collected \(r \) games.
- For each position in the \(r \) games, compute the following 3 values:
 - \(\text{win} \): the number of games reaching this position and then wins.
 - \(\text{loss} \): the number of games reaching this position and then loss.
 - \(\text{draw} \): the number of games reaching this position and then draw.

When \(r \) is large and the games are trustful, then use the 3 values to compute an estimated goodness for this position.

Comments:
- Pure statistically.
- Can build a static open book.
- You program may not be able to take over when the open book is over.
- It is difficult to acquire large amount of “trustful” game logs.
- Automatically analysis of game logs written by human experts. [Chen et. al. 2006]
- Using high-level meta-knowledge to guide the way in searching:
 - \(\text{Dark chess}: \) adjacent attack of the opponent’s Cannon. [Chen and Hsu 2013]
A total of 28,591 (Red win) + 21,072 (Red lose) + 55,930 (draw) games.
Example: Chinese chess open book (2/3)

- Can be sorted using different criteria.
 - Win-lose
 - Winning rates
 - ...
Example: Chinese chess open book (3/3)

- A tree-like structure.
Using resources: time and others

- Time is the most critical resource [Hyatt 1984] [Šolak and Vučković 2009].
- Watch out different timing rules.
 - An upper bound on the total amount of time can be used.
 - It is hard to predict the total number of moves in a game in advance. However, you can have some rough ideas.
 - Fixed amount of time per ply.
 - An upper bound T_1 on the total amount of time is given, and then you need to play X plys every T_2 amount of time.
- Thinking style of human players.
 - Using almost no time while you are in the open book.
 - More time is spent in the beginning immediately after the program is out of the book.
 - Stop searching a path further when you think the position is stable in the middle game.
 - In the endgame phase, use more time in critical positions or when you try to initiate an attack.
 - Do not think at all if you have only one possible logical move left.
Pondering

- **Pondering:**
 - Use the time when your opponent is thinking.
 - Guessing and then pondering.

- **How pondering is done.**
 - In your turn, keep the first 2 plys m_1 and m_2 in the PV you obtained.
 - You choose to play m_1, and then it’s the opponent’s turn to think.
 - In pondering, you can assume the opponent plays m_2.
 - Then you continue to think at the same time your opponent thinks.
 - If the opponent plays m_2, then you can continue the pondering search in your turn.
 - If the opponent plays other moves, then you restart a new search.
Using other resources

- **Memory**
 - Using a large transposition table occupies a large space and thus slows down the program.
 - A large number of positions are not visited too often.
 - Using no transposition table makes you to search a position more than once.

- **CPU**
 - Do not fork a process to search branches that have little hope of finding the PV even you have more than enough hardware.

- **Other resources.**
Putting everything together

- **Game playing system**
 - GUI
 - Use some sorts of open books.
 - Middle-game searching: usage of a search engine.
 - Evaluating function: knowledge.
 - Main search algorithm.
 - Enhancements: transposition tables, Quiescent search and possible others.
 - Use some sorts of endgame databases.

- **Debugging and testing**
The graph history interaction (GHI) problem [Campbell 1985]:
- In a game graph, a position can be visited by more than one paths.
- The value of the position depends on the path visiting it.
 - It can be win. loss or draw for Chinese chess.
 - It can only be draw for Western chess.
 - It can only be loss for Go.

In the transposition table, you record the value of a position, but not the path leading to it.
- Values computed from rules on repetition cannot be used later on.
- It takes a huge amount of storage to store all the paths visiting it.

This is a very difficult problem to be solved in real time [Wu et al. ’05].
• Assume the one causes loops loses the game.
• $A \rightarrow B \rightarrow E \rightarrow I \rightarrow J \rightarrow H \rightarrow E$ is loss because of rules of repetition.
 ▶ Memorized H as a loss position.
• $A \rightarrow B \rightarrow D$ is a loss.
• $A \rightarrow C \rightarrow F \rightarrow H$ is loss because H is recorded as loss.
• A is loss because both branches lead to loss.
• However, $A \rightarrow C \rightarrow F \rightarrow H \rightarrow E \rightarrow G$ is a win.
Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.

- What will happen when there are two strategies or evaluating functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$
 - “better” means closer to the real value $f(p)$
 - for some positions q, $f_2(q)$ is better than $f_1(q)$

- If you are using f_1 and you know your opponent is using f_2, what can be done to take advantage of this information.
 - This is called OM (opponent model) search [Carmel and Markovitch 1996].
 - In a MAX node, use f_1.
 - In a MIN node, use f_2.

Opponent models – comments

- Comments:
 - Need to know your opponent model precisely.
 - How to learn the opponent on-line or off-line?
 - When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.
Search with chance nodes

- **Chinese dark chess**
 - Two player, zero sum, complete information
 - Perfect information
 - Stochastic
 - There is a *chance* node during searching [Ballard 1983].
 - *The value of a node is a distribution, not a fixed value.*

- **Previous work**
 - Alpha-beta based [Ballard 1983]
 - Monte-Carlo based [Lancoto et al 2013]
Example

- **Black to flip a1.**
 - If a1 is black cannon, then black can win.
 - If a1 is black king, then it is difficult for black to win.
Basic ideas for searching chance nodes

- Assume a chance node x has a score probability distribution function $Pr(*)$ with the range of possible outcomes from 1 to N where N is a positive integer.
 - For each possible outcome i, there is a $score(i)$ to be computed.
 - The expected value $E = \sum_{i=1}^{N} score(i) * Pr(x = i)$.
 - The minimum value is $m = \min_{i=1}^{N}\{score(i) | Pr(x = i) > 0\}$.
 - The maximum value is $M = \max_{i=1}^{N}\{score(i) | Pr(x = i) > 0\}$.

- Example: in Chinese dark chess.
 - For the first ply, $N = 14 * 32$.
 - Using symmetry, we can reduce it to 7*8.
 - We now consider the chance node of flipping the piece at the cell a1.
 - $N = 14$.
 - Assume $x = 1$ means a black King is revealed and $x = 8$ means a red King is revealed.
 - Then $score(1) = score(8)$.
 - $Pr(x = 1) = Pr(x = 8) = 1/14$.
Bounds in a chance node

- Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase i, $i = N$ is evaluated.
 - Assume $v_{\min} \leq score(i) \leq v_{\max}$.
- How do the lower and upper bounds, namely m_i and M_i, of the chance node change at the end of phase i?
 - $i = 0$.
 - $m_0 = v_{\min}$
 - $M_0 = v_{\max}$
 - $i = 1$, we first compute $score(1)$, and then know
 - $m_1 \geq score(1) \times Pr(x = 1) + v_{\min} \times (1 - Pr(x = 1))$, and
 - $M_1 \leq score(1) \times Pr(x = 1) + v_{\max} \times (1 - Pr(x = 1))$.
 - ...
 - $i = i^*$, we have computed $score(1), \ldots, score(i^*)$, and then know
 - $m_{i^*} \geq \sum_{i=1}^{i^*} score(i) \times Pr(x = i) + v_{\min} \times (1 - \sum_{i=1}^{i^*} Pr(x = i))$, and
 - $M_{i^*} \leq \sum_{i=1}^{i^*} score(i) \times Pr(x = i) + v_{\max} \times (1 - \sum_{i=1}^{i^*} Pr(x = i))$.

Algorithm: Chance_Search

Algorithm $F4.8'(position \ p, \ value \ alpha, \ value \ beta, \ integer \ depth)$

- determine the successor positions p_1, \ldots, p_b
- ... for $h = 1$ to b do
 - if p_h is not a chance node, then search normally
 - else we searching a chance node p_h with N choices such that with a probability Pr_i it will be k_i
 - $m_0 = alpha$;
 - $M_0 = beta$;
 - for each possible choice k_i from 1 to N do
 - $t := G4.8'(k_i, m_{i-1}, M_{i-1}, depth - 1)$;
 - $m_i = m_{i-1} + (t - alpha) * Pr_i$;
 - $M_i = M_{i-1} + (t - beta) * Pr_i$;
 - ...
Example: Chinese dark chess

- **Assumption:**
 - The range of the scores of Chinese dark chess is \([-10, 10]\) inclusive.
 - \(N = 7\).
 - \(Pr(x = i) = 1/N = 1/7\).

- **Calculation:**
 - \(i = 0\),
 - \(m_0 = -10\).
 - \(M_0 = 10\).
 - \(i = 1\) and if \(score(1) = -2\), then
 - \(m_1 = -2 * 1/7 + -10 * 6/7 = -62/7 \simeq -8.86\).
 - \(M_1 = -2 * 1/7 + 10 * 6/7 = 58/7 \simeq 8.26\).
 - \(i = 1\) and if \(score(1) = 3\), then
 - \(m_1 = 3 * 1/7 + -10 * 6/7 = -57/7 \simeq -8.14\).
 - \(M_1 = 3 * 1/7 + 10 * 6/7 = 63/7 = 9\).
How to use these bounds

- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
 - Nicely fit into the alpha-beta search algorithm.
- Can do better by not searching the DFS order.
 - It is not necessary to search completely the subtree of $x = 1$ first, and then start to look at the subtree of $x = 2$.
 - Assume it is a MAX chance node, e.g., the opponent takes a flip.
 - Knowing some value v'_1 of a subtree for $x = 1$ gives an upper bound, i.e., $\text{score}(1) \geq v'_1$.
 - Knowing some value v'_2 of a subtree for $x = 2$ gives another upper bound, i.e., $\text{score}(2) \geq v'_2$.
 - These bounds can be used to make the search window further narrower.
- For Monte-Carlo based algorithm, we need to use a sparse sampling algorithm to efficiently estimate the expected value of a chance node [Kearn et al 2002].
Testing

- You have two versions P_1 and P_2.
- You make the 2 programs play against each other using the same resource constraints.
- To make it fair, during a round of testing, the numbers of a program plays first and second are equal.
- After a few rounds of testing, how do you know P_1 is better or worse than P_2?
Assume during a self-play experiment, two copies of the same program are playing against each other.

- Since two copies of the same program are playing against each other, the outcome of each game is an independent random trial and can be modeled as a trinomial random variable.
- Assume for a copy playing first,

\[
Pr(game_{first}) = \begin{cases}
 p & \text{if win} \\
 q & \text{if draw} \\
 1 - p - q & \text{if lose}
\end{cases}
\]

- Hence for a copy playing second,

\[
Pr(game_{last}) = \begin{cases}
 1 - p - q & \text{if win} \\
 q & \text{if draw} \\
 p & \text{if lose}
\end{cases}
\]
Outcome of self-play games

- Assume $2n$ games, g_1, g_2, \ldots, g_{2n} are played.
 - In order to offset the initiative, namely first player’s advantage, each copy plays first for n games.
 - We also assume each copy alternatives in playing first.
 - Let g_{2i-1} and g_{2i} be the ith pair of games.

- Let the outcome of the ith pair of games be a random variable X_i from the prospective of the copy who plays g_{2i-1}.
 - Assume we assign a score of x for a game won, a score of 0 for a game drawn and a score of $-x$ for a game lost.

- The outcome of X_i and its occurrence probability is thus

$$Pr(X_i) = \begin{cases}
 p(1 - p - q) & \text{if } X_i = 2x \\
 pq + (1 - p - q)q & \text{if } X_i = x \\
 p^2 + (1 - p - q)^2 + q^2 & \text{if } X_i = 0 \\
 pq + (1 - p - q)q & \text{if } X_i = -x \\
 (1 - p - q)p & \text{if } X_i = -2x
\end{cases}$$
How good we are against the baseline?

- **Properties of** X_i.
 - The mean $E(X_i) = 0$.
 - The standard deviation of X_i is
 \[
 \sqrt{E(X_i^2)} = \sqrt{2pq + (2q + 8p)(1 - p - q)},
 \]
 and it is a multi-nominally distributed random variable.

- **When you have played** n **pairs of games, what is the probability of getting a score of** s, $s > 0$?
 - Let $X[n] = \sum_{i=1}^{n} X_i$.
 - The mean of $X[n]$, $E(X[n])$, is 0.
 - The standard deviation of $X[n]$, σ_n, is $x\sqrt{n}\sqrt{2pq + (2q + 8p)(1 - p - q)}$.
 - If $s > 0$, we can calculate the probability of $Pr(|X[n]| \leq s)$ using well known techniques from calculating multi-nominal distributions.
Practical setup

- Parameters that are usually used.
 - $x = 1$.
 - For Chinese chess, q is about 0.3161, $p = 0.3918$ and $1 - p - q$ is 0.2920.

 - This means the first player has a better chance of winning.

- The mean of $X[n]$, $E(X[n])$, is 0.
- The standard deviation of $X[n]$, σ_n, is

\[
x \sqrt{n} \sqrt{2pq + (2q + 8p)(1 - p - q)} = \sqrt{1.16n}.
\]
| n | σ | $Pr(|X[n]| \leq s)$ | $s = 0$ | $s = 1$ | $s = 2$ | $s = 3$ | $s = 4$ | $s = 5$ | $s = 6$ |
|------|----------|----------------------|--------|--------|--------|--------|--------|--------|--------|
| 10 | 3.67 | 0.108 | 0.315 | 0.502 | 0.658 | 0.779 | 0.866 | 0.924 |
| 20 | 5.19 | 0.076 | 0.227 | 0.369 | 0.499 | 0.613 | 0.710 | 0.789 |
| 30 | 6.36 | 0.063 | 0.186 | 0.305 | 0.417 | 0.520 | 0.612 | 0.693 |
| 40 | 7.34 | 0.054 | 0.162 | 0.266 | 0.366 | 0.460 | 0.546 | 0.624 |
| 50 | 8.21 | 0.049 | 0.145 | 0.239 | 0.330 | 0.416 | 0.497 | 0.571 |
Results (2/3)

| $Pr(|X[n]| \leq s)$ | $s = 7$ | $s = 8$ | $s = 9$ | $s = 10$ | $s = 11$ | $s = 12$ | $s = 13$ |
|---------------------|---------|---------|---------|---------|---------|---------|---------|
| $n = 10$, $\sigma_{10} = 3.67$ | 0.960 | 0.981 | 0.991 | 0.997 | 0.999 | 1.000 | 1.000 |
| $n = 20$, $\sigma_{20} = 5.19$ | 0.851 | 0.899 | 0.933 | **0.958** | 0.974 | 0.985 | 0.991 |
| $n = 30$, $\sigma_{30} = 6.36$ | 0.761 | 0.819 | 0.865 | 0.902 | 0.930 | **0.951** | 0.967 |
| $n = 40$, $\sigma_{40} = 7.34$ | 0.693 | 0.753 | 0.804 | 0.847 | 0.883 | 0.912 | 0.934 |
| $n = 50$, $\sigma_{50} = 8.21$ | 0.639 | 0.699 | 0.753 | 0.799 | 0.839 | 0.872 | 0.900 |
Results (3/3)

| $Pr(|X[n]| \leq s)$ | \(n = 10, \sigma_{10} = 3.67\) | \(n = 20, \sigma_{20} = 5.19\) | \(n = 30, \sigma_{30} = 6.36\) | \(n = 40, \sigma_{40} = 7.34\) | \(n = 50, \sigma_{50} = 8.21\) |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $s = 14$ | 1.000 | 0.995 | 0.978 | **0.952** | 0.923 |
| $s = 15$ | 1.000 | 0.997 | 0.986 | 0.966 | 0.941 |
| $s = 16$ | 1.000 | 0.999 | 0.991 | 0.976 | **0.956** |
| $s = 17$ | 1.000 | 0.999 | 0.994 | 0.983 | 0.967 |
| $s = 18$ | 1.000 | 1.000 | 0.997 | 0.989 | 0.976 |
| $s = 19$ | 1.000 | 1.000 | 0.998 | 0.992 | 0.983 |
| $s = 20$ | 1.000 | 1.000 | 0.999 | 0.995 | 0.988 |

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu ©
Statistical behaviors

- Hence assume you have two programs that are playing against each other and have obtained a score of $s + 1$, $s > 0$, after trying n pairs of games.
 - Assume $Pr(|X[n]| \leq s)$ is say 0.95.
 - Then this result is meaningful, that is a program is better than the other, because it only happens with a low probability of 0.05.
 - Assume $Pr(|X[n]| \leq s)$ is say 0.05.
 - Then this result is not very meaningful, because it happens with a high probability of 0.95.

- In general, it is a very rare case, e.g., less than 5% of chance that it will happen, that your score is more than $2\sigma_n$.
 - For our setting, if you perform n pairs of games, and your net score is more than $2 \times \sqrt{1.16} \times \sqrt{n} \simeq 2.154 \sqrt{n}$, then it means something statistically.

- You can also decide your “definition” of “a rare case”.

Concluding remarks

Consider your purpose of studying a game:

- It is good to solve a game completely.
 - You can only solve a game once!
- It is better to acquire the knowledge about why the game wins, draws or loses.
 - You can learn lots of knowledge.
- It is even better to discover knowledge in the game and then use it to make the world a better place.
 - Fun!

Try to use the techniques learned from this course in other areas!
References and further readings (1/3)

References and further readings (2/3)

References and further readings (3/3)

- Bruce W. Ballard The *-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350