Alpha-Beta Pruning: Algorithm and Analysis

Tsan-sheng Hsu

徐讖昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Alpha-beta pruning is the standard searching procedure used for 2-person perfect-information zero sum games.

Definitions:
- A position p.
- The value of a position p, $f(p)$, is a numerical value computed from evaluating p.
 - Value is computed from the root player’s point of view.
 - Positive values mean in favor of the root player.
 - Negative values mean in favor of the opponent.
 - Since it is a zero sum game, thus from the opponent’s point of view, the value can be assigned $-f(p)$.
- A terminal position: a position whose value can be decided.
 - A position where win/loss/draw can be concluded.
 - A position where some constraints are met.
- A position p has b legal moves p_1, p_2, \ldots, p_b.
From the root, number a node in a search tree by a sequence of integers \(a_1.a_2.a_3.a_4 \cdots\):

- Meaning from the root, you first take the \(a_1\)th branch, then the \(a_2\)th branch, and then the \(a_3\)th branch, and then the \(a_4\)th branch \(\cdots\)
- The root is specified as an empty sequence.
- The depth of a node is the length of the sequence of integers specifying it.

This is called “Dewey decimal system.”
Mini-max formulation:

- **Mini-max formulation:**

 \[
 F'(p) = \begin{cases}
 f(p) & \text{if } b = 0 \\
 \max \{G'(p_1), \ldots, G'(p_b)\} & \text{if } b > 0
 \end{cases}
 \]

 \[
 G'(p) = \begin{cases}
 f(p) & \text{if } b = 0 \\
 \min \{F'(p_1), \ldots, F'(p_b)\} & \text{if } b > 0
 \end{cases}
 \]

- **An indirect recursive formula!**
- **Equivalent to AND-OR logic.**
Algorithm: Mini-max

Algorithm $F'(position \ p) \ // \ max \ node$
- determine the successor positions p_1, \ldots, p_b
- if $b = 0$, then return $f(p)$ else begin
 - $m := -\infty$
 - for $i := 1 \ to \ b$ do
 - $t := G'(p_i)$
 - if $t > m$ then $m := t \ // \ find \ max \ value$
 - end; return m

Algorithm $G'(position \ p) \ // \ min \ node$
- determine the successor positions p_1, \ldots, p_b
- if $b = 0$, then return $f(p)$ else begin
 - $m := \infty$
 - for $i := 1 \ to \ b$ do
 - $t := F'(p_i)$
 - if $t < m$ then $m := t \ // \ find \ min \ value$
 - end; return m

A brute-force method to try all possibilities!
Algorithm $F'(\text{position } p)$ // max node

1. determine the successor positions p_1, \ldots, p_b
2. if $b = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 then return $f(p)$ // current board value
3. else begin
 - $\delta m := -\infty$ // initial value
 - for $i := 1$ to b do // try each child
 - begin
 - $t := G'(p_i)$
 - if $t > m$ then $m := t$ // find max value
 - end
 - end
4. return m
Algorithm $G'(\text{position } p)$ // min node

- determine the successor positions p_1, \ldots, p_b
- if $b = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 then return $f(p)$ // current board value
else begin
 $\Delta m := \infty$ // initial value
 Δ for $i := 1$ to b do // try each child
 Δ begin
 Δ $t := F'(p_i)$
 Δ if $t < m$ then $m := t$ // find min value
 Δ end

end

- return m
Nega-max formulation:
Let $F(p)$ be the greatest possible value achievable from position p against the optimal defensive strategy.

\[
F(p) = \begin{cases}
 h(p) & \text{if } b = 0 \\
 \max \{-F(p_1), \ldots, -F(p_b)\} & \text{if } b > 0
\end{cases}
\]

\[
h(p) = \begin{cases}
 f(p) & \text{if depth of } p \text{ is 0 or even} \\
 -f(p) & \text{if depth of } p \text{ is odd}
\end{cases}
\]
Algorithm: Nega-max

- **Algorithm** $F(\text{position } p)$
 - determine the successor positions p_1, \ldots, p_b
 - if $b = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return $h(p)$ else
 - begin
 ▶ $m := -\infty$
 ▶ for $i := 1$ to b do
 ▶ begin
 ▶ $t := -F(p_i)$ // recursive call, the returned value is negated
 ▶ if $t > m$ then $m := t$ // always find a max value
 ▶ end
 ▶ end
 - return m

- Also a brute-force method to try all possibilities, but with a simpler code.
Intuition for improvements

- **Branch-and-bound:** using information you have so far to cut or prune branches.
 - A branch is cut means we do not need to search it anymore.
 - If you know for sure the value of your result is more than x and the current search result for this branch so far can give you no more than x, then there is no need to search this branch any further.

- **Two types of approaches**
 - **Exact algorithms:** through mathematical proof, it is guaranteed that the branches pruned won’t contain the solution.
 - Alpha-beta pruning: reinvented by several researchers in the 1950’s and 1960’s.
 - Scout.
 - ...
 - **Approximated heuristics:** with a high probability that the solution won’t be contained in the branches pruned.
 - Obtain a good estimation on the remaining cost.
 - Cut a branch when it is in a very bad position and there is little hope to gain back the advantage.
- Alpha cut-off:
 - On a max node
 - Assume you have finished exploring the branch at 1 and obtained the best value from it as bound.
 - You now search the branch at 2 by first searching the branch at 2.1.
 - Assume branch at 2.1 returns a value that is \leq bound.
 - Then no need to evaluate the branch at 2.2 and all later branches of 2, if any, at all.
 - The best possible value for the branch at 2 must be \leq bound.
 - Hence we should take value returned from the branch at 1 as the best possible solution.
Beta cut-off:
- On a min node
 - Assume you have finished exploring the branch at 1.1 and obtained the best value from it as bound.
 - You now search the branches at 1.2 by first exploring the branch at 1.2.1.
 - Assume the branch at 1.2.1 returns a value that is \geq bound.
 - Then no need to evaluate the branch at 1.2.2 and all later branches of 1.2, if any, at all.
 - The best possible value for the branch at 1.2 is \geq bound.
 - Hence we should take value returned from the branch at 1.1 as the best possible solution.
Deep alpha cut-off

For alpha cut-off:

- For a min node u, the branch of its ancestor (e.g., elder brother of its parent) produces a lower bound V_l.
- The first branch of u produces an upper bound V_u for v.
- If $V_l \geq V_u$, then there is no need to evaluate the second branch and all later branches, of u.

Deep alpha cut-off:

- Def: For a node u in a tree and a positive integer g, $\text{Ancestor}(g, u)$ is the direct ancestor of u by tracing the parent’s link g times.
- When the lower bound V_l is produced at and propagated from u’s great grand parent, i.e., $\text{Ancestor}(3, u)$, or any $\text{Ancestor}(2i + 1, u)$, $i \geq 1$.
- When an upper bound V_u is returned from the a branch of u and $V_l \geq V_u$, then there is no need to evaluate all later branches of u.

We can find similar properties for deep beta cut-off.
Ideas for refinements

- During searching, maintain two values \textit{alpha} and \textit{beta} so that
 - \textit{alpha} is the current lower bound of the possible returned value;
 - \textit{beta} is the current upper bound of the possible returned value.

- If during searching, we know for sure \textit{alpha} > \textit{beta}, then there
 is no need to search any more in this branch.
 - The returned value cannot be in this branch.
 - Backtrack until it is the case \textit{alpha} \leq \textit{beta}.

- The two values \textit{alpha} and \textit{beta} are called the ranges of the
 current search window.
 - These values are dynamic.
 - Initially, \textit{alpha} is $-\infty$ and \textit{beta} is ∞.
Algorithm $F2'(\text{position } p, \text{ value } \alpha, \text{ value } \beta)$ // max node
- determine the successor positions p_1, \ldots, p_b
- if $b = 0$, then return $f(p)$ else begin
 - $m := \alpha$
 - for $i := 1$ to b do
 - $t := G2'(p_i, m, \beta)$
 - if $t > m$ then $m := t$
 - if $m \geq \beta$ then return(m) // beta cut off
 - end; return m

Algorithm $G2'(\text{position } p, \text{ value } \alpha, \text{ value } \beta)$ // min node
- determine the successor positions p_1, \ldots, p_b
- if $b = 0$, then return $f(p)$ else begin
 - $m := \beta$
 - for $i := 1$ to b do
 - $t := F2'(p_i, \alpha, m)$
 - if $t < m$ then $m := t$
 - if $m \leq \alpha$ then return(m) // alpha cut off
 - end; return m
Example

Initial call: $F'2'(\text{root}, -\infty, \infty)$

- $m = -\infty$

- call $G'2'(\text{node 1}, -\infty, \infty)$
 - it is a terminal node
 - return value 15

- $t = 15$;
 - since $t > m$, m is now 15

- call $G'2'(\text{node 2}, 15, \infty)$
 - call $F'2'(\text{node 2.1}, 15, \infty)$
 - it is a terminal node; return 10
 - $t = 10$; since $t < \infty$, m is now 10
 - alpha is 15, m is 10, so we have an alpha cut off
 - no need to call $F'2'(\text{node 2.2}, 15, 10)$
 - ...
A complete example
A complete example

max

min

max

min

TCG: α-β Pruning, 20151105, Tsan-sheng Hsu ©
Alpha-beta pruning algorithm: Nega-max

- Algorithm $F2(position \ p, \ value \ alpha, \ value \ beta)$
 - determine the successor positions p_1, \ldots, p_b
 - if $b = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return $h(p)$ else
 - begin
 - $m := alpha$
 - for $i := 1$ to b do
 - begin
 - $t := -F2(p_i, -beta, -m)$
 - if $t > m$ then $m := t$
 - end
 - if $m \geq beta$ then return(m) // cut off
 - end
 - return m
Examples (1/4)

max

min

max

min

max

min

TCG: α-β Pruning, 20151105, Tsan-sheng Hsu ©
Examples (2/4)
Examples (3/4)

max

min

max

min

TCG: α-\β Pruning, 20151105, Tsan-sheng Hsu ©
Examples (3/4)

\[
\begin{array}{c}
\text{max} \\
\text{min} \\
\text{max} \\
\text{min}
\end{array}
\]
Examples (4/4)

max

min

max

min

max

min

max

min
Lessons from the previous examples

- It looks like for the same tree, different move orderings give very different cut branches.
- It looks like if a node can evaluate a child with the best possible outcome earlier, then it can decide to cut earlier.
 - For a min node, this means to evaluate the child branch that gives the lowest value first.
 - For a max node, this means to evaluate the child branch that gives the highest value first.
- Q: In the best possible scenario, how many nodes are cut?
Analysis of a possible best case

- **Definitions:**
 - A path in a search tree is a sequence of numbers indicating the branches selected in each level using the Dewey decimal system.
 - A position is denoted as a path $a_1.a_2.\cdots.a_\ell$ from the root.
 - A position $a_1.a_2.\cdots.a_\ell$ is **critical** if
 - $a_i = 1$ for all even values of i or
 - $a_i = 1$ for all odd values of i.
 - Note: as a special case, the root is critical.
 - Examples:
 - $2.1.4.1.2$, $1.3.1.5.1.2$, $1.1.1.2.1.1.1.3$ and 1.1 are critical
 - $1.2.1.1.2$ is not critical
A perfect-ordering tree:

\[
F(a_1 \cdots a_\ell) = \begin{cases}
 h(a_1 \cdots a_\ell) & \text{if } a_1 \cdots a_\ell \text{ is a terminal} \\
 -F(a_1 \cdots a_\ell.1) & \text{otherwise}
\end{cases}
\]

- The first successor of every non-terminal position gives the best possible value.
Theorem 1

Theorem 1: F^2 examines precisely the critical positions of a perfect-ordering tree.

Proof sketch:

- Classify the critical positions, a.k.a. nodes.
 - You must evaluate the first branch from the root to the bottom.
 - Alpha cut off happens at odd-depth nodes as soon as the first branch of this node is evaluated.
 - Beta cut off happens at even-depth nodes as soon as the first branch of this node is evaluated.

- For each type of nodes, try to associate them with the types of pruning occurred.
Types of nodes

- Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index, if exists, such that $a_j \neq 1$ and ℓ is the last index.
 - Def: let $IS1(a_i)$ be a boolean function so that it is 0 if it is not the value 1 and it is 1 if it is.
 ▶ We call this $IS1$ parity of a number.
 - If j exists and $\ell > j$, then
 ▶ $a_{j+1} = 1$ because this position is critical and thus the $IS1$ parities of a_j and a_{j+1} are different.
 - Since this position is critical, if $a_j \neq 1$, then $a_h = 1$ for any h such that $h - j$ is odd.

- We now classify critical nodes into 3 types.
 - Nodes of the same type share some common properties.
Illustration — critical nodes

TCG: α-β Pruning, 20151105, Tsan-sheng Hsu ©
Type 1 nodes

- **type 1**: the root, or a node with all the a_i are 1;
 - This means j does not exist.
 - Nodes on the leftmost branch.
 - The leftmost child of a type 1 node except the root.
Type 2 nodes

- Classification of critical positions \(a_1.a_2.\cdots.a_j.\cdots.a_\ell\) where \(j\) is the least index such that \(a_j \neq 1\) and \(\ell\) is the last index.

- **type 2:** \(\ell - j\) is zero or even;
 - **type 2.1:** \(\ell - j = 0\).
 - It is in the form of \(1.1.1.\cdots.1.1.1.a_\ell\) and \(a_\ell \neq 1\).
 - The non-leftmost children of a type 1 node.
 - **type 2.2:** \(\ell - j > 0\) and is even.
 - It is in the form of \(1.1.\cdots.1.1.a_j.1.a_{j+2}.\cdots.a_{\ell-2}.1.a_\ell\).
 - Note, we will show \(1.1.\cdots.1.1.a_j.1.a_{j+2}.\cdots.a_{\ell-2}.1\) is a type 3 node later.
 - All of the children of a type 3 node.
Type 3 nodes

- Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

- type 3: $\ell - j$ is odd;
 - type 3.1: $\ell = j + 1$.
 - It is of the form $1.1.\cdots.1.a_j.1$
 - The leftmost child of a type 2.1 node.
 - type 3.2: $\ell > j + 1$.
 - It is of the form $1.1.\cdots.1.a_j.1.a_{j+2}.1.\cdots.1.a_{\ell-1}.1$
 - The leftmost child of a type 2.2 node.
Comments

- Nodes of the same type have common properties.
- These properties can be used in solving other problems.
 - Example: Efficient parallelization.
- Main techniques used:
 - you cannot have two consecutive non-1 numbers in the ID of a critical node.
 - For each non-1 number, any number appeared later and is odd distance away must be 1.
Type 2.1 nodes

- **Classification of critical positions** $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

- **type 2**: $\ell - j$ is zero or even;
 - **type 2.1**: $\ell - j = 0$.
 - Then $\ell = j$.
 - *It is in the form of 1.1.1.\cdots.1.1.1.a_\ell and $a_\ell \neq 1$.*
 - *The non-leftmost children of a type 1 node.*
Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

- **type 3**: $\ell - j$ is odd;
 - **type 3.1**: $\ell = j + 1$.
 - It is of the form $1.1.\cdots.1.a_j.1$ and $a_\ell \neq 1$.
 - The leftmost child of a type 2.1 node.
Type 2.2 nodes

- Classification of critical positions $a_1.a_2.\cdots.a_j.\cdots.a_\ell$ where j is the least index such that $a_j \neq 1$ and ℓ is the last index.

- **type 2**: $\ell - j$ is zero or even;
 - **type 2.2**: $\ell - j > 0$ and is even.
 - The IS1 parties of a_j and a_{j+1} are different.
 \implies Since $a_j \neq 1$, $a_{j+1} = 1$.
 - $(\ell - 1) - j$ is odd:
 \implies The IS1 parties of $a_{\ell-1}$ and a_j are different.
 \implies Since $a_j \neq 1$, $a_{\ell-1} = 1$.
 - It is in the form of $1.1.\cdots.1.1.a_j.1.a_{j+2}.\cdots.a_{\ell-2}.1.a_\ell$.
 - Note, we will show $1.1.\cdots.1.1.a_j.1.a_{j+2}.\cdots.a_{\ell-2}.1$ is a type 3 node later.
 - All of the children of a type 3 node.
Type 2.2 nodes

The diagram illustrates various types of nodes, including type 1, type 2.1, type 3.1, and type 2.2. The nodes are organized in a hierarchical structure with connections indicating different relationships or classifications within the system.
Type 3.2 nodes

- Classification of critical positions \(a_1.a_2.\cdots.a_j.\cdots.a_\ell \) where \(j \) is the least index such that \(a_j \neq 1 \) and \(\ell \) is the last index.

- **type 3:** \(\ell - j \) is odd;
 - \(a_j \neq 1 \) and \(\ell - j \) is odd
 - Since this position is critical, the IS1 parities of \(a_j \) and \(a_\ell \) are different.
 - \(\implies a_\ell = 1 \)
 - \(\implies a_{j+1} = 1 \)
 - It is in the form of
 - \(1.1.\cdots.1.a_j.1.a_{j+2}.1.\cdots.1.a_{\ell-1}.1. \)

- The leftmost child of a **type 2 node**.

- **type 3.1:** \(\ell = j + 1 \).
 - It is of the form \(1.1.\cdots.1.a_j.1 \)
 - The leftmost child of a type 2.1 node.

- **type 3.2:** \(\ell > j + 1 \).
 - It is of the form \(1.1.\cdots.1.a_j.1.a_{j+2}.1.\cdots.1.a_{\ell-1}.1 \)
 - The leftmost child of a type 2.2 node.
Type 3.2 nodes
Illustration
Illustration
Illustration
Proof sketch for Theorem 1

Properties (invariants)

- **A type 1 position** \(p \) is examined by calling \(F2(p, -\infty, \infty) \)
 - \(p \)'s first successor \(p_1 \) is of type 1
 - \(F(p) = -F(p_1) \neq \pm\infty \)
 - \(p \)'s other successors \(p_2, \ldots, p_b \) are of type 2
 - \(p_i, i > 1, \) are examined by calling \(F2(p_i, -\infty, F(p_1)) \)

- **A type 2 position** \(p \) is examined by calling \(F2(p, -\infty, beta) \) where \(-\infty < beta \leq F(p) \)
 - \(p \)'s first successor \(p_1 \) is of type 3
 - \(F(p) = -F(p_1) \)
 - \(p \)'s other successors \(p_2, \ldots, p_b \) are not examined

- **A type 3 position** \(p \) is examined by calling \(F2(p, alpha, \infty) \) where \(\infty > alpha \geq F(p) \)
 - \(p \)'s successors \(p_1, \ldots, p_b \) are of type 2
 - they are examined by calling \(F2(p_1, -\infty, -alpha), \)
 \(F2(p_2, -\infty, -\max\{m_1, alpha\}), \ldots, \)
 \(F2(p_i, -\infty, -\max\{m_{i-1}, alpha\}) \)
 - where \(m_i = F2(p_i, -\infty, -\max\{m_{i-1}, alpha\}) \)

Using an inductive argument to prove all and also only critical positions are examined.
Corollary 1: Assume each position has exactly b successors
- The number of positions examined by the alpha-beta procedure on level i is exactly
 $$\left\lceil \frac{i}{2} \right\rceil + \left\lfloor \frac{i}{2} \right\rfloor - 1.$$

Proof:
- There are $b^\left\lfloor \frac{i}{2} \right\rfloor$ sequences of the form $a_1 \cdots a_i$ with $1 \leq a_i \leq b$ for all i such that $a_i = 1$ for all odd values of i.
- There are $b^\left\lceil \frac{i}{2} \right\rceil$ sequences of the form $a_1 \cdots a_i$ with $1 \leq a_i \leq b$ for all i such that $a_i = 1$ for all even values of i.
- We subtract 1 for the sequence $1.1 \cdots 1.1$ which are counted twice.

Total number of nodes visited is
$$\sum_{i=0}^{\ell} b^\left\lceil \frac{i}{2} \right\rceil + b^\left\lfloor \frac{i}{2} \right\rfloor - 1.$$
Analysis: average case

- **Assumptions:** Let a random game tree be generated in such a way that
 - each position on level j has probability q_j of being nonterminal
 - has an average of b_j successors

- **Properties of the above random game tree**
 - Expected number of positions on level ℓ is $b_0 \cdot b_1 \cdots b_{\ell-1}$
 - Expected number of positions on level ℓ examined by an alpha-beta procedure assumed the random game tree is perfectly ordered is
 \[
 b_0q_1b_2q_3 \cdots b_{\ell-2}q_{\ell-1} + q_0b_1q_2b_3 \cdots q_{\ell-2}b_{\ell-1} - q_0q_1 \cdots q_{\ell-1} \text{ if } \ell \text{ is even;}
 \]
 \[
 b_0q_1b_2q_3 \cdots q_{\ell-2}b_{\ell-1} + q_0b_1q_2b_3 \cdots b_{\ell-2}q_{\ell-1} - q_0q_1 \cdots q_{\ell-1} \text{ if } \ell \text{ is odd}
 \]

- **Proof sketch:**
 - If x is the expected number of positions of a certain type on level j, then xb_j is the expected number of successors of these positions, and xq_j is the expected number of “numbered 1” successors.
 - The above numbers equal to those of Corollary 1 when $q_j = 1$ and $b_j = b$ for $0 \leq j < \ell$.
Perfect ordering is not always the best

- Intuitively, we may “think” alpha-beta pruning would be most effective when a game tree is perfectly ordered.
 - That is, when the first successor of every position is the best possible move.
 - This is not always the case!

- Truly optimum order of game trees traversal is not obvious.
When is a branch pruned?

- Assume a node r has two children u and v with u being visited before v using some move ordering.
 - Further assume u produced a new bound bound.
- Assume node v has a child w.
 - If the value new returned from w can cause a range conflict with bound, then branches of v later than w are cut.
- This means as long as the “relative” ordering of u and v are good enough, then we can have some cut-off.
 - There is no need for r to have the best move ordering.
Theorem 2: Alpha-beta pruning is optimum in the following sense:

- Given any game tree and any algorithm which computes the value of the root position, there is a way to permute the tree by reordering successor positions if necessary;

- so that every terminal position examined by the alpha-beta method under this permutation is examined by the given algorithm.

- Furthermore if the value of the root is not ∞ or $-\infty$, the alpha-beta procedure examines precisely the positions which are critical under this permutation.
Variations of alpha-beta search

- Initially, to search a tree with the root \(r \) by calling \(F2(r, -\infty, +\infty) \).
 - What does it mean to search a tree with the root \(r \) by calling \(F2(r, \text{alpha}, \text{beta}) \)?
 ▶ To search the tree rooted at \(r \) requiring that the returned value to be within \(\text{alpha} \) and \(\text{beta} \).

- In an alpha-beta search with a pre-assigned window \([\text{alpha}, \text{beta}]\):
 - Failed-high means it returns a value that is larger than or equal to its upper bound \(\text{beta} \).
 - Failed-low means it returns a value that is smaller than or equal to its lower bound \(\text{alpha} \).

- Variations:
 - Brute force Nega-Max version: \(F \)
 ▶ Always finds the correct answer according to the Nega-Max formula.
 - Fail hard alpha-beta cut (Nega-Max) version: \(F2 \)
 - Fail soft alpha-beta cut (Nega-Max) version: \(F3 \)
Fail hard version

- Original version.
- Algorithm F^2(position p, value α, value β)
 - determine the successor positions p_1, \ldots, p_b
 - if $b = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return $h(p)$ else
 - begin
 - $m := \alpha$ // hard initial value
 - for $i := 1$ to b do
 - begin
 - $t := -F^2(p_i, -\beta, -m)$
 - if $t > m$ then $m := t$ // the returned value is “used”
 - if $m \geq \beta$ then return(m) // cut off
 - end
 - end
 - end
 - return m
Properties and comments

Properties:
- \(\alpha < \beta \)
- \(F_2(p, \alpha, \beta) = \alpha \) if \(F(p) \leq \alpha \)
- \(F_2(p, \alpha, \beta) = F(p) \) if \(\alpha < F(p) < \beta \)
- \(F_2(p, \alpha, \beta) = \beta \) if \(F(p) \geq \beta \)
- \(F_2(p, -\infty, +\infty) = F(p) \)

Comments:
- \(F_2(p, \alpha, \beta) \): find the best possible value according to a nega-max formula for the position \(p \) with the constraints that
 - If \(F(p) \) is less than the lower bound \(\alpha \), then \(F_2(p, \alpha, \beta) \) returns with a value \(\alpha \) from a terminal position whose value is \(\leq \alpha \).
 - If \(F(p) \) is more than the upper bound \(\beta \), then \(F_2(p, \alpha, \beta) \) returns with value \(\beta \) from a terminal position whose value is \(\geq \beta \).
- The meanings of \(\alpha \) and \(\beta \) during searching:
 - For a max node: the current best value is at least \(\alpha \).
 - For a min node: the current best value is at most \(\beta \).
- \(F_2 \) always finds a value that is within \(\alpha \) and \(\beta \).
 - The bounds are hard, i.e., cannot be violated.
As long as the value of the leaf node W is less than the current \textit{alpha} value, the returned value of A will be at least the returned value of W.
Fail soft version

- **Algorithm** $F3(\text{position } p, \text{value } \alpha, \text{value } \beta)$
 - determine the successor positions p_1, \ldots, p_b
 - if $b = 0$ // a terminal node
 - or depth reaches the cutoff threshold // from iterative deepening
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return $h(p)$ else
 - begin
 - $m := -\infty$ // soft initial value
 - for $i := 1$ to b do
 - begin
 - $t := -F3(p_i, -\beta, -\max\{m, \alpha\})$
 - if $t > m$ then $m := t$ // the returned value is “used”
 - if $m \geq \beta$ then return(m) // cut off
 - end
 - end
 - return m
Properties and comments

- Properties:
 - $\alpha < \beta$
 - $F_3(p, \alpha, \beta) \leq \alpha$ if $F(p) \leq F_3(p, \alpha, \beta) \leq \alpha$
 - $F_3(p, \alpha, \beta) = F(p)$ if $\alpha < F(p) < \beta$
 - $F_3(p, \alpha, \beta) \geq \beta$ if $F(p) \geq F_3(p, \alpha, \beta) \geq \beta$
 - $F_3(p, -\infty, +\infty) = F(p)$

- F_3 finds a “better” value when the value is out of the search window.
 - Better means a tighter bound.
 - The bounds are soft, i.e., can be violated.
 - When it fails high, F_3 normally returns a value that is higher than that of F_2.
 - Never higher than that of F!
 - When it fails low, F_3 normally returns a value that is lower than that of F_2.
 - Never lower than that of F!
Let the value of the leaf node W be u.

If $u < \alpha$, then the branch at W will have a returned value of at least u.

Comparisons between F_2 and F_3

- Both versions find the corrected value v if v is within the window $[\alpha, \beta]$.
- Both versions scan the same set of nodes during searching.
 - If the returned value of a subtree is decided by a cut, then F_2 and F_3 return the same value.
- F_3 provides more information when the true value is out of the pre-assigned search window.
 - Can provide a feeling on how bad or good the game tree is.
 - Use this “better” value to guide searching later on.
- F_3 saves about 7% of time than that of F_2 when a transposition table is used to save and re-use searched results [Fishburn 1983].
 - A transposition table is a data structure to record the results of previous searched results.
 - The entries of a transposition table can be efficiently accessed, i.e., read and write, during searching.
 - Need an efficient addressing scheme, e.g., hash, to translate between a position and its address.
Assume the node A can be reached from the starting position using path P_1 and path P_2.

- If W is visited first along P_1 with a bound of $[4000, 5000]$, and returns a value of 200, then
 - the returned value of W, 200, is stored into the transposition table.

- If A is visited again along P_2 with a bound of $[400, 500]$, then a better value of previously stored value of W helps to decide whether the subtree rooted at W needs to be searched again.
Fail soft version has a chance to record a better value to be used later when this position is revisited.

- If A is visited again along P_2 with a bound of $[400, 500]$, then it does not need to be searched again, since the previous stored value of W is -200.

- However, if the value of W is 450, then it needs to be searched again.

The fail hard version does not store the returned value of W after its first visit since this value is less than α.
Questions

- What move ordering is good?
 - It may not be good to search the best possible move first.
 - It may be better to cut off a branch with more nodes first.

- How about the case when the tree is not uniform?

- What is the effect of using iterative-deepening alpha-beta cut off?

- How about the case for searching a game graph instead of a game tree?
 - Can some nodes be visited more than once?
References and further readings

