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Abstract 

Active replication is a common approach to building highly available and reliable distributed software 

applications. The redundant nested invocation (RNI) problem arises when servers in a replicated group 

issues nested invocations to other server groups in response to a client invocation. Automatic suppression 

of RNI is always a desirable solution, yet it is usually a difficult design issue. If the system has 

multi-threading (MT) support, the difficulties of implementation increase dramatically. One can design a 

deterministic thread execution control mechanism, but there is a drawback of this. Commonly, modern 

operating systems implement thread scheduler on kernel level for execution fairness. Unfortunately, in this 

case, modification on the thread scheduler implies modifying the operating system kernel. This approach 

loses system portability which is one of the important requirements of CORBA and other middleware. In 

this work, we propose a mechanism to perform auto-suppression of redundant nested invocation in an 

active replication fault-tolerant (FT) CORBA system. Besides the mechanism design, we discuss the design 

correctness semantic and the correctness proof of our design. 
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1 Introduction 

With the advance of computer and communications technology, distributed computing 

systems have become increasingly popular in recent years. Many of these distributed 

systems are designed to perform critical tasks in a hazardous environment [1]. Active 

replication techniques are commonly used to build critical software systems to ensure 

their reliability and availability [12]. Modern large-scale distributed applications are 

usually built on distributed middleware to cope with design issues such as heterogeneity, 

scalability, and portability [4]. One of the popular middlewares is CORBA, proposed by 

the Object Management Group (OMG)[14]. OMG recently announced a specification 

called Fault-tolerant CORBA [17] that recognizes the importance of fault tolerance. One 

of the open issues that OMG pointed out in its RFP of Fault-tolerant CORBA is the 

redundant nested invocations problem (RNIP) [18]. 

A nested invocation refers to an invocation on a server B, from another server A, 

upon an invocation on A. The RNI problem arises when a group is serving a client 

invocation and replicas in this active replication group all make the same (redundant) 

nested invocations to another server. An example is used in Figure 1 to illustrate the RNI 

problem in more detail. Figure 1 shows an active replication group A that is configured 

with two active replicas A1 and A2. Suppose that an invocation A->do() arrives at group A. 

This invocation later triggers two nested invocations, namely, V->addV(2) and 

U->addU(1) shown in Figure 1, one on each server U and V. Server V will receive two 

identical invocations, one each from A1 and A2. Because they are identical in A, it is clear 

that these two nested invocations are redundant to server V. Similarly, server U will face 

the same problem. Redundant invocations could cause inconsistent states, particularly if 

such requests lead to state changes. OMG’s RFP of Fault-tolerant CORBA [18] advocated 
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the installation of a suppression mechanism for redundant nested invocation (SM) on 

active replication groups, as shown in the dotted box in Figure 2. The purpose of SM is to 

ensure that only one of the redundant nested invocations is allowed to be forwarded to the 

server. In other words, this mechanism identifies all redundant nested invocations first, 

and then suppresses all of them but one. Figure 2 depicts an effective SM where 

V->addV(2) from A2 is suppressed, since its equivalent RNI from A1 has been sent to 

server V earlier. By the same token, the nested invocation V->addV(1) from A1 is 

suppressed. Furthermore, this mechanism should deliver invocation results to every 

member in the replicated group.  

 

V->addV(2) 

A1 

V->addV(2) 

Group A 

A->do() 
 

V A2 

Server V executes addV() twice, and RNI problem raises

U 

V->addU(1) 

U->addU(1)

 

Figure 1. The RNI problem. 

  

V->addV(2) 

A1 

V->addV(2) 

Group A 

A->do() 
 

V A2 U 

U->addU(1) 

U->addU(1) 

SM
 

1.Suppresses all late RNI 

2.Dispatch responses to RNIs  

Figure 2. The desirable features of SM. 
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Suppose that a server serves one invocation at a time (known as the per-object 

invocation model in ORB). All servers are implemented as single thread, and the 

execution of each replicated server is deterministic. It is readily seen that all nested 

invocation sequences from replicated servers are identical given a client invocation to the 

group. Suppose the SM can incrementally assign a number, shown in the small box in 

Figure 3, to a nested invocation from a server in the group. For instance, the first nested 

invocation V->addV(2) from server A1 is assigned the value 1 as its nested invocation ID. 

Invocation IDs are shown in the box in Figure 3. The SM can detect that a nested 

invocation is redundant if its ID has appeared before. For example, the nested invocation 

V->addV(2) from A2  is blocked at the SM because it’s equivalent from A1 has been sent 

to server V. Similarly, the nested invocation U->addU(1) from A1 is blocked at the SM. 

We can argue that the SM design solves the RNI problem given the assumptions. 

Mission-critical systems that deploy an active replication mechanism tend to be more 

performance sensitive in terms of response time, system throughput, real-time constraints, 

etc. Based on our experience [10], multi-threading (MT) implementation at both the 

middleware and application levels is an effective approach for addressing performance 

issues. 

  

V->addV(2) 

A1 

V->addV(2) 

Group A 

A->do() 
 

V A2 U 

U->addU(1) 
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SM
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SM suppresses late RNI 

 

Figure 3. Simple solution for single threaded application RNIP. 
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However, MT implementation introduces randomness, adimension  which makes 

the design and implementation of the SM more complicated [13]. Suppose that both A1 

and A2 are implemented in MT. Their nested invocation sequences may not be identical 

even if their implementations are the same. Figure 4 gives one such example where each 

replica forks two distinct threads to interact with distinct targets U and V. The thread 

execution in A1 may be different from the one in A2. As a result, the nested invocation 

sequence of A1, namely {U->addU(),V->addV()}, differs from that of A2. If we use the 

same SM in this case, the SM assigns a different ID number to V->addV() from A1 than to 

the one from A2. The two RNI V->addV() are forwarded to server V.  It is obvious that 

the solution offered in Figure 3 does not work in this case, as shown in Figure 4. 

 

V->addV(2) 

A1 

V->addV(2) 

Group A 

A->do() 
 

V A2 U 

U->addU(1)

U->addU(1)

SM
 1 

2 

2 

1 

Server V executes addV() twice, and server U 
gets no request. 

 

Figure 4. Sequential number ID fails to identify RNIs. 

Narasimhan, et al. proposed an SM solution to address this RNI problem in their 

Eternal fault-tolerant system [13]. This SM involves the installation of a deterministic 

thread scheduler in the ORB kernel. This implemention ensures that all replicas in an 

active replication group produce an identical nested invocation sequence. As a result, the 

SM can distinguish redundant nested invocations by assigning sequence numbers to the 

nested invocations from each replica. Figure 5 depicts such a scenario. Some modern 

operating systems implement a thread scheduler on the kernel level for execution fairness. 
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In this case, modification on thread control implies modifying a operating system kernel. 

This approach loses system portability which is one of the important requirements of 

CORBA and other middleware. 

 

V->addV(2) 
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V->addV(2) 

Group A 

A->do() 
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U->addU(1)

U->addU(1)
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2 
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Figure 5. A deterministic thread scheduler solution for the redundant nested invocations 

problem. 

Based on the above discussion, an application server with single-threaded 

implementation is unlikely to satisfy the high reliability performance requirement. 

Furthermore, Eternal system is not a promising solution for a portable SM in that 

portablility is one of the most desireable features for the CORBA community. In this 

paper, we propose a portable SM design for this multi-threading RNI problem. Our SM 

intercepts all nested invocations, and appends a header that contains all necessary 

information needed for RNI identification. We show in section 4 that this SM is able to 

detect all redundant nested invocations successfuly and efficiently. Our SM takes 

advantage of standard ORB functions, such as portable intercepter and portable object 

adaptor (POA), and a standard multi-threading library, setspecific()/getspecific() in the 

Open Software Foundation’s Distributed Environment thread package. As such, we can 

ensure the portability of our SM. 

The remainder of this paper is structured as follows. Section 2 uses an abstract group 
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model to define the RNI problem and the auto-suppression machanism is discussed. In 

section 3, we will discuss our SM prototype design in detail. The prototype 

implementation is given in section 4. Two performance experiments are designed to 

measure the overhead of the SM in section 5.. Conclusions and future works are 

discussed in section 6. 

2 The auto-suppression mechanism of redundant nested invocation 

In this section, we first introduce an abstract model that defines the notations used 

throughout this paper. We present the assumptions about this abstract model. We then 

give the formal problem definition based on the abstract model and the assumptions. 

 

 

 
 

Server object 
Ai 

Output 
nested invocations 

sequence 
Ni={ni1,nii2, …} 

Input 
requests sequence 

R={r1,r2,r3, ... } 

 

Figure 6. A single object server model. 

The abstract model consists of two parts: the single object server object model, and 

the group object model. Figure 6 depicts the single object model for an object 

implementation. We assume a server object Ai has a main thread ti that forks a distinct 

child thread to serve each arrival request rk∈R={ r1, r2, r3, …} where R denotes the 

sequence of arrival requests. This child thread may fork other threads to interact with 

other servers if needed. This is when nested invocations can occur. We call this model the 

MT application (MT-AP) implementation. We let Ni={ni1, ni2, …} represent the nested 

invocation sequence triggered by the arrival request sequence R.  
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For the group object model, Figure 7 depicts an active group of replicated object 

servers A={A1, …, Am}. Suppose these replicas serve the identical sequence of requests R, 

and each replicated server object produces it’s a sequence of nested invocations,  N1, …, 

Nm. We can assume that there are redundant nested invocations (RNI) among these 

sequences since the object servers A={A1, …, Am} are replicated of each other. As shown 

in Figure 7, we assume there is an SM in place to detect RNIs, , and then form a group 

sequence of nested invocations N={n1, n2, …} out of individual sequences N1, N2, …, and 

Nm by blocking all RNIs. SM then delivers the set N to corresponding target servers. 

 

 

 

A m  

 

A 1  

N = { n 1 ,n 2 ,n 3 ,  … }  
R = { r 1 ,r 2 ,r 3 , . ..  }  

N 1 = { n 11 ,n 1 2 ,n 1 3 ,  … }  

N m = { n m 1 ,n m 2 ,n m 3 ,  … }  

S M  o f  R N I  

 

Figure 7. An active FT group model. 
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Figure 8. The thread tree of server object Ai. 
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A thread may fork child threads during execution. Each thread is forked from only 

one parent thread, i.e. each thread has only one parent thread. Naturally, all the threads of 

Ai (subject to R) form a thread tree Ti. Consider the example in Figure 8, all descending 

threads of thread ti form a thread tree denoted by Ti. We let child thread tik of ti represent 

the thread serving the incoming request rk∈R, since we assume ti forks a new thread to 

serve each incoming request. Thus the sub tree Tik represent the thread tree generated to 

serve request rk. Suppose thread 
121 ... −niiirit  represents a thread in the thread tree Tir. Then, 

the thread 
niiirit ...21

denotes the in
th child thread forked from thread 

121 ... −niiirit during its 

execution; and this notation implies ia∈N, ∀a≥1. For example, the sub tree Ti1 and Ti2 in 

Figure 8 serve the request r1 and r2 respectively. The sub tree Ti1 has a root thread ti1 and 

two child threads ti11 and ti12. 

Our SM design is based on the above abstract group model and the following 

assumptions for an active fault-tolerant system.  

Assumption 1: All replicated object servers A1, …, Am serve the same sequence of arrival 

requests R. 

Assumption 2: The threads tik and tjk are identical ∀i, j, denoted as tik=tjk, since they all 

serve the same request rk. 

Assumption 3 identical thread behavior: If two threads 
niiirit ...21

and 
mjjjrjt ...21

 are 

identical, then their child threads are piece-wise identical, i.e., 
121 ... +nniiiirit =

121 ... +mm jjjjrjt  if 

in+1=jm+1. 
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 ti 
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tj11 
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Figure 9. Identical thread behavior. 

This assumption states that the child threads of two threads are piece-wise identical 

if the two threads are identical. An identical thread example is shown in Figure 9. If two 

distinct threads ti12 and tj12 on distinct server object Ai and Aj are identical, then the child 

threads ti121 and ti122 are identical to t1121 and tj122, respectively. Based on assumptions 1~3, 

the thread tree of server objects have following property. 

Property 1: Given tir=tjr, 
niiirit ...21
=

njjjrjt ...21
 if ik=jk ∀k=1, ..., n. 

Proof: Proved by induction: 

Basic step: Given Assumption 2 and Assumption 3, we have 
1irit =

1jrjt  if i1=j1. 

Inductive step: Suppose 
121 ... −liiirit =

121 ... −ljjjrjt  if ik=jk ∀k=1, …, l-1. We have to show that 

iiirit ...21
=

ljjjrjt ...21
 if ik=jk ∀k=1, …,l. By Assumption 3, we have 

liiirit ...21
=

ljjjrjt ...21
 if il=jl 

since 
121 ... −liiirit =

121 ... −ljjjrjt . 

We conclude that 
niiirit ...21
=

njjjrjt ...21
 if ik=jk ∀k=1,..,n.  

It is readily seen that the two thread trees from distinct object servers are 

homogeneous if they are rooted at identical thread, i.e., 
niiirit ...21
=

njjjrjt ...21
. We next state 
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Assumption 4 for nested invocations triggered by identical threads. 

Assumption 4: Two threads in two distinct server objects trigger identical nested 

invocation sequences if these threads are identical. 

Before we define RNI, we characterize RNI using the following information, called 

invocation information: (1) the thread that produces this invocation; (2) the order (or 

sequence number) of this invocation generated in that thread; and, (3) the invocation 

context that contains the information from its target, operation, and arguments. The 

formal definition of redundant invocation is defined as: 

Definition 1 Redundant Nested Invocations): Any two nested invocations from distinct 

replicas are called redundant if their invocation information is identical. 

In this paper, we are interested in the design of an SM that has the following 

functions: the SM is able to: 1) automatically detect and suppress RNI from a group of 

replicated servers with MT implementation; 2) forward the earliest RNI and suppress the 

rest; and, 3) return the response to interested object servers once the response is available. 

 Group A 

A->do() 
 

U->addU()
IID 

A1 

NND 

R
A

D
 

U->addU() 
Sequential ID 

A2 A3 

SM 

U->addU()
IID 

U->addU()
IID 

 

Figure 10. The architecture of suppression mechanism (SM) for RNI. 
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3 The suppression mechanism design 

In this section, we present the proposed SM design as shown in Figure 10. The 

architecture of the proposed SM is divided into two major components: the NI 

notification device (NND), and redundancy auto-suppression device (RAD). NND is 

responsible for the collection of invocation information of each NI in order to construct a 

data structure called invocation identifier (IID). It attaches the IID as a header for the 

nested invocation. RAD identifies redundant nested invocations if their IIDs are identical. 

When the RAD receives nested invocations, it inspects their IID for for redundancy, 

forwards exactly one RNI to the target server, and returns responses to those nested 

invocations. We now present our detailed design of NND and RAD. We also use the 

example discussed in Figure 4 to explain the interaction scenario in SM. 

The design goal of NND is to design an IID for RAD to identify RNI based on 

Definition 1. Therefore, we use invocation information as the IID, as shown in Figure 11. 

Based on Property 1, we use partial thread index “k.i1.i2..in” of thread 
niiikit ...21
 as the 

thread’s name. Each thread in the object server’s thread tree has its own unique name. We 

expect that a thread from a replica can identify its equivalent in another replica using the 

same thread name. The NND keeps track of all the nested invocations from each replica’s 

thread. The sequence number indicates the order that this nested invocation is triggered in 

that thread. As well as the thread name and sequence number, we use invocation context 

in IID to double check for redundancy of nested invocations. 

NND acquires thread information, and nested invocation information when it 

intercepts (receives) a nested invocation. Then it constructs the IID for this nested 

invocation. Therefore, we design NND as an interceptor in each replica to intercept all 
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out-bound nested invocations. NND appends the header containing the IID information 

and forwards it to RAD. 

We reuse the example in Figure 4 to illustrate the NND design, shown in Figure 12. 

The replica A1 and A2 forks thread t11 and t12, respectively, to serve the request A->do(). 

Thread t11 and t12 forks thread t111 and t121, respectively, to interact with target server V. 

Each thread triggers one nested invocation to target server U or V, shown in the Figure 12. 

These nested invocations are intercepted and processed by NND. We assign thread t111 

and t211 the same thread key, i.e., t111= t211=“1.1”. Both thread t111 and t211 trigger the first 

nested invocation V->addV(2), denoted as n12. and n21. Thus, the sequence number on the 

thread of the nested invocation n12 is 1. As a result, the NND assigns IID  1.1 1 V addV 2 to 

n12. 

 Thread information Nested invocation information 

 

Target Operation Arguments 

 

Thread key Sequence in thread 

  

Figure 11. The IID data structure. 
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V A2 U 
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IID11= 1 1 U addU 1 , IID12= 1.1 1 V addV 2 , IID21= 1.1 1 V addV 2 ,IID22= 1 1 U addU 1  

R
A

D
 

NND 

t111 
 

t211 
 

t21 
 t11 

 

NND 

n11 

n12 

n22 

n21 

n11:IID11 

n21:IID21 

n12:IID12 

n22:IID22 

 

Figure 12. The auto-suppression mechanism of redundant nested invocations. 
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Each replica group is assigned one RAD that identifies RNIs. The RAD acts as an 

invocation proxy to send invocations and to accept responses for all replicas. The RAD 

sends out the earliest RNI by inspecting their IIDs. The RAD forwards a nested 

invocation, if its IID appears for the first time. In contrast, the RAD blocks a nested 

invocation if an identical IID appeared before. Furthermore, the RAD dispatches the 

response to all suspended nested invocations associated with the same IID when it 

receives a response from the target. Figure 12 depicts a successful auto-suppression 

example. RAD forwards n21 and suppresses n12 because IID21= IID12 and n21 arrives 

earlier than n12. Similarly, the RAD forwards n11 and suppresses n22. As a result, the RAD 

successfully auto-suppresses all RNIs when using our IID design. 

4 Implementation 

We present the implementation details of both NND and RAD in this section. One of our 

design goals is to maintain the SM’s portability across all CORBA platforms among 

different vendors. Later we show in this section that NND is implemented as CORBA 

portable interceptor [16], and the implementation of RAD adopts the dynamic skeleton 

invocation (DSI) [15]. Both NND and RAD use the standard interfaces in the CORBA 

2.4 specification (or up). Therefore we assure the portability of SM. We will illustrate the 

interaction among the replicas, the SM components, and underlying ORBs via a complete 

invocation scenario. 
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RAD Target U 
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Host Host Host 
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3 4 

5 
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A->do() 

 

Figure 13. The system architecture implementation 

In order to perform thread name management, AP programmers have to use our 

FTThread instead of standard Thread class for their MT implemenation. The FTThread 

class inherits standard Thread class. Such that our system can set thread key of each child 

thread in FTThread’s constructor. We use Thread.setName() to set thread key ( or name). 

Based on Assumption 1, each arrival request is assigned a sequence number and is used 

as root thread key. The sample code is shown in Figure 14. 

 
class FTThread extends Thread 
{ 
   public int child=1;      //The number of children of this thread 
   public FTThread() 
   { 
      threadKey=this.currentThread().getName()+"."+((FTThread)this.currentThread()).child++; 
      this.setName(threadKey); 
   } 
} 

Figure 14. Sample code of FTThread implementation 

The major function of NND is to intercept NI, create its IID, and forward it to RAD. 

Figure 15 shows that our NND is implemented as a CORBA portable interceptor to gain 

transparency and portability by implementing the interceptor callback interface 

ClientRequestInterceptor [16]. In order to acquire the thread information of nested 

invocation, we implement NND in each replica. The original invocation path outbound 
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nested invocation is shown as dotted line. Such that our NND automatically intercepts all 

outbound nested invocation by invoking ClientRequestInterceptor::send_request() from 

ORB.  NND retrieves thread key by calling Thread.getName(). We use HashTable to 

maintains the number of nested invocations triggered from each thread. It retrieves target 

operations, and arguments from this NI’s ClientRequestIfno [16]. It constructs IID from 

these retrievable data. NND then appends the IID as a header to the NI and redirect this 

NI to RAD by raising the standard CORBA exception ForwardRequest [16]. A sample 

code of the NND implementation is shown Figure 16. 

Figure 17 depicts the sample code of RAD implementation. A dynamic skeleton 

interface is implemented in the RAD, the RAD can accept any forwarded nested 

invocation [15]. We use a Java Hashtable as a tracking table to keep track the IID of all 

forwarded nested invocations. RAD calls Hashtable.put() to add the new IID of this 

nested invocation if it fails to find identical IID in Hashtable by calling Hashtable.get(), 

line 11 in Figure 17. RAD forwards or suspend nested invocations by calling a private 

synchronized function NIforward(). We use Java synchronized code segment, line 23 to 

32 in Figure 17, to suspend late RNIs until the response is available. 

 

interceptor 

Replica

ca 
send_request() 

ORB 

Target RAD 

throws ForwardRequest 

Original path  
Figure 15. The implementation of the proposed NND 
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1: public class NND extends org.jacorb.orb.LocalityConstrainedObject implements ClientRequestInterceptor 
2: { 
3:    … 
4:    public void send_request(ClientRequestInfo ri)    throws ForwardRequest 
5:    { 
6:      … 
7:      throw new ForwardRequest(RAD); 
8:      … 
9:    } 
10:   … 
} 

Figure 16 Sample code of the NND implementation 

1: public class RAD extends org.omg.PortableServer.DynamicImplementation 
2: { 
3:    private Hashtable RNI= new Hashtable(); 
4:    ... 
5:    public void invoke(org.omg.CORBA.ServerRequest request) 
6:    { 
7:     .. 
8: //retrieve IID and lookup the IID; 
9:     synchronized(RNI){ 
10:   CRNI =(ControlRNI)RNI.get(iid); 
11:   if(CRNI==null){                  //fails to find exist IID 
12:      CRNI=new ControlRNI(orb,iid);  //add new IID in Hashtable 
13:         RNI.put(iid,CRNI); 
14:      } 
15:     } 
16:  CRNI.NIforward(sr);   //Forward or suspend this nested invocation 
17:     } 
18:        ... 
19: } 
20: class ControlRNI {   //all identical nested invocations share one distinct object 
21:   private Any res=null; 
22:   String iid=null; 
23:   synchronized void NIforward(org.omg.CORBA.ServerRequest request){  
24:  String op = request.operation(); 
25: if(LateNI){ 
26:       request.set_result( res ); // DSI returns the result  
27:       return; 
28: } 
29: try{ 
30:    // prepare and forward the nested invocation inv 
31:       res=inv.invoke(); 
32: } 
33: ... 
34:   } 
35:   ... 
36: } 

Figure 17 Sample code of the RAD implementation 

Figure 13 depicts a complete scenario that explains the SM’s implementation in 7 

steps. We notice that in Figure 13 each replica is configured with an NND in ORB and an 

RAD is assigned to this active group. The replica sends a nested invocation to target U 
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when it serves a request A->do(). We now explain each step in Figure 13: 

1. Suppose the replica triggers a nested invocation to target U when it serves a 

request A->do().  

2. The replica’s ORB triggers the NND by calling 

ClientRequestInterceptor::send_request(), based on portable interceptor 

specifications [16]. The NND assigns the proposed IID when it intercepts the 

outbound nested invocation. 

3. The NND raises a ForwardRequest exception [16] to notify ORB to redirect the 

nested invocation to the pre-configured RAD. 

4. The RAD receives all redirected nested invocations and inspects its IID. It 

maintains a forwarded IID table and detects redundant nested invocations by 

looking up this table. It makes a new request to the NI target if the IID is absent 

in the table. After forwarding the request to target U, it puts the forwarded IID in 

the table. If the IID is in the table it implies an earlier RNI has appeared before. 

In such a case, the RAD suspends the redirected nested invocation. 

5. The RAD receives the response from target U. 

6. Based on the DSI specification [15], the RAD individually dispatches the 

response to all suspended RNIs by calling ServerRequest::set_result(). 

7. The replica receives the nested invocation response. 

5 Performance evaluation 

In this section, we examine the overhead contributed to SM components in terms of 
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response time (or round-trip delay) of a client’s invocation. We notice that an (nested) 

invocation takes an additional 5 steps when SM components are installed in a replicated 

group as opposed to the case without an SM. (See the discussion of Figure 13 in the 

previous section). These 5 steps of execution are the major source of overhead. The 

overhead can be contributed to two SM components, RAD and NND. Therefore, we 

design two experiments to measure the overhead of RAD and NND respectively. The 

NND is implemented in each active replica. These NNDs act like a parallel system to 

process redundant nested invocations. That is, the NND overhead will not rise as the 

number of active replicas increase. Later we will show that the overhead due to NND is 

insignificant. The RAD identifies RNI from each replica and dispatches a response to 

each of them. Thus the RAD overhead depends on the number of active replicas. Our 

experimental results confirm our observation. 

 Group A 

A->do() 
 

U 

RAD 

redirected U->addU(1) 
 

A1 

NND 

ORB 

host host 
A2 

NND 

ORB 

host host 

redirected U->addU(1) 
 

 

Figure 18. The performance experience environment 

These two experiments are built on the same networking environment. We 

implemented our SM prototype on the Linux platform by using a free Java ORB JacORB 

1.3.30 with JDK1.3.1. Group A is implemented as an active replication fault-tolerant 

group. The server replicas are installed on four hosts on the same local area network 

(LAN). As shown in Figure 18, the client object, RAD, and target object U are installed 
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on distinct hosts on the same LAN. The seven hosts are all Pentium III 866 PCs each with 

512MB RAM. The scenarios of both experiments are straightforward. The client issues 

an invocation A->do() to replica group A which in turns trigger nested invocation, 

U->add(1). The purpose of the experiments is to measure the response time delay of 

client invocation A->do() due to SM components RAD and NND. Note that all results 

reported in this section are obtained with 95% of confidence interval with interval 

half-widths of less than 3% of average response time. 

RAD overhead 

Because the RAD overhead depends on the number of replicas, we measure the 

variation of response time by increasing the number of replicas. The average response 

time result is shown in Figure 19. The experiment shows that the response time rises from 

120 to 128 ms when the number of replicas is increased from 2 to 4. The response of 

A->do() is returned to the client object after replicated servers complete the request. 

Therefore, the increased response time is the processing time for each replica in RAD. 

Our experiments show that the RAD takes 4ms to process an NI for each replica. 

The response time vs. number of replicas

110

115

120

125

130

0 1 2 3 4 5

number of replicas

re
sp

on
se

 ti
m

e 
(m

s)

 

Figure 19. The RAD overhead is proportional to number of replica 



 

 21

We implemented an alternative user-aware active replication group to perform 

identical functions as our SM. That is, the replicated server AP sends nested invocations 

to a user designed proxy server that performs identical functions as our RAD. In order to 

observe the NND overhead, the A->do() triggers exact one nested invocation U->add(1) 

to target U. As shown in Figure 20, the overhead is calculated as (Ta-Tb)/Tb, where Ta is 

the response time with NND and Tb is the response time without NND. The response time 

comparison is shown in bar. The result shows that NND overhead is insignificant, less 

than 0.8% or 1ms, when the fault-tolerant system has at least two replicas. 

The NND overhead
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Figure 20. The NND overhead 

6 Conclusion 

In this paper, we proposed an auto-suppression mechanism of redundant nested 

invocations to solve the RNI problem in active replication FT CORBA. We also show the 

system correctness of our suppression mechanism. Actually, the correctness of 

Narasimhan’s SM implementation can be proved in a similar way as our correctness 

proof. We demonstrated the way to prove the correctness of a system design. Therefore, 

the system designer can verify their design in advance. We have built a prototype of the 
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proposed SM to demonstrate how it correctly auto-supress RNI and it is built without 

modification on OS. The NND can be implemented in ORB kernel as a system facility. 

That is, the NND is fault-tolerant. The RAD implementation can be built fault-tolerant by 

configuring multiple copies of RAD. Thus, the fault-tolerance of the SM is ensured. 

Appendix 

 The correctness of the suppression mechanism 

We shall discuss the correctness of the SM and prove the correctness of our SM design by 

referring to the group model in Figure 7. As shown in this figure, the replicas in the group 

take identical arrival request sequence R={r1, r2, …}. The output nested invocation 

sequence from Am is denoted as Nm={nm1, nm2, …}. The nested invocation sequences N1,…, 

Nm from A1, …, Am are managed by our SM. The correctness of the SM design depends 

on the correct IID assignment. 

In order to prove the correctness of the proposed SM, the redundant nested 

invocations Definition 1 is redefined as: 

Definition 2: Let Tseq(nik) denote the invocation sequence number in the thread trigger 

nik, and IIDik denote the IID of nik. If IIDik=IIDjl, and Tseq(nik)=Tseq(njl), then these two 

nested invocation are redundant to each other and denoted as nik≡njl. 

Based on Definition 1 and the assumptions, a correct SM should have the following 

properties: 

Property 2: Using the sequential number of nested invocation in a thread as IID header, 

all the IIDs from a replica are distinct. 
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Property 3: The redundancy is detected by inspecting the IIDs of outgoing nested 

invocations. The system design’s correctness can be proved by showing that: (a)the IIDs 

of nested invocations from arbitrary replica Ai, {IIDi1, IIDi2, …}, are distinct; (b) 

IIDik=IIDjl implies nik≡njl for arbitrary replica pair Ai and Aj. 

We can prove the system correctness as follows: 

Theorem: If an SM is built under the above assumptions and uses 

 Thread ID Tseq() target method arguments  as IID, then the auto-suppression of redundant nested 

invocation is correct. 

Prove: Proved by induction:  

Suppose the group A is configured m active replicas and the IID headers are assigned 

monotonic increasing. Let N1={n11, n12, …},…, Nm={nm1, nm2, …} be nested invocation 

sequences from replica A1, …,Am respectively. The IIDi1, IIDi2, … assigned by any replica 

Ai are distinct by Property 2. We only have to show that ∀nic∈Ni njd∈Nj ,IIDic=IIDjd 

implies nic≡njd 1≤ i, j≤m by induction. 

Basic step: We have to show that IIDi1=IIDjb→ni1=njb. 

We prove it by contradiction. Suppose that IIDi1=IIDjb and ni1≠njb. Let Hik be the header 

of IIDik. ni1≠njb , Tseq(ni1)=1 → Tseq(njb)>1. Hence, there exists an nja∈Nj triggered by 

the same thread with njb. This leads to Hja<Hjb. By definition, there must exist an nie∈Ni 

such that 1<e and IIDie=IIDja. Since IIDi1=IIDjb, IIDie=IIDja, and Hja<Hjb, it implies 

Hie=Hja<Hjb=Hi1. This leads contradiction to the IID header monotonicity assumption. 

Therefore, Tseq(ni1)=Tseq(njb)=1 and ni1≡nja. 

Inductive step: Suppose IIDic=IIDjd→nic≡njd, 1≤c,d. We have to show there exists a 
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nested invocation njf, such that IIDic+1=IIDjf→nic+1≡njf. Since IIDic+1=IIDjf, both nic+1 and 

njf are in the identical threads tic+1=tjf. We have to prove that in two cases: 

Case 1: If none of identical nested invocation pairs (ni1, nja), …, (nic, njd) are in threads 

identical to (tic+1,tjf), then Tseq(ni1)= Tseq(nj1)=1. Therefore, IIDic+1=IIDjf→nic+1≡njf. 

Case 2: Otherwise, there must exist l, 1≤l≤c, pairs of (nis ,njt)|s≤c are in threads identical to 

(tic+1,tjf). Similar to the proof in the basic step, we can show that Tseq(ni1)= Tseq(nj1)=l+1. 

Therefore, IIDic+1=IIDjf → nic+1≡njf. 

We can conclude that IIDic+1=IIDjf→nic+1≡njf. Since the IIDs from an arbitrary replica 

are all distinct and identical IIDs implies identical nested invocations, the 

auto-suppression of redundant nested invocations is correct.  
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