
Visual Salience-Guided Mesh Decomposition 
 
Summary 
 
Generally, decomposition is a leverage to obtain the componential representation from a 
whole. After the decomposition step is executed, the decomposed components can be 
individually selected, grouped, and analyzed based on the properties of interest. 
According to Hoffman and Singh’s theory [1], there are at least three factors that 
determine the salience of a part: the protrusion, the boundary strength, and the relative 
size. However, the quantitative definitions for part salience proposed by Hoffman and 
Singh [1] were made under the assumption that a part and its boundary are found in 
advance. In this paper, we propose a new 3D mesh decomposition scheme that 
incorporates the psychological theory of visual salience, in such a way that the mesh 
decomposition process is as close as possible to the human visual perception mechanism. 
Visual Salience-Guided Mesh Decomposition 
 
A. Modeling the Protrusion as the Degree of Center 
 
To characterize the protrusion of a part, we adopt the integral function described in [2]. 
Here, in contrast to [2], the integral function is constructed on the dual graph of a given 
mesh, G = (V, E), where V and E represent the set of dual vertices and the set of dual 
edges, respectively. Let area(v) denote the area occupied by a dual vertex v and area(V) 
denote the total area of the object surface. The protrusion degree at a dual vertex v can be 
defined as [2]: 
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where {b0, b1, . . . } are the base dual-vertices, which are used to approximate the above 

integral function. In addition, area(bi) is the area of the base and )()( Vareabarea
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Fig.1(a) shows the protrusion characterization of the dinopet model. 
 
B. Choosing the Salient Representatives of Parts 
 
Given a dual vertex , the dual vertex is chosen as a salient representative of a part 
if the following condition is satisfied: 
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of an observation window for finding a local maximum. Fig. 1(b) shows the six salient 
representatives of parts chosen from the dinopet model. 
 
C. Modeling the Boundary Strength as the Border Area Change 
 
For the purpose of clarity, we propose to split the computational process for modeling the 
boundary strength into two steps: 
 
Step 1. Establishing the Candidate Locales: Given a salient representative of a part r, a 
set of candidate locales is established using a modified version of the 
single-source Dijkstra’s algorithm. For the purpose of simplicity and later use, we denote 
the x
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where D(v) returns the shortest distance from the source r to a dual vertex v, in terms of 
geodesic distance and protrusive difference. e represents the extent of a candidate locale, 
in which the boundary evolution is explored. l is the number of candidate locales. Figs. 
1(c)-1(e) illustrate the construction of candidate locales, termination base, and 
constrained locales for the dinopet model. 
 
Step 2. Modeling the Boundary Strength: With the constrained set of candidate locales 
established in Step 1, we now consider two adjacent locales in L to explore how the 
surface evolves in candidate locales. We propose to associate the following geometric 
property to the xth candidate locale in L: 
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Since  is a set of dual vertices that collects the direct neighbors between LxLV x and Lx+1, 

f(x) can be regarded as the total-area-of-border between two adjacent candidate locales. 
Fig. 1(f) shows that the original function f(x) shown in Fig. 1(j) was plotted on the surface 
of the dinopet model. Based on the geometric property defined in Eq. (2), we propose to 
model the boundary strength as the total-area-of-border change in response to the 
boundary evolution.  
 
D. Finding the Locale of A Part Boundary 
 



We propose to transform the function f(x) into w different scales, f1(x), f2(x),…, fw(x). In 
this way, one can conduct a coarse-to-fine search for identifying the locale that contains a 
part boundary. Figs. 1(k)-1(m) shows three different scales of the original function, f1(x), 
f2(x), and f3(x), respectively. Their corresponding plots on the surface mesh were shown 
in Figs. 1(g)-1(i), respectively. As shown in Fig. 1(n), the locale of the boundary was 
formed by the union of the 11th-13th candidate locales. Fig. 1(o) shows that the nearly 
concave boundary can be generated from the locale shown in Fig. 2(n) by solving the 
maximum-flow problem [3]. 

 
Fig 1. Illustration of (a) the protrusion characterization, (b) the salient representatives of 
parts, (c) the candidate locales, (d) the termination base, (e) the constrained candidate 
locales, (f)-(i) the different scaled versions of the function f(x) plotted on the object 
surface, (j)-(m) the different scaled versions of the function f(x), (n) the locale of a part 
boundary, and (o) the visual part and its boundary for the dinopet model. 
 
 
Experimental Results 
 
A series of experiments were conducted to test the effectiveness of the proposed method. 
Fig. 2 shows that the proposed method still succeeded in decomposing the dinopet 
models which were subject to the effects of different noise strengths on the 
randomization applied to the vertex coordinates. 

 



 

Fig. 2. The robustness of the proposed visual salience-guided mesh decomposition 
method under the randomization of vertex coordinates, which is controlled by means of 
the noise strength ns (i.e., the ratio of the largest displacement to the longest edge of the 
object’s bounding box). 
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