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Abstract

In this paper, we propose the post-classification scheme that is useful for improving

weak-hypothesis combination of AdaBoost. The post-classification scheme allows the weak 

hypotheses to be combined nonlinearly, and can be shown to have a generally better 

performance than the original linear-combination approach in either theory or practice. 

The post-classification scheme provides a general perspective on combining weak hypotheses, 

in which many existing boosting methods can be treated as its sub-cases. By using support 

vector machine (SVM) as post-classifier, we have shown that AdaBoost and SVM can be 

effectively combined in the post-classification scheme to achieve an effective classification

algorithm.  Experiment results show that the proposed nonlinear boost approach can 

significantly improve the performance of AdaBoost.

Index Terms:  Classification, boost, AdaBoost, nonlinear boost, SVM, neural networks.
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I. Introduction 

Given a set of input-output training pairs for a binary classification problem, S  {(x1,y1),

(x2,y2), …, (xN,yN) | xi Rd, yi {1, 1}, i = 1, …, N}, the classification framework of boosting 

[22][27] combines simple member classifiers with appropriate weights to form an ensemble,

which improves the performance of each ensemble member.  Let {h1, h2, , hT | hi : 

Rd {1, 1}} be a set of hypotheses. Consider the composite ensemble hypothesis 

f(x) = ,                              (1)
T

t
tt xha

1

where coefficients a1, a2, , and aT are nonnegative. Both the member classifiers ht and the

coefficients at (t = 1, …, T) can be found by using the boosting procedure. The idea of 

boosting stems from the observation that finding many rough or weak rules is much easier 

than finding a single, highly accurate rule. 

Theoretically, by investigating Valiant’s probably approximately correct (PAC) learning, 

Kearns and Valiant [15] prove that weak classifiers, which perform only slightly better than 

random, are possible to be combined to form an arbitrarily good ensemble classifier (when 

enough data is available). AdaBoost [9][27], which is the first step toward more practical 

boosting algorithms [22], provides a provably correct procedure that allows classifier 

designers to continue adding weak learners until a desired low training error is achieved. 

AdaBoost has been used in a variety of applications such as face detection [2][19][30], face 

recognition [10], gesture recognition [21], information retrieval [14][26] and speech

recognition [2][31].  In [30], AdaBoost is employed to construct a cascade of weak 

classifiers called rectangle feature classifiers for fast face detection. In [21], AdaBoost 

using exemplar-based classifiers was introduced for online retraining to improve real-time
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gesture recognition. In [19], a multi-view face detection system was created by FloatBoost,

which integrated Adaboost with a feature selection method to cull insignificant weak learners. 

In [2], a structured learning algorithm, Max-Select AdaBoost, was introduced for speaker 

detection. In [10], AdaBoost served as a binary classification tool, and was combined with a 

multi-class comparison technique called constrained majority voting to deal with multi-class

problems for face recognition.

AdaBoost aims to maintain a distribution or set of weights over a training set. Initially,

weights are set equally, but on each round, the weights of incorrectly classified examples are 

increased so that a weak (or base) learner is forced to focus on the hard examples in the 

training set. The iterative re-weighting procedure allows AdaBoost to generate a set of 

classifiers. Each classifier can be thought of as a professional who is particularly suitable 

for classifying the re-weighted (or re-distributed) data set. In AdaBoost and many of its

variations [5][9][19][24][28], these classifiers are combined linearly as shown in (1), where 

each classifier is assigned a fixed weight. 

In this paper, we consider a new ensemble scheme in which the classifiers trained in each

round can be combined nonlinearly.  The motivations for using a nonlinear-ensemble

framework are: 

(1) The classifier generated in each round of AdaBoost is treated as an expert in classifying

the training data set sampled with a particular distribution, and the distribution peaks at 

some data vectors those are badly (or difficult to be) classified in the last round. These

classifiers are thus better to be combined adaptive to the input vector or the associated 

output label, so that the ensemble classifier assigns a high weight for a classifier when the 

input vector is close to some of the distribution peaks in association with this classifier.

Note that this ensemble scheme yields distinct weights for distinct input vectors or
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classification outputs, and is generally nonlinear for classifier combination.

(2) Note that focusing only on training errors of badly classified data may yield classifiers

with insufficient generalization ability.  Researches focusing on increasing the 

generalization ability of AdaBoost [24][28] use soft margins to reduce over-fitting effects.

Based on a nonlinear ensemble scheme, we will show that regularization frameworks can 

be built more generally along with AdaBoost so that the output classifier can earn high 

generalization ability.

In this paper, the idea of post-classification (referred to as “classification after classification”)

is proposed to generate nonlinear ensembles of the classifiers generated in AdaBoost rounds. 

We will discuss ways that appropriate post-classifiers can be designed so that the resultant

classifier performs better than the one obtained using the original linear combination

approach.  The new method proposed in this paper is called nonlinear boost.

Distinguishing features of nonlinear boost include allowing an additional bias term in a linear 

ensemble, allowing nonlinear ensemble, and guaranteeing that the training performance of

the resulting classifier is no worse than that of each weak hypothesis. 

The rest of this paper is organized as follows.  Section II introduces the post-classification

scheme. Section III presents our approach. Section IV gives experiment results. Section

V presents some further remarks. Conclusions and future works are given in Section VI.

II. Post-classification Scheme 

A.  Review of AdaBoost

In AdaBoost, a non-negative weight vector w(t) = (w1
(t), w2

(t), …, wN
(t)) is assigned to data at 
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step t, and a weak learner ht is constructed based on w(t), as shown below.

Algorithm AdaBoost [9][27]: (Assume that a weak learner has been given.)

1. Input: S={(x1,y1), (x2,y2), …, (xN,yN)}. Set number of iterations, T.

2. Initialize: wn
(1) = 1/N, for all n=1, , N.

3. Do for t = 1, , T,

(a) Use the weak learner to train a classifier with respect to the weighted sample set 

{S,w(t)} and obtain a hypothesis ht: Rd { 1,+1}.

(b) Calculate the weighted training error t of ht:

N

n
ntn

t
nt xhyIw

1

,                       (2)

where I(statement) = 1 if the statement is true; otherwise, I(statement) = 0. 

(c) If t = 0 or t > 1/2, then set T = t 1 and goto Step 4. 

(d) Set
t

t
ta

1log
2
1 .                          (3)

(e) Update weights ntnt
t

n
t

t
n xhyaw

Z
w exp11 ,                 (4)

where Zt is a normalization constant, such that .1
1

1
N

n

t
nw

4. Output: .                                          (5)
T

t
ttT xhaxf

1

In the algorithm, the weight vector is updated at each iteration t according to the weighted

error incurred by the weak learner in the last iteration. In this way, misclassified examples

get higher weights and the rest get lower weights in the next iteration. In essence, AdaBoost 

is a procedure for finding a mapping f which attempts to lower the following value:
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n
nn xfyexp ,                            (6)

= . (7)
n t

nttn xhayexp

The AdaBoost algorithm ensures that, when the number of iterations T increases, the error 

measure defined in (6) and (7) decreases if every weak classifier performs better than

random guess, i.e., t (defined in (2)) is larger than 0.5+  for all t, where  is a positive

constant. Note that the term nn xfyexp  in (6) is an upper bound of the empirical

loss I(f(xn) yn). Hence, AdaBoost ensures that the empirical risk will gradually reduce to 

zero as T approaches infinity. 

B. Post-classification – A new perspective to AdaBoost ensemble 

Although AdaBoost ensures the reduction of the upper bound (7) of the empirical risk as the 

number of iterations increases, in practice, AdaBoost must always stop at an allowed

maximum number of iterations (say T) so that a composite ensemble classifier can be formed.

Following, we will investigate a new way to build an ensemble classifier based on these T

classifiers.  Given a d-dimensional input vector x, let us consider the following mapping 

from Rd to RT:

x = (x) = [a1h1(x) a2h2(x)  aThT(x)] t,                (8)

where x is referred to as the weighted hypothesis vector of the input vector x.  The above

mapping can be viewed as projecting x to a T-dimensional feature space. We can then cast

the original classification problem for S to a new classification problem for S = {(x1, y1), (x2,

y2),  ,(xN, yN)} by transforming xi to its weighted hypothesis vector xi. In this paper, we 
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investigate the problem of finding a good strategy to combine the T weighted hypotheses, 

a1h1, a2h2, , and aThT. We treat this problem as designing a new classifier F: RT {1, 1}

for discriminating S and we call this problem a post-classification problem since F is a

classifier of weak classifier outputs, and F is referred to as a post-classifier hereafter.

From the concept of post-classification introduced above, what are inherent interpretations of 

the original ensemble classifier obtained from AdaBoost as well as each of its learned weak

hypotheses?  Given a classifier f: Rd {1, 1} in the input space, if there is a post-classifier 

F satisfying that f = F , we call that f can be equivalently represented as the post-classifier

F and F is the equivalent (post-) classifier of f. Not every classifier in the input space can be 

equivalently represented as some post-classifier. It is interesting that all the AdaBoost weak

hypotheses and AdaBoost ensemble classifier have equivalent post-classifiers:

Property 1: Each of the learned hypotheses, hj (j = 1, …, T), can be equivalently represented 

as the post-classifier whose separating boundary is I t
j x = 0, where Ij is the T 1 unit vector 

with its j-th element being one and all other elements being zero. 

Property 2: The ensemble classifier of AdaBoost, fT defined in (5), can be equivalently 

represented as the post-classifier whose separating boundary is 1 t x = 0, where 1 = [1 1 1] t

is the T 1 vector with all its elements being one. 

Hence, sign(It
jx) and sign(1tx) are the equivalent classifiers of hj (j = 1, …, T) and fT,

respectively, where sign( ) denotes the sign function. An illustration of T = 2 is shown in

Figure 1 for explanation. When T = 2, the learned hypotheses h1 and h2 can be equivalently 

represented as the post-classifiers whose boundaries are the Y and X axes, respectively. The

output AdaBoost classifier fT can be represented as the post-classifier whose boundary is the 

line that passes through the origin, and has a slope of 1.
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Y(=a2h2) Y(=a2h2)

(a) (b)

(c)

Figure 1. Illustration of the idea of post-classification for T = 2. (a) The weak hypothesis h1

can be equivalently represented as the post-classifier whose classification boundary is the 

Y-axis.  (b) The weak hypothesis h2 can be represented as the post-classifier whose

classification boundary is the X-axis.  (c) The ensemble classifier of AdaBoost can be 

represented as the post-classifier whose boundary is the line that passes through the origin, 

and has a slope of 1.

Figure 2. AdaBoost versus nonlinear boost. 
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Linear classifiers, which have a general form of separating boundaries, g(x) = atx + b (a RT

and b R), have been thoroughly studied in the field of pattern classification [6].  Even when

they are not optimal, they form a complete category with effective learning algorithms. The

following property clarifies relationships between the linear post-classifiers and the AdaBoost 

classifiers.

Property 3: Both the equivalent classifiers of hi (i = 1, …, T) and fT belong to , where  = 

{G: RT  {1, 1} | G(x) = sign(at x + b), a RT and b R} is the set consisting of all the linear

classifiers.

Property 3 shows that the learned weak classifiers and the ensemble classifier of AdaBoost 

are all special cases of the linear classifiers from the post-classification perspective.  Note 

that linear classifiers are themselves special cases of the general classifiers whose boundaries 

may either be linear or nonlinear. As shown in Figure 2, the classification boundary of a 

linear classifier may be any line (which has not to pass through the origin) in the plane, and 

that of a nonlinear classifier is illustrated as a curve.

In this paper, the post-classifiers investigated are not restricted to only be linear, but can be 

either linear or nonlinear.  When a nonlinear classification boundary is employed for 

post-classification, the boundary can be formulated by nonlinearly projecting x into a

one-dimensional space by a nonlinear mapping H: RT R, and a general form of a nonlinear

discriminant function can be formulated as F(x) = sign(H(x)).  Nonlinear mapping H can be 

first approximated by a set of basis functions Bj (j = 1, …k), and then combined to make a 

decision [6].  By dong so, a nonlinear discriminant function can be approximately

formulated as: 

F(x) = sign(ctB(x) + d),                          (9)
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where c RT, d R, and B(x) = [B1(x) B2(x) …Bk(x)]t is a set of nonlinear basis functions. 

The ensemble of weak hypotheses thus becomes a linear combination of nonlinearly mapped

hypotheses vectors. Hence, by employing the post-classification scheme introduced above, 

nonlinear ensembles of the weak classifiers can be achieved.

Since the output classifier of AdaBoost is a special case from the insight of post-classification,

we would like to, as can be expected, seek boundaries that can achieve a better classification 

performance than the classifier with the original post-classification boundary 1tx = 0. We

will focus on designing post-classifiers for this post-classification problem in the following

sections.

Remark: In addition to AdaBoost, many existing boosting methods can be treated as

sub-cases under the post-classification scheme. For example, the LPREG-AdaBoost [24],

LPBoost [5] and QPREG-AdaBoost [24] methods can be treated as finding post-classifiers 

whose boundaries are restricted to be linear and pass through the origin. The FloatBoost 

method [19] removes some insignificant weak hypotheses and linearly combines the 

remaining hypotheses, it can therefore be viewed as finding a linear post-classifier in which 

certain linear combination coefficients are zeros.

C. Performance measures review 

In order to choose a better classifier to discriminate S, one must measure how well a classifier 

f can discriminate S, which is typically presented in the form

E =
N

i
ii yxfL

N 1

1 , ,

where L is a loss function that has been defined in various ways, and E is referred to as the
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risk function. In our framework, the problem of designing an appropriate classifier f is 

converted to that of finding the ensemble classifier F for integrating the weighted hypotheses 

generated by AdaBoost. Therefore, we seek to minimize

E = 
N

i
ii yxfL

N 1

1 ,

=
N

i
ii yxFL

N 1

1 ,

=
N

i
ii yxFL

N 1

1 , .                           (10)

To design a better ensemble classifier aims to solve the problem of finding a meta-classifier F

satisfying  <  = , when (10) is 

chosen as the performance measure.

N

i
ii yxFL

1
,

N

i
ii

t yxsignL
1

1 ,
N

i
iiT yxfL

1
,

A commonly used measure is the empirical risk with L being 

iiii yxFIyxFL , .                      (11)

In Neural Networks [11], the loss function is defined as the sum of squared errors, 

L(F(xi), yi) = ||F(xi) – yi||2.                       (12)

The above risk functions only focus on training errors, and additional regularization terms

can be added to improve generalization abilities. For example, in Neural Networks, energy

functions containing complexity penalties c(w), which depend on the connection weights w

of the network alone, were proposed in [11] to increase the generalization ability: 

L(F(xi), yi) = ||F(xi) – yi||2 + c(w),                  (13)
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where c(w) = ||w||2 or c(w) = (wi/w0)2/(1+( wi/w0)2), w=[w1 w2 … wtotal].

In support vector machine (SVM) [29], an objective function that is defined according to 

margin maximization is employed to improve generalization ability: 

E* = 
N

i
ib

C
1

2

,, 2
min

w
w

                          (14)

subject to 
i

iby

i

ii
t

i

0
1xw ,                       (14’)

where C is a penalty parameter that balances 1/||w||, the margin of the separating hyperplane, 

and , an upper bound of the empirical risk. 
N

i
i

1

D. Finding better post-classifiers 

Risk functions introduced above shall be possible choices, but not the only choices, as being 

performance measures of post-classifiers in our framework.  Given a risk function that 

serves as a common base for classifier comparisons, we try to find properties of the training 

algorithms that help obtain a better post-classifier than the original AdaBoost ensemble.

In the following, let ={G | G:RT  {1, 1}} be the functional space consisting of all binary

1 decision functions. A hypothesis space is a subset of , and a machine  is a surjective

(i.e., onto) mapping from a parameter space P (P Rm, m N) to a hypothesis space  ( ).

Hence, g = (p) is a hypothesis in  when some parameter setting p (p P) is given. A

training algorithm M is referred to as a function that maps any training data set to a 

parameter setting p (p P). That is, given a set of training data, the training algorithm M

finds a parameter p of the machine , which specifies the hypothesis g = (p) in .
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Assume that a loss function L in (10) has been chosen to form a performance measure E of

classification.  The following property specifies a simple criterion that is useful for 

designing post-classifiers. 

Property 4: A post-classifier F that is no worse than the output classifier of the AdaBoost fT

can be learnt by a training algorithm M if the following conditions hold: (1) A parameter

setting p can be given so that (p) = sign(1tx), and (2) learning algorithm M is able to

iteratively lowering E and finds a local minimum from the initial parameter setting p.

Proof:  Let FM be the hypothesis found by M.  Then (fT, S, L) = (sign(1tx), S, L) (FM,

S, L) because FM is a local minimum of E from the initial hypothesis sign(1tx). 7

Although the above property is straightforward, it serves as a general guideline for training a 

better post-classifier for AdaBoost ensemble. Below, we give an example of the training

algorithms that satisfies Property 4. 

Property 5: By appropriately setting the initial weights, a multi-layer neural network (NN) 

can emulate the hypothesis sign(1tx).

Proof: See appendix. 

Property 6: A multi-layer NN can serve as a post-classifier that has performance no worse

than the AdaBoost ensemble when the performance measure is either the sum of squared

errors (12) or is the one with better generalization abilities, (13).

Proof:  By using the well-known back-propagation algorithm, a local minimum can be 

found for the error measure (12). In addition, if the measure with a better generalization 

ability (13) is used, the weight-decay procedure [12] or the weight elimination procedure [32] 

can be used to lower the error from an initial setting. 7

 13



Technical Report, TR-IIS-04-001, Institute of Information Science, Academia Sinica.

E. Post-classification by AdaBoost 

Remember that AdaBoost can be treated as a procedure for finding a function f to iteratively

lowering the empirical risk bound (6). After T iterations, this bound has been lowered to e*

= . We will show that, by using AdaBoost as the post-classifier, (6) 

can be further lowered from e

N

i

T

t
ittn xhay

1 1
exp

*.

To distinguish the original AdaBoost, we use post-AdaBoost to denote the AdaBoost used for 

post-classification.  According to the post-classification scheme, post-AdaBoost aims to 

classify the training data S = {(x1, y1), (x2, y2) … (xN, yN)}, where xi = [a1h1(xi) a2h2(xi)

aThT(xi)] t, i = 1… N. To lower (6) by post-AdaBoost, the following two assumptions are 

made.  First, the T weak hypothesis h1, h2,  hT satisfy that  < N/2.

That is, the output classifier of AdaBoost is better than random guess.  This assumption is

easy to satisfy since AdaBoost ensures (7) to be lowered to an arbitrarily small positive value 

when T increases, where (7) is an upper bound of the empirical risk, 

N

i

T

t
itti xhayI

1 1

N

i

T

t
itti xhayI

N 1 1

1 . Fulfill of this assumption can thus be guaranteed when T is large

enough. Second, the weak learner used for post-AdaBoost satisfies that the classifier it 

generates for S is sign(1tx). This assumption is also easy to satisfy by forcing the weak 

learner used in post-AdaBoost outputs sign(1tx) in the first iteration.

By the above assumptions, the initial value of the error measure (6) achieved by 

post-AdaBoost is 
N

i
i

t
i xsigny

1
1exp , which is equal to e* defined above. In addition, by

the first assumption, enforcing the weak hypothesis generated in the first iteration of
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post-AdaBoost to be sign(1tx) ensures 1 to be smaller than 0.5 because 1 = 

N

n
ntn xhyI

N1

1  = 
N

n
n

t
n xsignyI

N1

11 .  When the weak learner used for

AdaBoost remains to perform better than random guess for the rest iterations, the error

measure (6) can then be lowered from the initial value e* by post-AdaBoost because the 

AdaBoost procedure essentially continues to find f to lower (6). Since (6) is an upper bound 

of the empirical risk, similar to AdaBoost, post-AdaBoost can also reduce the empirical risk

to zero as the number of iterations approaches infinity. 

Remark: Note that AdaBoost itself can continue to reduce (6). It is thus worth to compare

AdaBoost and post-AdaBoost on how (6) is reduced.  Instead of (7), the empirical risk

bound in post-AdaBoost is  = 
n

nn xfyexp
n t

nttn xhayexp , where a and h

denote the combination coefficients and weak hypotheses generated by post-AdaBoost, 

respectively.  Assume that AdaBoost continues to run further T’ iterations (in addition to the 

original T iterations), then (6) is reduced to .  In contrast, when T’

iterations have been run for post-AdaBoost, the value of (6) becomes

N

i

TT

t
ittn xhay

1 1

'

exp

N

i

T

t
ittn xhay

1 1

'

exp , where xi = [a1h1(xi) a2h2(xi)  aThT(xi)] t.  From the above analysis,

post-AdaBoost provides an alternative to minimize (6) by linearly combine a new set of 

hypotheses, h1, h2 hT’, instead of working on the original weak hypotheses, hT+1, h T+2

hT+T’, generated by AdaBoost. However, it is difficult to theoretically justify which one

(AdaBoost or post-AdaBoost) is better. The appropriateness of choosing either one of them

shall be data dependent. 
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III. SVM-based Post Classifier 

We have shown that a training algorithm, which is able to improve the classifier performance

from an initial setting, is likely to generate a better post-classifier if sign(1tx) can be explicitly

encoded as the initial setting. We have shown that both multi-layer NN and post-AdaBoost

can refine the original AdaBoost ensemble when the performance measures are (12)/(13) and 

(6), respectively.  However, these algorithms simply improve the performance from the 

initial settings, but may be trapped in local minimums.  As well, they cannot ensure that the 

results are no worse than that of each weak hypothesis. To avoid these difficulties, let us

investigate training algorithms that find not only a local minimum but the global minimum.

A. Finding the best post-classifiers 

When a training algorithm is capable of finding the global minimum, a significant distinction 

is that we do not need to specify a explicit parameter setting p so that the hypothesis sign(1tx)

can be emulated as depicted in Property 4. We only need to ensure that the hypothesis space 

contains sign(1tx), since the resulting classifier is independent of the initial parameters.

With such strong training algorithms, the following property holds. 

Property 7: The optimal post-classifier F whose performance is no worse than AdaBoost

ensemble can be learnt by a training algorithm M if the following conditions are satisfied: (1) 

The hypothesis space  contains sign(1tx), and (2) M is able to find the global minimum for 

the performance measure .

The above property serves as the main criterion for choosing and designing an appropriate 

post-classifier in our work. In addition, the following property gives further motivation for 

selecting a training algorithm that is not trapped in local minimums.
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Property 8: [Continuing from Property 7] If M further satisfies that its hypothesis space 

contains sign(I t
j x) for all i = 1, …, T, then M can find a post-classifier whose performance is 

no worse than those of all the classifiers generated in the AdaBoost process, including the 

AdaBoost ensemble fT and all weak hypotheses hi (i = 1, …, T).

Property 8, an extension of Property 7, shows that a training algorithm capable of finding the 

global minimum is likely to produce a post-classifier not only better than the AdaBoost 

ensemble, but also better than all weak hypotheses. Note that this does not hold for a 

training algorithm that finds local minimums because it merely ensures obtaining a better a 

classifier than the initial one. It is difficult to find a post-classifier that is better than all 

classifiers generated during the AdaBoost process since only one of the classifiers is likely to

be encoded as the initial setting for starting the training algorithm. 1

B. Post-classifying using linear SVM 

By combining Property 8 and Property 3, we obtain the following property in association 

with linear classifiers.

Corollary 1: If M can find the global minimum and , (i.e., the set consisting of all 

linear classifiers is a subset of the hypothesis space ), then M can find a post-classifier no

worse than the AdaBoost ensemble and all weak hypotheses. 

Corollary 1 shows that, if a training algorithm can find the best linear classifier, then it can 

refine AdaBoost ensemble. Since linear classifiers have been extensively investigated and 

many associated effective learning algorithms have been proposed, this corollary provides 

very useful guidelines for choosing post-classifiers from existing approaches.  In a special

1 A possible way to overcome this difficulty is to re-start the training algorithm multiple times and find the

smallest local minimum. However, this incurs a large time complexity.
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circumstance in which the post-classification problem encountered is linearly separable, 

standard perceptron can ensure finding the global minimum in finite steps if the empirical 

risk (11) is chosen as the performance measure. In general circumstances in which the

post-classification problem is not linearly separable, the pocket perceptron [23] that globally 

minimizes the empirical risk (11) can be used. Nevertheless, minimizing the empirical risk 

usually causes an over-fitting effect. We will investigate training algorithms that are capable 

of finding the global minimum for a performance measure that has better generalization 

ability.

Among the existing approaches, linear SVM [4] is a training algorithm that finds the best 

linear classifier by minimizing risk function (14) which has a better generalization ability 

than the empirical risk. In SVM [4], optimization problem (14) (subject to the constraint

(14’)) can be transformed into a dual form for which the global minimum can be obtained by 

solving a convex quadratic programming problem.  After (14) is solved, bsign i
t xw

serves as the discriminant function of linear SVM. 

Note that the QPREG-AdaBoost method presented in [24] minimizes exactly the same

quadratic programming optimization problem as linear SVM by further imposing the 

constraint b=0 in (14’).  Hence, QPREG-AdaBoost can be treated as a special case of linear

SVM in the post-classification scheme by restricting the classification boundary of the

post-classifier to pass through the origin. 2

2 Note that the same arguments hold for the LPREG-AdaBoost method [24] and another type of SVM – the

linear-programming SVM ([4], Section 6.1.3). LPREG-AdaBoost method can be treated as a special case of 

linear-programming SVM in the post-classification scheme by restricting the classification boundary of the

post-classifier to pass through the origin.

 18



Technical Report, TR-IIS-04-001, Institute of Information Science, Academia Sinica.

C.  Linear versus nonlinear

When linear SVM is used for post-classification, the hypothesis space considered is .  It is

worth noting that Corollary 1 holds not only when the hypothesis space is , but also for a 

larger hypothesis space containing . We can expect that the performance may be further

enhanced if a larger hypothesis space is explored, as clarified by the following property.

Property 9: Consider two training algorithms, M and M’, that find the global minimum for

the same performance measure. If ’, i.e., the hypothesis space of M is contained in the 

hypothesis space of M’, M’ can find a post-classifier no worse than that found by M.

Note that the hypothesis space of linear SVM can be significantly enlarged by projecting x

into a high-dimensional space via an implicit mapping of which the inner product can be

effectively computed by using Mercer’s kernel, and a nonlinear SVM is accordingly formed

[4]. Below, we will first review nonlinear SVM, and then investigate how nonlinear SVM 

can be employed for post-classification. 

D. Review of nonlinear SVM 

Let the mapping from the weighted hypothesis space to the high-dimensional space be ,

then the optimization problem of nonlinear SVM is 

E** = 
N

i
ib

C
1

2

,, 2
min

w
w

 = ,,min
,,

C
b

w
w

                  (15)

Subject to 
i

iby

i

ii
t

i

0
1xw .                     (15’)

The solution to the above optimization problem is 
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N

i
iiiy

1
xw ** ,                       (16)

and the optimal classifier is 

sign( b
t xw* ) = sign( bKy

N

i
iii

1
x,x* ).                (17)

Performing a linear classification in high-dimensional space is equivalent to performing a

nonlinear classification in the original space, where the nonlinear classifiers are constructed

by linearly combining evaluations of the selected kernel (or basis) function, as shown in (17). 

Commonly used kernel functions include polynomial kernels KP,h and radial basis kernels 

KR, :

KP,h(z1, z2) = (z1
tz2 +1) h,                        (18)

KR, (z1, z2) = exp( ||z1 z2||2).                      (19)

E. Post-classification by nonlinear SVM 

Nonlinear SVM is a powerful classification tool and has worked well for many applications. 

Nevertheless, when such a nonlinear classification framework is used, it can not guarantee 

that sign(1tx) is contained in the hypothesis space, which makes it troublesome for effective

post-classification.

Fortunately, a recent study [16] shows that linear SVM can be emulated by nonlinear SVM 

when certain asymptotic behavior is considered, if the radial basis kernel (19) is employed. 

The limiting SVM radial-basis kernel classifier as 0 can be the same as the SVM linear 

kernel classifier in some condition. We can adopt nonlinear SVM for post-classification that 

satisfies Corollary 1 if we consider Property 10. 
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Property 10 (Keerthi and Lin, 2003 [16]) Assume that radial basis kernel (19) has been used 

to construct a nonlinear SVM. If 0 and C = C’  (where C’ is fixed) then the nonlinear

SVM classifier converges to the linear SVM classifier with penalty parameter C’.

Property 10 shows that, in effect, the performance measure E** defined in (15) degenerates to 

E* in (14) when the asymptotic behaviors 0 and C = C’  are tracked. Hence, if we 

apply model selection to nonlinear SVM in which the model parameters  and C are selected

to minimize E** in (15) for solving the optimization problem 

C,
min E** = 

C,
min ,,min

,,
C

b
w

w
                      (20)

subject to the constraints in (15’), then nonlinear SVM subsumes linear SVM. Specifically,

linear SVM combined with model selection is equivalent to solving the minimization

problem E
',0

min
CC

**. The hypothesis space of linear SVM can therefore be thought of as 

being contained in the hypothesis space of nonlinear SVM which solves a more general 

optimization problem E
C,

min **. According to Property 9, nonlinear SVM may be able to 

find a better minimum for the performance measure .

IV. Implementation Issues and Experiment Results 

Although in theory, there is no need to consider linear SVM if complete model selection 

using the radial-basis kernel has been conducted, a dense sampling may be involved in model

selection for approximating the asymptotic behavior of linear SVM. In practice, it is not

necessary to restrict model selection to only nonlinear SVM since performing an additional 

model selection for linear SVM lays only a small overhead. Hence, a practical and useful 

alternative is to use both linear and nonlinear SVMs for model selection. By doing so,  in
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(20) serves as a common performance measure.

A. Main algorithm 

From the above, we can find the best post-classifier of the optimization problem defined in 

(20) by using SVM. This classifier ensures that  is minimized in a hypothesis space 

containing all the classifiers generated by AdaBoost.  By treating  as a common

performance measure, we then guarantee that the method which uses SVM for 

post-classification performs no worse than AdaBoost.

However,  may not reflect the real classifier performance directly.  In practice, the

cross-validation (CV) error was mainly used to measure classifier performances, and the 

model parameters of SVM (  and C) were selected based on the CV error, instead of .  Our

algorithm is slightly modified accordingly such that  is minimized for training each

individual SVM but the CV error is minimized for model selection, as done in most SVM 

approaches. The reason is because (i) the CV-error directly relates to the generalization

ability of a classifier, and (ii) well-established SVM libraries usually provide model selection 

combined with cross validation for SVM training, which makes our algorithm easy to 

implement. 3 Our main algorithm that uses SVM as a post-classifier is shown below.

Algorithm – Nonlinear Boost using SVM 

0. Input: S={(x1, y1), (x2, y2),  ,(xN, yN)}, number of iterations T, a set of linear SVM

model parameters l = {C1, C2,  } and a set of radial-basis nonlinear SVM parameters

nl = {(C1, 1), (C2, 2 ) }.  Let  = l nl. Initialize: e*=0.

1. Use AdaBoost to find h1, h2, , hT and coefficients a1, a2, , aT.  Let (x) = [a1h1(x)

3 In this work, the C/C++ SVM library LibSVM [35] was used.
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a2h2(x)  aThT(x)]t and S={(  (x1), y1), (  (x2), y2),  ,(  (xN), yN)}.

2. For a list of model parameters i , i=1,2,

3.1. Use the SVM with model parameter i to train S by solving (14) when i represents a 

model parameter of linear SVM, or (15) otherwise.  Compute the cross validation (CV)

error e.

3.2. If e < e* then set e* = e and * = i.

3. Set SVM’s model parameters to * and output the trained classifier.

In the above algorithm, AdaBoost and SVM are systematically combined through

post-classification to obtain an integrated classifier. There are many ways to define the CV

error, and the one used in our experiments will be described in Section IV.B. Although our 

algorithm cannot ensure that the CV error minimized is no larger than that of AdaBoost 

because the CV error is not consistently employed as a common performance measure for 

both individual SVM construction and model selection, employing CV error for model

selection is a popular strategy and is effective in creating classifiers with high generalization 

abilities [6][24][1]. Experiment results show that this algorithm can successfully improve 

the generalization performance of AdaBoost for un-trained test data in cross validation.

Remark: Our main algorithm uses different error measures,  and CV error, for individual 

SVM training and model selection, respectively.  If  and CV error are ‘consistent’

measures – consistent in the sense that one is an increasing mapping of the other, they can be 

treated as a common measure and our method ensures finding the optimal classifier for either 

measures. Although in theory, it is difficult to relate general CV error with the SVM error 

measure  defined in (15), there is much work dealing with relationships between  and the 

leave-one-out (loo) error [3][8][18] that is a special type of the CV error in case that the 

number of folds equals to that of the training examples. Some bounds of loo error can be
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derived and represented in terms of SVM parameters, which help model selection for SVM. 

For example, an informative loo-error bound for the radial-basis-kernel SVM is ([3], eq. 3.3) 

loo  2(R2+ /C) ,                         (21)

where  is a positive constant close to one and R is the radius of the smallest sphere 

containing all (xi) in the high-dimensional feature space. Solving  for the optimization

problem (20) thus restricts loo error to be bounded by a factor 2(R2+ /C).  Although loo

error and  cannot be shown to be exactly consistent, they are somewhat correlated. In

addition, note that Property 10 also holds when the error measure is loo error [16]. The

above analysis gives a more concrete reason why the main algorithm is effective for finding a 

post-classifier better than AdaBoost ensemble.

B. Experiment results 

We performed some experiments to compare the performances of AdaBoost and our method.

Seven benchmark datasets, bupa, diabetes, ionosphere, sonar, splice, titanic and wdbc, from

UCI machine learning repository [33] and Delve assessment datasets [34] were used in these 

experiments.  For small datasets (referred to as the datasets whose number of training

examples is smaller than 600), bupa, ionosphere, sonar and wdbc, we perform 5-fold 

cross-validations. For the remaining large datasets, diabetes, splice and titanic, we perform

10-fold cross-validations. 

Cross-validation accuracy was used to select the best model parameters, which is defined as 

follows.  Typically, in n-fold cross validation, n examinations are performed and each of 

them involves (n 1)/n data for training and the remaining 1/n data for test.  The 

cross-validation accuracy is defined as the ratio of the number of correctly classified test data 
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to the number of test data (in %) in an examination (i.e., in a fold). The mean (or average) 

of the cross-validation accuracies of the n examinations is used for model selection. 

The algorithm presented in Section IV.A was used for training the classifiers. Since the

algorithm (nonlinear boost using SVM) is designed by integrating AdaBoost and SVM, we

use AdaBoost+SVM to denote it. We have also to choose the weak learners used in the 

algorithm. In our experiments, Radial Basis Function networks (RBF nets) [11] and SVM 

[4] were used as weak learners. Because SVM also serves as post-classifier, to distinguish

with them, we use WeakLearner+AdaBoost+SVM to denote the algorithms using different

weak learners.  Hence, RBF+AdaBoost+SVM and SVM+AdaBoost+SVM denote the 

nonlinear boost training algorithms whose weak learners are RBF nets and SVM, respectively.

In both cases, we have empirically found that the performance is better when the weak 

learner outputs a real value, instead of a binary value. Hence, we use RBF-net regression

[24] and SVM regressor [20] as weak learners in our experiments.  Nevertheless, SVM used

for post-classification remains to output binary values. 

In the first experiment, RBF nets were used as weak hypotheses for AdaBoost.  The

algorithm RBF+AdaBoost+SVM was implemented to train the seven datasets. The iteration 

number T was set to 200, and thus 200 weak RBF classifiers were generated.  For selecting

the best RBF model we do the model selection on both the number of centers nc and the 

number of iteration steps nL for adapting the RBF centers.  Since only two integer

parameters have to be tuned in the model-selection process in this case, we perform full

search for finding the best pair of parameters, where both nc and nL are selected from {2, 4, 6, 

8, 10}.  For each pair of nc and nL, model selection for the post-classifier SVM were 

performed by sampling the regularization constant C in (15) and the kernel parameter  in (19) 

from {2-7, 2-6, …, 27}. To compare with the original AdaBoost algorithm, AdaBoost using 
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RBF nets as its weak learner (denoted by RBF+AdaBoost) was also implemented. Model

selection on nc and nL was performed for RBF+AdaBoost to train the seven datasets too. 

Table 1 shows the performances of our method and AdaBoost, where the mean and standard 

deviations (in %) of the cross validation accuracies are listed. It can be seen from Table 1 

that RBF+AdaBoost+SVM outperforms RBF+AdaBoost on most (six of the seven) datasets, 

as its means are larger and variances are smaller. This experiment shows that nonlinear

boost has a great possibility to improve the performance of AdaBoost.

In the second experiment, we used SVM to investigate the effect of strong hypotheses for 

nonlinear boosting. It is known that, if a ‘strong’ classifier is used as ‘weak’ learner for 

AdaBoost, training data may be over-fitted and the ensemble classifier may have a limited

performance improvement than the weak classifiers. Nevertheless, when strong hypotheses 

are combined nonlinearly, the ensemble hypothesis is likely to be improved more

significantly. We compare three SVM-based classification methods: single SVM classifier,

AdaBoost using SVM as weak learner (referred to as SVM+AdaBoost), and the nonlinear

boost method SVM+AdaBoost+SVM. 

In both SVM+AdaBoost and SVM+AdaBoost+SVM, we combined T=50 weak hypotheses. 

For the model selection of SVM+AdaBoost+SVM, two SVM parameters C and  in 

association with both weak learner and post-classifier have to be investigated.  Accordingly,

the model selection is done through a grid-search in a 4-D parameter space. To avoid the

time complexity, we used a coarse-to-fine strategy combined with branch-and-bound for

model parameter search (which is similar to the method introduced in [17]), so that we need 

not examine all grid points. 

The experiment results are shown in Table 2, which reveals that SVM+AdaBoost performs

slightly better than single SVM classifier.  The nonlinear boost method
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SVM+AdaBoost+SVM further improves the performance of SVM+AdaBoost and achieves 

the best cross validation accuracy (i.e., the largest mean and the smallest standard deviation)

among the three methods for all the datasets. 

On the datasets bupa and sonar, the hypothesis of the first round obtained by SVM+AdaBoost 

can classify all training data correctly, and thus the algorithm of SVM+AdaBoost stops

immediately after the first round. Consequently, on these two datasets, SVM+AdaBoost and 

single SVM classifier have identical performances, and the post-classifier of 

SVM+AdaBoost+SVM only needs to solve a 1-D classification problem.  In this case, it is

interesting that nonlinear boost can still improve the performance of AdaBoost.

An interesting issue worth of being addressed is that, is nonlinear classifier really helpful in 

post-classification?  To answer this question, remember that we have performed model

selections for both linear SVM and nonlinear SVM in our main algorithm. In all the above 

experiment results, the best parameters come from nonlinear SVM but not linear SVM 

(sometimes they tie), which shows that a training algorithm whose hypothesis space contains 

nonlinear classifiers can indeed improve the ensemble performance for the training algorithm

whose hypothesis space contains only linear classifiers. 

V. Further Remarks 

[Improving Other Boosting Methods] A characteristic of the post-classification scheme

proposed in this paper is that, except AdaBoost, it also has potential to improve other 

boosting methods. Many modified versions of AdaBoost (e.g., AdaBoostreg [24], RealBoost

[19], FloatBoost [19]) generate weak hypotheses different from those generated by AdaBoost.

These hypotheses are linearly combined in these methods and thus post-classification can be

used for conducting a possibly better combination of these weak hypotheses. Following the
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same arguments in Sections 2 and 3, Property 1 to Property 10 and Corollary 1 hold too. A

post-classifier can therefore be created to construct a composite ensemble classifier that is no 

worse than the original ensemble in which the weak hypotheses are combined linearly.

[Time Complexity for Classification] Compared to AdaBoost, nonlinear boost needs to

perform a further post-classification when it is used for pattern classification.  Nevertheless, 

the overhead is relatively insignificant because AdaBoost itself needs to perform

classifications for multiple times because multiple weak classifiers are generated. Let a 

single classification step be counted as a major operation. In AdaBoost, T classifications

have to be performed, while T+1 classifications have to be performed for nonlinear boost. 

Hence, nonlinear boost adds a very limited overhead to AdaBoost in major operations. 

On the other hand, for the same iteration times, nonlinear boost usually performs better than 

AdaBoost. An illustrative example can be found in Figure 4. Hence, T iterations may be 

enough for nonlinear boost to achieve the same performance of AdaBoost, where T < T.  In

this situation, nonlinear boost may even be faster in classification than AdaBoost.

[Multi-Class Problem] The post-classification scheme can be straightforwardly generalized 

for multi-class problems by using a multi-class classifier as the post-classifier or using

one-against-one strategy to combine multiple two-class classifiers as a multi-class classifier.

However, in multi-class AdaBoost, the output label is decided by combining several 

discriminate functions linearly, and then selecting the highest-score one, which yields a 

piecewise-linear classification boundary.  Unlike the two-class case, existing multi-class

training methods cannot ensure finding the global minimum of an error measure in a 

hypothesis space that contains all the piecewise-linear classifiers (to our best knowledge).

In contrast, in the two-class case, the functional space of piecewise-linear classifiers 

degenerates to that of linear classifiers, and SVM is an example that finds the global 
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minimum for an error measure with good generalization abilities in a hypothesis space

consisting of all linear classifiers. 

On the other hand, if we loose the requirement to find local minimums, then multi-layer NN

ensures to improve the original piecewise-linear classifier based on the error measures (12) or 

(13), because a piecewise-linear classifier can be initially encoded to emulate NN by setting

appropriate weights. 

VI. Conclusions and Future Work 

In this paper, we propose a new classifier ensemble scheme  post-classification, which

provides a general perspective on combining weak hypotheses generated by boosting. We

have derived useful properties on how to combine weak hypotheses for creating a powerful

composite ensemble that performs better than the original AdaBoost ensemble. By using 

SVM as post-classifier, we have also shown that AdaBoost and SVM can be effectively

combined in the proposed post-classification scheme to achieve an effective training 

algorithm for classifier synthesis.  Experiment results show that our method can 

considerably improve AdaBoost’s performances.

Some future works are addressed below.

Sometimes we hope to reduce the number of weak hypotheses to be combined, so that a more

efficient classifier can be synthesized. In the post-classification scheme, this can be treated

as designing classifiers whose boundaries are orthogonal to the subspace formed by the weak 

hypotheses that are preserved. Previous work such as FloatBoost [19] provides solution to 

this problem, but the preserved classifiers are combined following the same linear 

combination method of AdaBoost. By combining some feature-selection method [13], we

plan to study this problem in a more general manner based on the post-classification scheme.
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Nonlinear boost also has potential to be used for one-class classification problems.  In 

particular, nonlinear post-classification has potential to be applied for improving

boosting-like one-class classifiers, such as the one-class-leveraging algorithm [25]. 

In addition, the post-classification scheme can be applied not restricted to the classifiers

generated by boosting processes. The framework of this paper can be used for multiple 

classifier systems [7] and is helpful in understanding how to design nonlinear combinations

better than linear combinations.

Appendix [Proof of Property 5]

There are many ways to construct a multi-layer Neural Network to emulate the hypothesis 

sign(1tx). The simplest way is to construct a two-layer network, where the input layer 

contains N nodes and the output layer contains a single node, as shown in Figure 3(a). The

activation function of the output node is a sigmoid one, o(x) = 1/(1+e-ax), with a set very high 

so that the sign function can be simulated. In this network, if we set all the connection

weights to one, then the network represents the hypothesis sign(1tx). This simple network

can be extended to a three-layer one, as shown in Figure 3(b), where the hidden layer 

contains l nodes and the output layer still contains a single node. The lT weights from the

input nodes to the hidden nodes are all set to one, and the l weights from the hidden nodes to 

the output node are all set to 1/l. To verify that this three-layer network emulates sign(1tx)

note that the output is sign( sign(1
l

i

l
1

)/1( tx)) = sign(1tx). 7
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Figure 3.  Emulating sign(1tx) by multi-layer Neural Networks, in which a is set very high 

so that the sign function can be simulated. (a) A two-layer example. (b) A three-layer

example in which the lT weights from the input nodes to the hidden nodes are all set to one. 
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Table 1. Comparisons between AdaBoost and Nonlinear Boost. We perform cross-validations

on 7 data sets.  The means and the standard deviations of the test accuracy are shown in

percent (%).

Cross-validation accuracy (%)

AdaBoost
(RBF+AdaBoost)

Nonlinear Boost
(RBF+AdaBoost+SVM)

bupa 71.01 5.423 74.20 4.037

diabetis 74.74 4.596 77.11 1.785

ionosphere 84.86 4.585 86.29 4.199

sonar 91.71 3.699 91.22 4.253

splice 91.67 1.254 92.43 1.129

titanic 79.09 4.166 79.18 3.742

wdbc 95.22 1.481 96.11 1.200
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Table 2. Performance comparisons among three SVM-based classification methods: single SVM

classifier, SVM+AdaBoost, and SVM+AdaBoost+SVM. 

Cross-validation accuracy (%)
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Figure 4. Cross-validation accuracies versus iteration times obtained when RBF+AdaBoost 

and RBF+AdaBoost+SVM were used for the ionosphere data set. 

SVM AdaBoost
(SVM+AdaBoost)

Nonlinear Boost
(SVM+AdaBoost+SVM)

bupa 63.77  3.55 63.77  3.55 64.93  3.14

diabetis 77.76  3.80 77.89  3.91 78.68  3.15

ionosphere 92.88  3.19 94.29  2.02 96.00  1.86

sonar 86.83  9.38 86.83  9.38 90.73  4.36

splice 89.81  1.48 91.61  1.05 91.89  0.82

titanic 79.05  3.27 79.05  3.27 79.05  3.27

wdbc 94.16  1.94 94.16  1.94 95.58  1.40
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