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Abstract—In this paper, we propose a Bayesian approach to video object segmentation. Our method consists of two stages. In the first 

stage, we partition the video data into a set of 3D watershed volumes, where each watershed volume is a series of corresponding 2D 

image regions. These 2D image regions are obtained by applying to each image frame the marker-controlled watershed segmentation, 

where the markers are extracted by first generating a set of initial markers via temporal tracking and then refining the markers with 

two shrinking schemes: the iterative adaptive erosion and the verification against a pre-simplified watershed segmentation. Next, in the 

second stage, we use a Markov random field to model the spatio-temporal relationship among the 3D watershed volumes that are 

obtained from the first stage. Then, the desired video objects can be extracted by merging watershed volumes having similar motion 

characteristics within a Bayesian framework. A major advantage of this method is that it can take into account the global motion 

information contained in each watershed volume. Our experiments have shown that the proposed method has potential for extracting 

moving objects from a video sequence. 

 
Index Terms—Video Object Segmentation, Watershed Segmentation, 3D Watershed Volume, Markov Random Field. 

I. INTRODUCTION 
ideo object segmentation plays an important role in many advanced video applications (such as in MPEG-4 [2] or in virtual 

reality), but still remains a challenging research topic. A popular approach to [21] video object segmentation is to combine a 

technique for single image segmentation with a temporal tracking procedure. Unfortunately, single image segmentation is itself a 

very difficult problem (which may not be easier than video object segmentation).  Other techniques in [14][17] consider video 

sequences to be 3D signals and extend 2D methods to them, although the time axis does not play the same role as the spatial axis. 

The drawback of this technique is that a moving object in one frame must overlap with its corresponding object in the next frame. 

If the motion distance of the object is large, the object may become disconnected from one frame to the next. Most of the 

unsupervised segmentation algorithms only utilize low-level features such as color, texture, motion, frame difference and 

histogram [10][21]. However, without high-order information, semantic video object extraction is hard to achieve. Therefore, 

many researches have allowed a certain degree of human interaction.  For example, the methods introduced in [3][5] require some 

human interaction for the initial segmentation of the first image in the video. In fact, almost all the automatic algorithms developed 

for extracting video objects have some limitations. For example, the automatic method proposed in [21] can only extract 

homogeneous regions, instead of complete objects.  

Realizing that there exists no generic automatic algorithm applicable to all kinds of video sequences, we focus on the problem of 

extracting video objects having similar motion characteristic. The method proposed in this paper consists of two stages: (1) 

generation of 3D watershed volumes, and (2) Bayesian merging of 3D watershed volumes. Details of the two stages will be 
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described in Section II and Section III. Experimental results will be shown in Section IV, and the conclusion will be given in 

Section V. 

 

II. GENERATION OF 3D WATERSHED VOLUMES 
Watershed algorithm has been become popular technique for image segmentation [6][17][19]. Given a video clip, {It, 0 ≤  t ≤  

T}, we can regard the data as one volume image. Our method first partitions the volume image into a set of 3D watershed volumes, 

where each 3D watershed volume is a series of corresponding 2D image regions. Fig. 1 shows the flowchart of our method for 

generating 3D watershed volumes. These 2D image regions are obtained by applying to each image frame the marker-controlled 

watershed segmentation described in Step 2 of Section II-B. The procedure for generating 3D watershed volumes can be divided 

into two phases: initial segmentation and temporal tracking. Details of these two phases are described below. 

A. Initial Segmentation 
In the initial phase, the first frame of the video clip, I0, is partitioned into a set of 2D regions by applying the watershed 

segmentation algorithm to the gradient image of I0. However, the basic watershed transformation tends to produce 

over-segmentation due to noise or local irregularities in the gradient image. Since overly segmented regions may not be reliable 

enough for the next phase of temporal tracking, we adopt a pre-processing method called “topographic simplification” to alleviate 

the over-segmentation problem. In our current implementation, the topographic surface of the gradient image is simplified by 

removing the local minima [20]. First, we apply a dilation operation with a structuring element of 2x2 pixels, i.e., let g1 = 

Grad(I0)♁B2×2. Next, we apply to Grad(I0) a “reconstruction by erosion” [18] from g1+h, i.e., let g2 = φ(rec)[g1+h, Grad(I0)]. Notice 

that using a larger h can eliminate more local minima. Finally, we can obtain a reasonable segmentation of I0 by applying the basic 

watershed transformation to the simplified gradient image, g2.  

In this paper, the above procedure of “topographic simplification followed by watershed transformation” will be referred to as 

the pre-simplified watershed segmentation, and will be applied again to each subsequent frame for the purpose of refining the 

extracted markers, as described in Step 1.3. 

After pre-simplified watershed segmentation, merging of a foreground region and a background region may occasionally occur. 

That means the volume of parameter h is too large so that watershed regions are over-simplified. The user can select either a 

smaller h or apply some human intervention supported by our system. Our tool allows the user to draw different markers on some 

parts of the region to indicate that they should not be merged. Then, the marker-controlled watershed segmentation will be 

performed so that the merged region will be split automatically. The operation is quit simple for the users, and this operation, if 

needed, usually is required only for the first frame.  Fig. 2 shows an example of our user intervention tool. The edge of the hat and 

the background are separated by drawing different markers on each of them, as shown in Fig. 2(a). Fig. 2(b) and 2(c) show the 

results after user intervention.  

B. Temporal Tracking 
In the second phase, our algorithm repeats the following two steps for each subsequent frame in the video clip: (i) marker 

extraction, (ii) marker-controlled watershed segmentation. The task of marker extraction is to extract reliable seed regions based on 

the segmented regions obtained from the previous frame. Given these reliable markers, the marker-controlled watershed 

segmentation can not only accurately extract the boundaries of the watershed regions, but also can detect newly emerging regions. 

Step1: Marker Extraction 
Marker extraction is crucial to the success of the temporal tracking phase and deserves some special attention here. Our method 
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for extracting markers consists of the following three sub-steps: 

Step 1.1: Region label propagation by motion-based backward projection 
First, initial markers are obtained by using backward pixel projection based on backward motion vectors. That is, for each pixel 

p in the current frame, we assign to the region label of the corresponding pixel in the previous frame to it. The correspondence is 

determined by using the backward motion vector mp. Here, we choose to use backward motion to avoid generating empty and 

conflicting areas in the current frame. The dense field of backward motion vectors is estimated by using a template-matching 

algorithm that adopts adaptive windows, similar to the one used in [7]. To save the computation time, we first estimate a sparse 

field of motion vectors at every 4 4 pixel spacing. Then, the dense pixel-wise motion vectors are computed using bilinear 

interpolation. The approximation error can be dealt with the following process. 

×

Step 1.2: Removing unreliable pixels from initial markers by iterative adaptive erosion 
Since motion vectors are usually not very accurate, we must remove unreliable region assignments due to erroneous pixel 

correspondences. In order to reduce the possibility of generating false boundaries in the next sub-step, the extracted markers should 

be as large as possible, and completely contained in their true corresponding regions - which are unfortunately unknown to the 

computer. 

Consider an initial marker Mi. A pixel , is regarded as an unreliable pixel if it has an unreliable region propagation, that is, 

if 

iM∈p

( )pε  is greater than k · iE , where ( )pε  denotes the local mean of textural error centered round pixel p (that is, the error of 

texture, including intensity and color, between the corresponding pixels): 
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where Up= { p and its 8-neighbors having the same region label as p} ,  is the number of elements in the set UpUN p, and 

iE denotes the global mean of textural error for the whole area of marker Mi: 
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where is the number of the pixels in marker MiMN i. The reason for constraining iE  to 2 and 16 is to prevent using an 

unreasonable large or unreasonable small threshold. The two number, 2 and 16, are determined according to our experiments. 

 In this sub-step, we apply an iterative adaptive erosion to trim off “unreliable border pixels” of the initial markers, as illustrated 

in Fig. 3. The adaptive erosion (erode if “unreliable”) is performed iteratively with a cross-shaped structuring element of 5 pixels, 

shown in Fig. 3(b), until the result becomes stable. Notice that the adaptively eroded marker shown in Fig. 3(e) is a union of the 

normally eroded marker (shown in Fig. 3 (d)) and the reliable pixels, coloured in white, are contained in the border portions (shown 

in Fig. 3(c)). 

Note that using a lower k can eliminate more marker pixels. In the case of foreground and background objects, which are not 

distinctive, k should be set conservatively. We found that k = 1.2 works well for most MPEG-4 test sequences in hand. The 

resulting markers with different values of k using frame 116 of the “foreman” sequence are shown in Fig. 4. Pixels in black 

represent any undefined areas. 

Step 1.3: Removing unreliable pixels by checking with a pre-simplified watershed segmentation 
Here, we first generated a reasonably fine segmentation of the current frame by applying the pre-simplified watershed 

 3



  

segmentation described in Section II-A, with a small value of parameter h. For each generated watershed region, check if it 

contains only one marker and the sole marker occupies more than half of the watershed region. If so, the sole major marker will be 

retained for driving the marker-controlled watershed segmentation in the next step. Otherwise, the marker pixel in this watershed 

region will be considered “unreliable”, and will be removed from the markers, as illustrated in Fig. 5. Fig. 6 shows the final 

markers obtained by applying this sub-step to the markers shown on Fig. 4. We can see that after this step, small and ambiguous 

pieces of the marker are removed. 

Step 2. Marker-controlled watershed segmentation 
Based on the reliable markers obtained from the last step, we can then extract more precise region boundaries by using the 

marker-controlled watershed segmentation [9][21]. One problem accompanying marker-controlled segmentation is that no newly 

exposed regions can be extracted without creating new markers. To solve this problem, we modify the marker-controlled 

watershed algorithm slightly. For the flooding process of the marker-controlled watershed algorithm used in [21], when the water 

coming from two different basins is about to meet, the two basins are merged if “both have the same label” or “at least one of them 

is unlabeled.” Our modification for creating new markers is if the dynamics of an unlabeled basin larger than a certain threshold 

[11][8], the basin will be given a new label (Fig. 7). Fig. 8 shows the result of detecting new regions using frame 26 and 27 of the 

“coastguard” sequence. The big boat is entering the image from the left, and the background water can be detected as a new region. 

 

III. BAYESIAN MERGING OF WATERSHED VOLUMES 
Once the 3D watershed volumes are generated, as described in Section 2, we need to merge them into a set of desired video 

objects. Here, we propose a Bayesian approach to merging watershed volumes having similar motion characteristics, hoping that 

more global motion information can be utilized within a formal framework. Here, we use a Markov random field (MRF) to model 

the spatial and temporal relationships among different watershed volumes. A closely related work is the one done by Gelgon and 

Bouthemy, which uses region-level MRFs to track a spatial image partition [4]. Another work proposed by Patras et al. [14] labels 

watershed segments by MAP. The labeling criterion is the maximization of the conditional a posteriori probability of the labeling 

field given the motion hypothesis, the estimate of the label field of the previous frame, and image intensities. However, our method 

is different from theirs, not only in how the MRF is applied (we employ the MRF after tracking while they do it before tracking), 

but also in how the class-conditional probability is modeled. 

A. Extraction of Features from 3D  Watershed Volume 
Before applying the Bayesian merging to 3D watershed volumes, the representative features for each watershed volume need to 

be extracted. Motion information is an important cue to produce semantic objects. Hence, for each watershed volume v, we 

construct a feature vector θv based on motion information. We first decompose each watershed volume v into a set of regions 

( ) ( ){ }TvttvtR eb
t
v ≤≤≤≤0| , where denotes a region which can be obtained by intersecting frame t with the watershed volume 

v, t

t
vR

b(v) and te(v) are the indices of the beginning frame and the ending frame of the watershed volume v, respectively. Note that the 

indices of the beginning and ending frames of the watershed volumes can vary for the watershed volume v due to the appearance or 

disappearance of objects in the scene. 

In practical situations, image motion of a rigid object can be approximately modeled by a small number of motion parameters. If 

two regions roughly correspond to the same 3D rigid object, the motion parameter should be about the same. From the above 

observation, we compute a motion parameter vector  for each region  by applying the Least-Median Squares (LMedS) 

robust estimator [15] to the backward dense motion field obtained from Step 1.1 of Section II-B. The motion parameters can be 

t
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estimated by 
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where u(.) is a parameterized motion field, ⋅  is defined as two-norm, and  is the motion vector of pixel p in frame t. After the 

parameters for all the regions in the watershed volume v are determined, we can construct a motion feature 

vector: . Notice that the dimensionality of  is (t

t
pm
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In our current implementation, the motion characteristics of are described by a constant motion field, that is,  = , 

where  and  and  are the coordinates of the mean motion vector. If an object undergoes a complex motion 

or deformation, a more complex motion model, such as a six-parameter affine model or eight-parameter quadratic model, should be 

used to enhance discriminative ability [12]. Once a complex motion model, such as a six-parameter affine model, is adopted, the 

equations presented in next section should be modified slightly.  
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B. The Proposed Method 
In this work, we assume that the number of video objects, N, to be extracted (including the background objects) is known. Given 

a set of 3D watershed volumes V = {vj, j=1,…,K}, where K is the number of 3D watershed volumes, a Volume Adjacency Graph 

(VAG) can be constructed to express the neighborhood relationship among 3D watershed volumes. Each node in the graph 

corresponds to a watershed volume, and between two volumes exists an arc if the volumes are spatially connected. Next, we define 

a label field on the VAG. Given{ }V ],..1[| ∈∈= vNllL vv { }VvM v ∈= |θ , we estimate the labeling field L by maximizing the 

a posteriori probability (MAP). Using the Bayes rule, the a posteriori probability density function can be expressed as: 

( ) ( ) ( )LPLMPMLP ⋅∝ ||                                                                    (4) 

The first term on the right-hand side of (4) is the conditional probability distribution P(M |L). It is modeled as a Gaussian 

distribution, which implies that each object should have minimum motion variance. 
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where  is the mean of the parameter vectors of all watershed volumes in frame t whose corresponding labels are , ( )v
t lµ vl lσ  is a 

function of the size of the video object. 

The second term on the right-hand side of (4) is the prior probability distribution P(L), which is a regularization term. To take 

into account the “degree” of adjacency between two watershed volumes, we directly extend a measure of adjacency degree 

between two regions proposed in [4] to that between two watershed volumes: 
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where is the area of the common border between v
kj vv ,l i and vj, and gj and gk are the gravity centers of vj and vk, respectively. We 

model the prior as a Gibbs distribution. Before defining a Gibbs distribution, we need to define the cliques. Here, only two-site 

cliques are considered and straightforwardly obtained from the arc of the VAG. Let Cv be the set of all binary cliques. The Gibbs 

distribution is given by 

 5



  

( )( LU
Z

LP b
b

−= exp1)( )                                                                       (7) 

where Zb is a normalizing constant and Ub(L), the regularization potential, is defined as 
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where δ(.) is a Kronecker delta function. The regularization term tends to favor identical labels for two neighboring volume sites. 

The maximum a posteriori probability (MAP) estimate of L is obtained by minimizing the following energy function: 
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Energy minimization is performed using an ICM algorithm proposed by Besag [1], sometimes also called the greedy algorithm. 

At each iteration, each volume sites is visited. The label of each site is either changed to the label that yields maximal decrease of 

the energy function, or left unchanged if no energy reduction is possible. The process stops when no more changes can be made. 

The initialization of the label L is estimated by the K-means algorithm. The initial cluster means { (l ) | 1 µ ≤  l≤N} for the 

K-means algorithm are estimated as follows. The first cluster mean is the mean of the total motion parameters. That is, 
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where Nt is the number of the watershed volume v intersecting with frame t. The cth-cluster mean is the feature vector  that has 

the farthest distance from the nearest cluster mean 
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In summary, the algorithm of our method for merging watershed volumes into video objects can be described as follows: 

Input: Volume Adjacency Graph (VAG), K 

1. Obtain initial cluster means for K-means algorithm using equations (10) and (11). 

2. Obtain initial label for each watershed volume by applying K-means algorithm. 

3. Update labels for all volumes by applying ICM algorithm based on equation (9). 

Output: Labels of all watershed volumes  

 

IV. EXPERIMENTAL RESULTS 

In this section, we use the “foreman”, and “coastguard” sequences, shown in Fig. 9, and Fig. 10, respectively, to demonstrate the 

performance of our algorithm. In our current implementation, the gradient images are computed on a weighted YUV colour space, 

i.e. wyY+wuU+wvV. The weighting factors, wy, wu, and wv, are set to one, two, and two, respectively, to stress the color components. 

The experiments are run in AMD Athlon 1.2GHz PC with 384MB RAM. The sizes of the “foreman” sequence and the 

“coastguard” sequence are 352x288 and 352x240. The total execution time of the  “foreman” sequence (100 frames) is 483sec, and 

the “coastguard” sequence (50 frames) is 131sec. For the experimental results presented in this paper, no user intervention has been 

used. However, one can always find some video sequences that contain complex enough scene, such that user intervention may 

become necessary. 
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In the “foreman” sequence, the human body has a moderate motion and the camera is moving as well. It can be seen from Fig. 

9(b), where cross-sections of watershed volumes are shown, that the results obtained by marker-controlled temporal tracking look 

pretty good. By setting N = 2 (i.e., the number of video objects to be extracted is 2), the watershed volumes depicted in Fig. 9(b) can 

be correctly merged into two video objects: the foreman and the background, as shown in Fig. 9(c). In this sequence, we have 

found that the similarity between the motions of the head and the shoulder could be more easily detected when considering a longer 

sequence. Therefore, our method can obtain better segmentation results than those obtained by Moschni et al. [10]. 

In the “coastguard” sequence, the horizontal camera drift is present while two boats are moving with different velocities and 

directions. Notice that the bigger boat is entering the image from the left, and its new emerging regions can be successfully 

extracted, as shown in Fig. 10(b). If we set N = 4, the proposed Bayesian method can partition the video clip into four different 

objects: the bigger boat, the smaller boat, the water and the shore, as shown in Fig. 10(c). Compared with the results using the 

method proposed by Patras et al.[14], the segmented boundaries we extracted are much closer to the objects. 

 

V. CONCLUSION 
In this paper, we have proposed a new method for video object segmentation. This method first partitions the video data into a 

set of 3D watershed volumes, and then extracts video objects by merging motion-coherent watershed volumes within a Bayesian 

framework. One major contribution of this work is that it models the prior information with a MRF over a Volume Adjacency 

Graph (VAG), where each node of the VAG is a 3D watershed volume, and hence, is able to take into account the global motion 

information contained in each watershed volume. This method is appropriate for extracting objects having similar motion because 

it can merge 3D watershed volumes having similar motion with a Bayesian framework. Another contribution is that this paper 

proposes an efficient way to extract reliable markers by shrinking with two schemes: the iterative adaptive erosion and the 

verification against a pre-simplified watershed segmentation. Experimental results have shown that the proposed method has 

potential for extracting moving objects from a video sequence. 
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