

1

A Tree-Structured Persistence Server for Archiving Java Run-Time States

Chien-Min Wang, Hsi-Min Chen, Shun-Te Wang, and Shyn-Fong Hong

Institute of Information Science, Academia Sinica

NanKang, Taipei, Taiwan

Email: {cmwang, seeme, sdwang, fong}@iis.sinica.edu.tw

Abstract

The persistence problem of collaborative applications is a significant issue in the
research of computer-supported collaborative work. A collaborative computing
environment requires a simple and transparent persistence layer to deal with complex
object accesses. Therefore, in this paper, we propose an object persistence mechanism
and implement a persistence server, called Tree-Structured Persistence Server (TSPS),
to support collaborative applications that store and retrieve application states. The
server allows states of collaborative applications to be stored in a tree fashion beside
tables. In addition to accommodating basic operations to access persistent objects, the
TSPS offers advanced functions to manage sessions, states and versions of a
collaborative application. By accessing these services, users can archive the run-time
states of Java-based applications with transparency and simplicity. The TSPS was
originally developed to serve as a persistence layer to support a project of
computer-supported collaborative work. We intend to develop our persistence
mechanism for universal use so that it can be applied in more application areas.

Keywords

Object persistence, CSCW, Java, object serialization, database, XML

1. Introduction

As the popularity of Internet has grown, users have become accustomed to utilize
Internet-based applications to communicate with each other. Since the need for
applications capable of working collaboratively has increased, more and more
researchers have devoted their attention to the development of Computer-Supported
Cooperative Work (CSCW) [1, 2, 3]. It is a technology designed to facilitate team
work. The technology may be used to communicate, cooperate, coordinate, solve
problems, compete, or negotiate over the network. A number of problems with CSCW
have been investigated in the last decade. These can be categorized as follows: (1)

2

Transparency issues of CSCW: How to spend less effort making stand-alone
applications collaborative, as well as keeping the flexibility that allows users
configuring shared and private working areas simultaneously [4, 5]. (2) Issues of
centralized and replicated shared information: discuss whether the shared object is a
single copy operated by multiple users, or each user keeps a replicated one in the local
computer [6, 7, 8]. (3) Issues of concurrent control: How to deal with users’ inputs
that are interleaved and avoid conflicting [5, 8]. (4) Access control issues: explain that
users having access rights can manipulate particular shared objects, but users without
access rights cannot [9, 10]. (5) Awareness information issues: allow users to be aware
of what others are doing [11, 12]. Persistence issues of collaborative applications for
CSCW have not been given enough attention [13, 14]. The complexity of the above
issues will be reduced, if the persistence techniques can support CSCW properly. We
propose a persistence mechanism to solve the object persistence problem in CSCW.

 Depending on temporal dimensions, CSCW applications are classified into two
broad categories, synchronous and asynchronous collaborations [1]. Where users are
separated geographically, they can find a common time to meet in through
synchronous collaboration. On the other hand, users might not be able work
simultaneously because of different time zones, or different domain knowledge. For
example, one person might reside in U.S., while the other resides in Taiwan, so that it
is difficult to communicate at the same time. Or a staff member might have to wait for
a business decision made by a senior manager. Asynchronous collaboration allows
these users to cooperate when temporally separated. In order to integrate synchronous
and asynchronous collaborations, collaborative persistence techniques have become
more important, as they can bridge the gap between the tow collaborations.

For CSCW applications, the primitive functionality of object persistence is to
save and restore their run-time states. Whether it is a whiteboard application that
saves drawings, an editor application that archives text contents or a game that saves
the progress of a player, the ability to store states and later retrieve them is a vital
function. On the other hand, we usually utilize version control tools to keep track of
the development records of applications when we construct them. Therefore the
developers of CSCW applications might like to archive application states in a tree
structure manner to keep versions rather than overriding them.

The above observations led us to develop an object persistence implement. We
derived a persistence mechanism and implemented a Tree-Structured Persistence
Server (TSPS), which supports our mechanism and is able to facilitate access
persistent objects transparently and simply. We expect that it can be applied in other
application areas in addition to CSCW, so we develop it for universal use. This paper

3

primarily introduces our proposed mechanism and its implementation for archiving
Java run-time states. The rest of the paper is organized as follows. Section 2 lists the
development requirements presented to support the object persistence of
computer-supported collaborative work. Section 3 discusses our design choices of
object serialization techniques and underlying databases. Section 4 explains the
architecture and internal components in detail. In session 5, we illustrate applications
of archiving Java run-time states by using the TSPS. Session 6 describes related work
about other recent persistence mechanisms. Finally, we present some concluding
remarks in the last section.

2. Development Requirements

TSPS was originally developed as a persistence layer to support a CSCW project,
called ShareTone [15]. The ShareTone project is a Java-based collaborative
computing platform in which people at different locations can work together. By
using ShareTone, the component developers can tailor standard JavaBeans
components, or write their own beans with some extra codes, to make these beans
capable of working collaboratively. The application developers can use these
collaborative beans to compose collaborative applications on the top of the ShareTone
platform. For instance, application developers can build a collaborative whiteboard, a
collaborative editor, collaborative games, etc. Users can, therefore, use these
collaborative applications to work together. The term “collaborative” means that when
one member of a cooperative group changes some states of operated objects in his/her
collaborative application, the other members will see the changes in their applications
simultaneously, i.e. What You See Is What I see (WYSIWIS) [16].

Before developing TSPS, the main task is to elicit the requirements from
ShareTone project. The primary need is a persistence store with supporting functions
that allows collaborative applications to store and retrieve their states into/from it. The
following scenarios should be noted.

l A latecomer might like to join a working session. He/she can select an
existing session from a working session list, and catch up with the progress
of the session work. This user can then work with other existing users
collaboratively.

l Users might like to continue a closed session. They can select a session
from a closed session list. The closed session then becomes available for the
users who can continue the collaborative work.

l Users might like to set checkpoints so that they can jump to each checkpoint

4

wherever they set. Users can set their own checkpoint mechanism or they
can set checkpoints at any positions on the fly.

l After users manipulate a series of operations, they may like to jump back to
a specified checkpoint.

l Users might like create a new version of a collaboration application within a
session. For example, users can keep a developing version and a testing
version simultaneously. Nowadays there are several products on the markets
that provide this kind of mechanism, such as CVS (Concurrent Versions
System) [17], Rational Clearcase [18], Microsoft Visual SourceSafe [19] etc.
With these, users can create various versions of applications for different
purposes.

Based on these above scenarios, we summarized a number of features as follows:

1. Session: A session of CSCW can be thought of as a meeting at which
participants discuss some issues. In the real world, a chair announces the
date and location of a meeting. Then the participants either actively attend
or are invited to join. Finally, the meeting is closed after some conclusions.
By using “session” function, people can choose to take part in an interesting
one and avoid others. The function can also be used to filter out users who
don’t have proper authorization. Walking through the session lifecycle,
users create a session before they begin cooperative work. In the session,
the operations can be recorded and at the end of the collaboration, the
session can be closed. The closed session can be reopened at a later time to
continue the cooperative work. The persistence server must provide
functions to deal with session management.

2. Storing and Retrieving Application States: In the ShareTone project,
collaborative work is divided into two phases, the design phase and the
application phase. In the design phase, developers can join a development
session and build collaborative applications. Later, developers might like to
set a checkpoint to record the current development states, or save current
states when they close the session. Subsequently, developers can restore
previous states by reopening the session and go back to a certain checkpoint.
In the application phase, users join a session to work cooperatively through
collaborative applications. In each session, users might like to save the
current state of applications they have worked on, as they can be reopened
later.

5

3. Undo and Redo: As stand-alone applications, when users make use of
collaborative applications to work together, they might like to go back to a
previous state and then go forward to the next state. For example, users can
write down some words and then undo these actions, or redo the effect by
using a word processing application. Therefore, the persistence server must
provide functions to undo and redo actions.

4. Versioning: Developers might like to build a variety of versions of
collaborative applications without creating multiple sessions. A
development session should not be restricted one version only. Once
developers participate in a development session, they can create various
versions of collaborative applications, based on their demands. For example,
some versions are used for developing and some are used for testing.
Therefore, the persistence server must provide functions to control versions.

5. Query: Since a number of sessions exist in the collaborative environment
and each session further consists of versions and states, we need to be able
to locate an interesting one from a large number of sessions, version and
states. The query mechanism is a useful means to help users find an
appropriate target according to their preferences. Again, the persistence
server must provide functions that support query.

6. Distributed Computing Environment: With the growth of the Internet,
most applications have developed to become Internet-based ones, especially
CSCW applications. Users separated geographically can utilize
collaborative applications to work cooperatively via the Internet. Because of
the characteristics of distributed computing environments, the persistence
server also has to be able to operate on the Internet. For this reason, the
persistence server must be implemented as a client/server model so that
users manipulating client applications can remotely access the persistence
services. Also, the persistence server should accommodate a variety of
communication techniques, such as Socket, JMS (Java Message Service),
and Web Services, etc., so users can choose a suitable one with ease.

6

Figure 1. A collaborative computing environment model

Figure 1 shows the model of the collaborative computing environment. Users
utilize collaborative applications to work and communicate with each other in the
application layer. Collaborative applications that are capable of working together are
built on the top of the collaborative environment. The collaboration layer allows
applications to share common states to achieve collaboration. The persistence layer
connected to the database accommodates applications with persistence support, such
as session, state, and version managements.

3. Design Choices

We have to consider design choices before developing the TSPS. There are two main
issues we have to address. First, the objects contained in collaborative applications
must be serialized and desterilized because the application states have to be stored and
recovered across the network. Therefore, we must appraise what kind of object
serialization techniques is proper for the persistence server. Second, since the
application states have to be stored in a database, we have to chose as appropriate
database for the persistence server. Relational database, object-oriented database and
other databases have their own advantages and disadvantages respectively. An
appropriate database for a persistence server is essential. We will explain these
considerations and decisions in the following sections.

3.1 Java Object Serialization

Java Object Serialization [20] is the process of marshaling a run-time object state into
a sequence of bytes or a form of text, as well as the process of recovering serialized
bytes or a text into a live object at some future time. Object serialization is usually
used in network applications that have to exchange run-time objects. It used to be
applied in lightweight persistence and for communication in sockets, Remote Method

7

Invocation (RMI), JMS and other Java-based communication technologies.

Since most of collaborative computing environments utilize these Java-based
communication technologies to communicate among collaborative applications, what
object serialization mechanisms that are suitable for our persistence server are very
important. A collaborative application comprises a variety of objects. For instance, a
simple text editor is composed of Java Swing components, such as JFrame, JPanel,
JTextarea, etc. Developers save the instances of these components in a repository for
later use. When they want to use the application, again, they can retrieve these
instances from the repository and return to the state they saved before. These
processes need object serialization mechanisms to transmit run-time objects. There
are three main serialization mechanisms: Java Serialization API [21], Java Long-Term
Persistence [22], and some native persistence techniques, which are intended to deal
with object serialization problems.

l Java Serialization API: Provides a standard mechanism for Java
developers to handle object serialization. Java developers create an object
capable of serialization by implementing the standard Serializable Interface.
In addition to single object serialization, Java Serialization API supports the
serialization of the whole object tree in which consisted objects are also
implemented Serializable one. The result of this serialization mechanism is
an array of bytes.

l Java Long-Term Persistence: Is used in version 1.4 of J2SE to serialize
JavaBeans instances into XML documents, as well as recover these
instances from XML documents. Java Long-Term Persistence also supports
the serialization of an object tree. Since the XML documents just record the
modified properties of JavaBeans instances, instead of dumping the memory
into bytes, the size of the serialization document is rather small in contrast
to Java Serialization API. The output of this serialization mechanism is an
XML document.

l Native Serialization Techniques: The above serialization mechanisms are
proposed by Sun. However, there are some native persistence techniques
presented for different purposes, such as JOX (Java Objects in XML) [23]
and KBML (Koala Bean Markup Language) [24].

After considering all the mechanisms, we decide to use Java Serialization API.
Although the data size of this one is larger, so far the information of a serialized
object captured in this manner is more complete than the others. The main
shortcoming of Java Long-Term Persistence is that serialized objects must comply

8

with the rules of JavaBeans. Thus, some properties and inner classes, such as listener
classes, adapter classes, etc., that do not conform to the format of JavaBeans cannot
be marshaled into a XML document and cannot be recovered. Nevertheless,
serialization based on XML encoding/decoding approaches have become an
increasing trend, so we believe that Sun will continue to improve this mechanism to
take over form the traditional Java Serialization API in the future. We do not
recommend the use of proprietary persistence approaches because of maintenance
problems. Java Serialization API is, without doubt, the most suitable mechanism.
Note that certain objects such as Thread, Socket, Image, I/O, and its subclasses are not
serializable by nature. In order to reconstruct these unserilaizable objects when
applications are restored, developers can use a customized approach of Java
Serialization API to recover the effects of objects after deserialization.

3.2 Underlying Databases

In order to facilitate the storing and retrieving of application states as well as
management functionality, we studied the features of back-end databases in detail to
assess its suitability. The chosen database has to satisfy the needs of sessions, versions,
and query from the previous requirements. The following information describes three
popular types of database as candidates.

l Relational Database: Relational database is the most used and mature
among the candidates. Standard access interfaces are identified and users
can manipulate the database by utilizing SQL. Many famous companies
have developed a variety of RD-compatible database management systems
over a long period of time, e.g. Oracle Database, Microsoft SQL Server and
Sybase Database. There are also several open source database management
systems available, e.g. MySQL and PostgreSQL.

l Object-oriented Database: As the growth of object-oriented programming
languages continues, the need for corresponding databases is increasing [25].
Since the translation between object-oriented data and relational concept is
complex and time comsuming, object-oriented databases are proposed to
process the data of object-oriented programs transparently. A number of
OODBMS products, like Gemstone, Objectivity/DB, ObjectStore, etc., have
emerged from the market of database systems today [26].

l Native XML Database: Native XML Database (NXD) was proposed by
XML:DB Initiative [27]. NXD defines a model for an XML document, as
opposed to the data in that document, and stores and retrieves documents
according to that model [28]. NXD is a pure XML database framework in

9

which users can store and retrieve XML documents, without the need to
convert structures. It also supports XPath [29] and XUpdate to locate and
modify the content of a XML document. XML:DB Initiative have defined
standard XML database APIs and so a number of implementations have
been realized, such as Apache Xindice [30] and eXist [31].

We decided to use NXD as our back-end database. NXD is a lightweight
database that consumes fewer resources than other systems. It also stores and retrieves
XML documents directly. Applying XML technologies to Internet-based systems will
be the pattern for the future. More and more mechanisms of object serialization
facilitate object persistence in the XML manner. Also, the tree-structure characteristic
of XML is consistent with the tree-structure characteristic of versions from the
perspective of version control. Although relational databases are the most popular,
programmers need to be familiar with SQL, access APIs and the structures of
relational models which are heavy in comparison to the simplicity of NXD. Many
object-oriented databases are proprietary with the result that users make use of them
incompatibly.

4. Architecture of the Tree-Structured Persistence Server

The TSPS was originally developed as a management system of an object store to
support computer-supported collaborative work. The tree-structure means that the
persistent objects of collaborative applications can be stored in a tree fashion, in
addition to tables. However, we plan to develop TSPS to apply in more application
areas, and not restrict it to CSCW only. Therefore, the TSPS is designed to save any
objects, or data that can be encoded in a text format. The architecture of TSPS
consists of six components as shown in Figure 2, i.e. (1) TSPS driver and skeleton, (2)
session handler, (3) state handler, (4) version handler, (5) query handler, and (6)
database accessor. In the following subsections, we will describe these components in
detail.

TS
PS

 S
ke

le
to

n

D
at

ab
as

e
A

cc
es

so
r

Figure 2. Architecture of TSPS

4.1 TSPS Driver and Skeleton

10

The TSPS driver is a client-side proxy that connects to the server over the Internet. To
provide client-side developers with consistent interfaces, we intend to implement the
driver simply and flexibly. As a result, we developed the TSPS driver by referring to
design patterns [32]. Using Proxy pattern, the developers of collaborative applications
can integrate the driver with their programs to access TSPS services, like session,
state and version management. Using Façade pattern, applications are able to start a
connection, request services and finally release the connection through a single
interface furnished by the driver. Using Factory pattern, the TSPS driver can employ
present communications technologies, such as Socket, JMS, and Web Services, to
communicate with the TSPS. Consequently, developers can request services according
to the demand of communication technologies.

4.2 Session Handler

The session handler is responsible for managing sessions created by users. A session
consists of a unique identifier generated by the system, a session name, a creator, a
creation date and a description. Figure 3 illustrates the lifecycle of a persistence
session. Before requesting a persistence server, users must first create a session, or
activate a closed session by query, i.e. enter a working state. In a working state, users
can store and retrieve persistent objects and create branches for versioning within a
session. When users wish to finish collaborative work, or leave a session, they can
close the working session temporarily, by entering a closed state. Data associated with
the session is still stored. Subsequently, a closed session can be activated to continue
the remaining work, i.e. entering a work state again. If the persistent data in a session
is not required again, users can delete the session permanently. Users can participate
in an interesting session and do collaborative work by looking up the session registry.
Finally, administrators of sessions can manage created sessions by using the session
handler.

create

initial working

close
closed

activate

delete

deleted

query

Figure 3. Lifecycle of a persistence session

Through the use of persistence sessions, collaborative applications are capable of
supporting synchronous and asynchronous collaboration work. Users joining a
working session can work together simultaneously as synchronous collaborations.

11

Asynchronous users who have their domain knowledge, or are in different positions,
can finish their own work items of the workflow by closing and re-activating sessions.

4.3 State Handler

The state handler facilitates the access of application states. A state is composed of a
header, which has a unique identifier, a creator, a creation date, a description and a
number of items. An item further consists of a header and a body containing a real
persistent object, such as an object tree of a run-time state. When a user joins a
session, he/she can save persistent objects into the server while filling out associated
information in the header for identification. With header information, users can
understand the contexts of persistent objects and retrieve them from the server.

Users can delegate any persistent object, encoded in a byte-array or text format,
to the state handler. Once the state handler receives the object, it further translates it
into a text format and then stores it into the underlying database. For collaborative
applications, users can also use the standard Java Serialization APIs to marshal the
entire application state as a byte-array object. After serialization, the serialized
application state can be saved in the underlying database, via the state handler.

Since Java Serialization APIs do not support anonymous inner classes, users
must implement Serializable interface and provide them with class names. Besides, if
the collaborative application contains non-serializable objects, like Thread, Socket, IO,
etc., default Java Serialization APIs will fail to serialize them and the virtual machine
will throw an exception when executions. To solve these problems, Java Serialization
APIs allows users to deal with non-serializable objects on their own through a
customized function. First, the non-serializable objects must be made transient, which
means they will not be handled directly by the virtual machine. Users can employ the
customized approach to deal with transient objects for persistence. It furnishes two
methods, writeObject() and readObject(), that allow users to implement
customized serializations on their own.

Storing application states sequentially in each persistence session forms a state
tree as shown on the right-hand side of Figure 5. The TSPS provides an Indicator in
each session to show the current application state. After users store an application
state, the Indicator will update from the original state to this last stored state. Figure
4(a) shows the state storing process. When users wish to retrieve a certain state, they
can find it by looking up the information contained in the state header and then
retrieve it. After retrieval, the Indicator will change to this retrieved state as the
current one and the application will recover to this state. Figure 4(b) illustrates the
state retrieval process. Users can perform the undo and redo actions by traversing a

12

state tree. For instance, a developer who wants to build an application can set
checkpoints in every development step by storing states. Sometime the developer,
who might like to undo the effect of the current operations, can recover a preceding
state of a corresponding checkpoint through retrieval. The developer can also take
redo actions based on state headers to retrieve corresponding states.

Figure 4. Sequence diagrams for storing a state and retrieving a state

4.4 Version Handler

The version handler is responsible for managing branches of a state tree. When users
store a series of states during the development and the execution of applications, a
state tree is shaped. In general, a sequence of application states is formed in a single
flow without branches, or the latest state replaces the previous one. However, the
version handler can arrange states in a tree structure to control versions. Figure 5
shows an example of a state tree. Users can generate branches from existing states for
various purposes. We can think of these branches and states as assets that record the
development course or execution course of the application. Users can see how the
application was implemented or manipulated by tracing the states of each branch.
Therefore, when users store states in the TSPS, information about the development or
execution is also recorded.

Each branch consists of a unique identifier, a creator, a creation date, and a
description. Users can traverse a state tree in each session to retrieve a state using a
branch browser. As mentioned above, each session has an Indicator to identify the
current work state and show the corresponding branch. Through the branch browser,
users can set an Indicator to specify the current work state and branch. There are three
types of branch management:

(1) If the Indicator is set in the last state of a branch, i.e. a leaf node, a new
stored state is appended to the end of the branch as the latest state and the
Indicator is set on this one. Figure 5 shows the state storing process if the

13

previous state is the last one.

(2) If the indicator is not set in a last state of a branch, i.e. not a leaf node, a
new branch is created when a user stores as new state and this state becomes
the first node of the branch. Figure 6 shows the state storing process if the
previous state is not the last one.

(3) If users wish to create a branch for various purposes, they can do it
manually from any existing state. First, it is necessary to create a branch and
then switch from the original to the new one. States can then be stored in
this new branch. Figure 7 shows the manual creation of a branch.

When users store application states into the TSPS, it will generate a unique
identifier in a branch automatically. Through the state identifier, users can specify
what state they would like to retrieve. The version handler provides users with an
alternative, thereby making state access flexible.

Figure 5. Storage of a state if the previous state is the last one

Figure 6. Storage a state if the previous state is not the last one.

14

Figure 7. Creating a branch manually.

4.5 Query Handler

The query handler deal with queries related to sessions, states, and branches in the
TSPS. For sessions, users can query working sessions by specifying relevant
information recorded in session profiles and then join the selected session. Users can
also pick a session from a closed list to activate as a live one by specifying queries.
For states, users can query states to retrieve by specifying the relevant information
recorded in state headers. For branches, users can query branches to switch among
them by specifying relevant information recorded in branch profiles. Through the
query handler, users can find appropriate sessions, states, and branches.

 Since the relevant information about sessions, states, and branches is marked up
in a XML manner, we used XPath provided by NXD to perform query actions
internally. XPath is used as the query language in the TSPS. It defines a library of
standard functions that allows users to write string, number and Boolean expressions
to locate where the specified node is in a XML document. We can specify keywords
to obtain the query results of sessions, states, and branches by means of XPath.

4.6 Database Accessor

The database accessor is responsible for constructing connections between the TSPS
and the back-end database, i.e. NXD, and providing other components with interfaces
to access the database. The database accessor wraps up the database so that
components, like the session handler and the state handler, can access persistent data
transparently. Because of the database accessor, we can utilize various NXD
implementations arbitrarily.

5. Applications of Archiving States Using the Tree-Structured Persistence Server

15

In this section, we illustrate applications of archiving Java run-time states by
employing the TSPS. The first application is the ShareTone Composer as shown in
Figure 8. It is built on the ShareTone platform and an integrated development
environment for developing collaborative applications in Java. The TSPS is a
persistent layer in which ShareTone Composer can store the current states. The
ShareTone Composer also works collaboratively itself. Because of the collaborative
nature of ShareTone Composer, separate developers can develop Java-based
applications cooperatively. After development, these constructed applications are also
capable of working collaboratively, so that separate users can finish joint tasks.

Figure 8. Developing a collaborative application using ShareTone Composer

The ShareTone Composer carries a TSPS driver so that it can access services.
When developers start implementing an application, they create a development
session first. They can then write and debug their programs of the application by
using the ShareTone Composer. During the construction of a collaborative application,
developers can save the development states as checkpoints with descriptions. The
saved states logically form a flow from which developers can traverse to undo and
redo manipulated actions. An application can be recovered from a previous state by
using the state query. When developers wish to create a new version of the application
for another purposes, such as testing or improving, they do not have to leave working
session or create a session for a new version. They can just shape a new branch from
the original state flow, starting from an existing state, to develop various versions of
the application within the same session. Figure 8 shows a front-end interface of a
TSPS embedded in ShareTone Composer. At the end of implementation, developers
can close the working session. The states and the data associated with the application
are kept in the persistence server permanently. Later, developers utilizing the session

16

query can activate a closed session to restore the last state of the application before
closing and continuing the development work.

Figure 9. Editing text collaboratively using ShareTone CoEditor

The second application is ShareTone CoEditor, as shown in Figure 9, which
allows separate users to simultaneously edit an article together. Users can edit
different paragraphs simultaneously in the same article. Also, each user has his/her
own cursor, called a telepointer, to tell others where they are in the article. This helps
to avoid conflict. Each user also has his/her own color to distinguish the words they
marked. As with the ShareTone Composer, the ShareTone CoEditor integrates our
TSPS driver and thereby access persistence services. The ShareTone CoEditor has the
persistent capabilities as well as those mentioned in the above paragraph on the TSPS.
The ShareTone Composer and the ShareTone CoEditor are two of applications that
use the TSPS as a persistence layer to provide persistence services. We implemented
the TSPS to save any objects or data that can be encoded in the XML format.
Therefore, any applications can use the TSPS to manage persistent objects if these
objects can be serialized in XML format.

6. Related Work

Several Java object persistence mechanisms have been proposed to deal with the
issues of object persistence. These mechanisms are used in different levels of
programming and applied in various domains. The following describes recent Java
object persistence technologies.

JDBC (Java Database Connectivity) [33] is a set of common APIs that allow
programmers to access databases in Java programming language. Programmers can
utilize these common APIs in programs to store data in a database permanently and
retrieve data source from a database. Through JDBC APIs, programmers can access a

17

variety of relational databases, so long as their venders accommodate drivers which
implement the JDBC interfaces. Because programmers can use SQL to access
databases directly, JDBC APIs allow written database-related programming more
flexibility. However, programmers have to spend more time in processing the
mapping between objects and tables.

EJB (Enterprise JavaBeans) [34] is introduced in J2EE platform proposed by Sun.
There are two types of EJBs, Session Bean and Entity Bean. Entity Bean is an object
with properties. Programmers can treat an Entity Bean as a persistence object and
need not worry about the low level of database access. Since the container of a J2EE
application server would process low-level database access automatically instead of
using JDBC APIs, databases are transparent for programmers. Consequently,
programmers can concentrate on the business logic of applications by using Entity
Beans, rather than write database-related programs.

JDO (Java Data Objects) [35] is a specification developed under the direction of
the Java Community Process. It allows users to store and retrieve Java objects
transparently by conforming to the defined standard. For Java objects, JDO provides
transparent persistence APIs independently from the underlying data stores. The
underlying databases could be relational databases or object-oriented databases. The
JDO users can use JDOQL to query the database. The JDO and Java Entity Bean users
need not be aware of the detail of database access, but they have to create an
additional mapping file that describes the relation between object properties and
database fields.

JDBC, EJB and JDO are current object persistence technologies that can be used
in various levels of persistence data and for different requirements. Since these object
persistence mechanisms have their own advantages in different applications and
domains, developers can choose a suitable one according to the persistence context.
Based on the criteria of encapsulated granularity, simplicity and code intrusion, TSPS
and JDO are suitable as a persistence layer in CSCW. Users of a CSCW application
are concerned with its states, not with the internal data of each object in a persistence
unit. The TSPS encapsulates an application state as a persistence unit. Users can store
an application states with its description and subsequently retrieve it to recover by
query or traversing the entire state tree. On the one hand, because TSPS doesn’t take
account of the internal properties of objects, developers are able to develop
persistence-related programs with less code intrusions. On the other hand, the TSPS
allows users to manage application states in a tree-structured manner for versioning.
In contrast to JDO implementations, the TSPS is a lightweight persistence server,
which developers can set up and manipulate with ease.

18

6. Conclusions and Future Work

As the maturity of Internet, most of applications are derived to become Internet-based
ones. Today people are accustomed to employing Internet-based applications, such as
e-mail and instant message tools, to work cooperatively. Because of the need for
collaborative applications, the idea of computer-supported collaborative work was
proposed. By making use of CSCW technologies, people can work together via the
Internet more efficiently than before. However, the persistence problem of
collaborative applications is a significant issue in the research of computer-supported
collaborative work. A collaborative computing environment requires a simple and
transparent persistence mechanism to deal with complex data access. Therefore, in
this paper, we proposed a tree-structured persistence mechanism and implemented it
to support collaborative applications to manage persistence objects.

 The implemented TSPS is a light-weight management system for persistence
objects. It serves as a persistence store by which the front-end application can manage
its persistence objects. The TSPS provides three kinds of services, i.e. session service,
state service, and version service. The session service can manage created sessions,
the state service can store and retrieve persistent objects into/from the store and the
version service can create various versions of applications by committing application
states in branches. The TSPSS is not only suitable for CSCW applications. It was
developed for universal use so that it can be applied in several application areas.

 In the near future, our research efforts will focus on caching and transaction
mechanisms. Caching mechanisms can enhance performance when users access
persistent data via network. Transaction mechanism allows users to start, commit or
roll back a transaction. Both mechanisms will make the server more efficient and
useful.

Acknowledgements

This work was supported in part by National Science Council under Contract Nos.
NSC92-2213-E-001-015 and. NSC93-2213-E-001-008

Reference

[1] C. A. Ellis, S J. Gibbs, and G. L. Rein, “Groupware: Some Issues and
Experiences,” Communication of the ACM, vol. 34, no. 1, pp. 38--58, 1991.

[2] Mike Robinson, “Computer Support Co-operative Work: Cases and Concepts,”
in proceedings of Groupware'91, Software Engineering Research Centre,
Postbus 424, 3500 AK Utrecht, Nederland, pp 59-74, 1991.

19

[3] L. J. Bannon, nd Kjeld Schmidt, “CSCW: Four Characters in Search of a
Context,” in proceedings of the First European Conference on Computer
Supported Cooperative Work - ECSCW'91, pp. 3-16, 1991.

[4] W. Reinhard, J. Schweitzer, G. Vlksen and M. Weber, “CSCW Tools: Concepts
and Architectures,” IEEE Computer, vol.27, no.5, May 1994

[5] J. Begole, M. Rosson, and C. Shaffer, “Flexible Collaboration Transparency:
Supporting Worker Independence in Replicated Application-Sharing Systems,”
ACM Transactions on Computer-Human Interaction, 6(2), pp. 95-132. 1999

[6] D. Li, and R. Muntz, “COCA: Collaborative Objects Coordination
Architecture,” in proceedings of CSCW'98, pages 179--188, 1998.

[7] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual
Network Computing,” IEEE Internet Computing, 2(1):33--38, January 1998.

[8] S. Greenberg, and D. Marwood, “Real Time Groupware as a Distributed System:
Concurrency Control and Its Effect on the Interface,” In Proceedings of the
ACM Conference on Computer-Supported Cooperative Work, pages 207--217.
Association for Computing Machinery, November 1994.

[9] P. Dewan and H. Shen, “Access Control for Collaborative Environments,” in
proceedings of CSCW'92, pages 51--58, 1992.

[10] W. Keith Edwards, “Policies and Roles in Collaborative Applications,” in
proceedings of CSCW'96, pages 11--20, 1996.

[11] P. Dourish, and V. Bellotti, “Awareness and Coordination in Shared
Workspaces,” in proceedings of ACM CSCW Conf., 1992, 107-114.

[12] C. Gutwin, R. Roseman, and S. Greenberg, “A usability study of awareness
widgets in a shared workspace groupware system,” in proceedings of ACM
Conference on Computer Supported Cooperative Work (CSCW'96), Boston,
Mass., pp.258-267, 1996.

[13] J. A. Mariani, and T. Rodden, “The Impact of CSCW on Database
Technology,” in Proceedings of IFIP International Workshop on CSCW, Berlin,
Germany, pp. 146-161, 1991.

[14] A. Prakash, H. S. Shim, and J. H. Lee, “Data Management Issues and
Trade-Offs in CSCW Systems,” IEEE Transaction on Knowledge Data
Engineering 11(1): 213-227, 1999.

20

[15] ShareTone, available at http://www.sharetone.org

[16] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar, “WYSIWIS
Revised: Early Experiences with Multiuser Interfaces,” ACM Transactions on
Office Information Systems 5, 2, pp. 147–167, 1987.

[17] P. Cederqvist et al. Version management with CVS, 1992, available at
http://www.cvshome.org/

[18] IBM Rational ClearCase, available at
http://www-306.ibm.com/software/awdtools/clearcase/

[19] Microsoft Visual SourceSafe, available at http://msdn.microsoft.com/ssafe/

[20] James Gosling and Bill Joy, "The Java Language Specification, 2th ed,"
Addison-Wesley, 1996.

[21] Java Serializable APIs, available at
http://java.sun.com/j2se/1.4.1/docs/api/java/io/Serializable.html

[22] Long-Term Persistence for JavaBeans, available at
http://java.sun.com/products/jfc/tsc/articles/persistence/

[23] Java Objects in XML, available at http://www.wutka.com/jox.html

[24] Koala Bean Markup Language: KBML enables one to serialize/deserialize
JavaBeansTM to/from XML documents, available at
http://www-sop.inria.fr/koala/kbml/

[25] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik,
“The Object-Oriented Database System Manifesto,” In Proceedings of the First
International Conference on Deductive and Object-Oriented Databases, pages
223-40, Kyoto, Japan, December 1989.

[26] Mansour Zand, Val Collins, Dale Caviness, "A survey of current
object-oriented databases," ACM SIGMIS Database, Volume 26 Issue 1,
February 1995.

[27] XML:DB Initiative, available at http://www.xmldb.org/

[28] Kimbro Staken, Introduction to Native XML Databases, available at
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html

[29] W3C. XML Path Language (XPath). Working Draft, November 1999,
available at http://www.w3.org/TR/xpath.

21

[30] Apache Xindice, available at http://xml.apache.org/xindice/

[31] Wolfgang Meier. eXist, “An Open Source Native XML Database,” In: Akmal
B. Chaudri, Mario Jeckle, Erhard Rahm, Rainer Unland (Eds.): Web,
Web-Services, and Database Systems. NODe 2002 Web- and Database-Related
Workshops, Erfurt, Germany, October 2002, available at
http://exist.sourceforge.net/

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns: Elements
of Reusable Object-Oriented Software,” Addison Wesley, Massachusetts, 1994.

[33] JDBC Technology, available at http://java.sun.com/products/jdbc/index.html

[34] Enterprise JavaBeans Technology, available at
http://java.sun.com/products/ejb/

[35] Java Data Objects, available at http://java.sun.com/products/jdo/

