
 1

A Hybrid Method for Multiclass Classification and Its

Application to Handwritten Character Recognition

Fu Chang†, Chin-Chin Lin†‡ and Chun-Jen Chen†
†Institute of Information Science, Academia Sinica, Taipei, Taiwan

‡Dept. of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan

E-mail: fchang@iis.sinica.edu.tw, erikson@iis.sinica.edu.tw, dean@iis.sinica.edu.tw

ABSTRACT

The support vector machine (SVM) is an effective pattern classification

method. However, solving N(N-1)/2 binary classifications in the training phase

makes it too costly to use SVM in applications with a high number N of class

types. In this paper, we propose a new prototype classification method that can be

combined with SVM for pattern recognition. This hybrid method has the follow-

ing merits. First, the learning algorithm for constructing prototypes determines

both the number and the location of the prototypes. This algorithm not only ter-

minates within a finite number of iterations, but also assures that each training

sample matches in class type with the nearest prototype. Second, SVM can be

used to process the top-rank candidates obtained by the prototype classification

method, which saves time in both the training and testing processes. We apply

our method to recognizing handwritten numerals and handwritten Chi-

nese/Hiragana characters. Experiment results show that the hybrid method saves

a great deal of training and testing time in large scale tasks and achieves compa-

rable accuracy to that achieved by using SVM solely. Our results also show that

the hybrid method performs better than the nearest neighbour method.

Keywords: handwritten character recognition, multiclass classification, nearest

neighbor, pattern matching, prototype, support vector machine

 2

1. Introduction

In pattern recognition, one deals with either binary classification, in which each object

is classified as one of two classes, or multiclass classification, in which each object is classi-

fied as one of N classes for N > 2. The support vector machines (SVM) method (Cortes and

Vapnik [5], Vapnik [22]) is very effective for binary classification and can also be used for

multiclass classification by decomposing the problem into binary classification sub-problems.

The three approaches for decomposing the problem are: one-against-all (Bottou et al. [2]),

one-against-one (Knerr et al. [14]), and directed acyclic graph SVM (DAGSVM) (Platt et al.

[19]). In the one-against-all approach, there are N sub-problems, each of which classifies an

object as A or not A. In both one-against-one and DAGSVM approaches, there are N(N-1)/2

sub-problems, each of which classifies an object as A or B, where A and B are any two classes.

Comparison of the results shows that the one-against-all requires more training time and

more support vectors than the other two approaches (Hsu and Lin [12]). One-against-one and

DAGSVM need to solve N(N-1)/2 binary sub-problems in the training phase. In the testing

phase, one-against-one conducts N(N-1)/2 binary classification, each of which casts a vote for

the class type assigned to the object. The class type that gains the highest number of votes is

taken as the classification outcome. DAGSVM, on the other hand, conducts N-1 binary clas-

sifications with the help of a directed acyclic graph that has N(N-1)/2 nodes and N leaves.

Both approaches require the same amount of memory space to store the support vectors that

are the solutions to the N(N-1)/2 sub-problems in the training phase. In Chinese/Hiragana

character recognition, the number of classes is at least 900 and can exceed 5,000 in some da-

tabase. For this scale of pattern recognition, training time and memory space is prohibitively

large in all of the three approaches.

For large-scale pattern recognition, a long-employed approach is the nearest-neighbor

(NN) classification method (Dasarathy [7], Levine et al. [16], O’Callaghan [18]). The NN

 3

method matches each object against all training samples and finds the nearest sample, or k-

nearest samples, as the basis for classification. In theory, as the number of training samples

approaches infinity, the classification error rate is at most twice the Bayes error rate (Cover

and Hart [6]). The NN method takes no time in training and is usually faster than SVM in

testing, due to the simplicity of computations involved in NN. However, matching each ob-

ject against all training samples still lengthens the computational time. Also, the accuracy of

NN method is not as good as that of SVM.

We propose a method that exploits the advantages of both NN and SVM and avoids

their deficiencies. In the matching process, the set of all training samples is replaced by a

much smaller set of prototypes. The innovation of our proposed method is a learning process

that constructs prototypes from training samples. The proposed algorithm determines both the

number and location of prototypes from the same set of training samples. The use of proto-

types reduces the computational burdens of SVM in the training and testing phases, since

SVM only needs to work on the top-rank candidates that are obtained in each phase.

We apply this hybrid method to the recognition of handwritten numerals and Chi-

nese/Hiragana characters. There are three advantages to this method. First, the accuracy of

using the hybrid method relatively equals SVM accuracy, and is better than NN accuracy.

Second, the matching speed of the hybrid method is always faster than that of SVM. Third, if

SVM is used solely for classification, decision functions must be created for all possible pairs

of class types. In the hybrid method, however, a much smaller set of pairs can be determined

from the prototype-learning process. The subsequent SVM process only needs to set up deci-

sion functions for these pairs, thereby tremendously reducing the training time and the mem-

ory space for storing support vectors.

This paper is organized as follows. Section 2 contains the formulation for the prototype

construction problem, and proposed learning algorithms as solutions to the problem. In Sec-

 4

tion 3, we describe the disambiguation process using SVM for training and matching. Section

4 details the application of our hybrid method to handwritten character recognition. In Sec-

tion 5, we provide training and testing results, and also make comparisons with all alternative

methods. In Section 6, we present our conclusion. An appendix is given at the end of this pa-

per, containing a proof for the convergence of the major prototype-learning algorithm.

2. The Prototype-Construction Problem and Its Solutions

To set up the problem, we assume that a set of training samples is given and that the

samples’ class types are specified. Each sample is represented as a vector in n-dimensional

Euclidean space. For two vectors v = (v1, v2, …, vn) and w = (w1, w2, …, wn) in this space,

their distance is defined as

∑=
=

n

i
wvdist

1

2
ii .)-(),(wv (1)

A prototype can be any n-dimensional vector whose class type is also specified. Let

type(x) denote the class type of x, when x is either a sample or a prototype. A set Π of proto-

types is said to be a solution to the problem of prototype construction if the following condi-

tion holds for every sample s. There exists a prototype p in Π such that type(p) = type(s) and

dist(s, p) < dist(s, q) for all other q in Π.

If Π is a solution for prototype-construction, more than one prototype for the same class

type may be found in Π (see Figure 1). If we examine the attraction domain of each proto-

type p, defined as the set of all samples for which p is the nearest prototype, we find that it

contains samples of the same class types. For this reason, each p in Π can serve as the repre-

sentative of its neighboring samples.

 5

Figure 1. A solution to the prototype-construction problem. Each prototype is

shown as a darkened square, and sample types are shown as different shapes.

We present two learning algorithms that solve the prototype-construction problem. One

is called a static algorithm (SA) because prototypes will never be modified once they are

constructed. The second is a dynamic algorithm (DA), which continues to modify the loca-

tions of existing prototypes, as well as constructing new ones.

The SA is given below.

(1) Initiation: We randomly pick a sample out of each class type as a prototype.

The class type of this prototype is set the same as the selected sample.

(2) Absorption: For each sample s, we find the nearest prototype p. If type(s) =

type(p) and dist(s, p) < dist(s, q) for all other prototypes q, then s is absorbed.

Otherwise, it is unabsorbed.

(3) New prototype construction: If there are unabsorbed samples, we randomly pick

an unabsorbed C-sample as a new C-prototype.

(4) Process cessation: If there are unabsorbed samples, go to step 2. Otherwise, we

stop the whole process.

Note that the design of SA is very similar to the condensation nearest neighbor (CNN)

rule proposed by Hart [9]. In CNN, each training sample is matched against all existing

prototypes. When a training sample does not bear the same class type as the nearest prototype,

it becomes a new prototype. After all samples have been examined, the process is repeated

until no new prototypes are created. Our experiment results show that SA and CNN have

 6

no new prototypes are created. Our experiment results show that SA and CNN have similar

performance in terms of accuracy rates, as well as the number of prototypes constructed from

training data.

The DA algorithm dynamically alters the number of prototypes, as well as their loca-

tions. DA constructs prototypes differently than SA. In SA, prototypes are selected out of

samples, whereas in DA, they are statistical averages of the samples.

The DA is given below.

(1) Initiation: For each class type C, the initial C-prototype is the statistical average

of all C-samples.

(2) Absorption: We determine each sample as absorbed or unabsorbed.

(3) New prototype construction: For each class type C, let the number of C-

prototypes be num(C). If there are unabsorbed C-samples, we construct

num(C)+1 C-prototypes. Otherwise, C-prototypes remain the same as in the

previous iteration.

(4) Process cessation: If there are unabsorbed samples, go to step 2. Otherwise, we

stop the whole process.

In Step 3, the construction of new C-prototypes is as follows. First, we select a sample

from the unabsorbed C-samples. We then use the selected sample and existing C-prototypes

as initial seeds and employ the K-means clustering method to form new C-prototypes. To se-

lect an unabsorbed C-sample, we focus on a set ΨC consisting of unabsorbed C-samples that

are not themselves C-prototypes. We let each sample in ΨC cast a vote to the nearest sample

in ΨC. We then select the sample in ΨC that gains the highest number of votes. To construct

new C-prototypes, we apply the K-means method to group all C-samples according to the

following procedure. The K-means method assigns each sample to the cluster whose seed is

nearest, and resets the seed as the geometric center of this cluster. This procedure continues

 7

until all cluster seeds remain unchanged. The final cluster seeds are then assigned as new

prototypes.

To address the convergence of the proposed algorithms, it is obvious that SA always

converges. It is also true that DA terminates within a finite number of iterations, where the

number of iterations is the number of times Step 3 is executed. This comes from the fact that

the total sum of distances between samples and the nearest prototypes of the same class types

decreases by at least a constant in each iteration. A sample thus remains unabsorbed for only

a finite number of iterations. Details of the proof are given in the Appendix of this paper.

We now address the relationship between the K-means algorithm and the DA algorithm.

The K-means algorithm has a useful property in that it continues to adjust cluster centers, so

that the sum of the distances between samples and the nearest cluster centers decreases with

each round of adjustment. DA takes advantage of this property to reduce the sum of distances

between samples and the nearest prototypes of the same class types in each round of proto-

type construction. However, the K-means algorithm lacks guidelines for choosing the number

of clusters, initial partitions, and the stopping criterion (Backer [1], Jain et al. [13]). The DA

algorithm, on the other hand, supplies these missing components.

3. Disambiguation Using SVM

The prototype-matching method achieves very high accuracy rates for k nearest proto-

types when k > 1, but has a noticeable gap between top-k and top-1 accuracy rates. The

disambiguation procedure bridges this gap. There are some requisites for the training and

testing process. In the training process, we must determine which class types can be mistaken

for another during the prototype-matching process. These types are always paired and are

therefore referred to as confusing pairs. For these pairs, we have to specify reassessing

schemes using an SVM method. We use these schemes in the testing process to reassess the

 8

using an SVM method. We use these schemes in the testing process to reassess the top-k can-

didates for each object.

Recall that, in the prototype construction process, we must determine the nearest proto-

type for each training sample s. At the end of the process, we find k nearest prototypes for

each s. The class types of these k prototypes will be referred to as candidates of s. In the

training process, k0 is a small integer, but is not necessarily the same as k1 in the testing proc-

ess, in which k1 candidates of test samples are reassessed. We collect the pairs (Ci, Cj), where

Ci and Cj are ith and jth candidates of s for 1 ≤ i, j ≤ k0.

For each confusing pair (C, D) and its training samples, we use SVM to create a reas-

sessing scheme. The purpose of the SVM is to provide decision functions for classifying ob-

jects into class C or D, where the parameters and support vectors that appear in the decision

function are derived from an optimization problem using training samples of C and D as

components. Details are given in The Nature of Statistical Learning Theory (Vapnik [22]).

For handwritten character recognition, we adopt the dual formulation of the optimization

problem using the polynomial kernel of degree 2 for the choice of kernel function. In The Na-

ture of Statistical Learning Theory, comparisons of SVM and other methods for classifying

UPS handwritten numerals are given. SVM is shown to perform competitively.

After completing the training process by determining the reassessing scheme for each

confusing pair, we can address the testing process. Suppose that an object O is given and its

first k1 candidates have already been found. We apply reassessing schemes to all confusing

pairs found within the top-k1 candidates of O. When the confusing pair is (C, D) and the

unknown object is classified as C, then C scores one unit. When all the confusing pairs in the

candidate list are reassessed, we re-order the involved candidates. The candidate with the

highest score is ranked first; the candidate with the second highest score is ranked second,

 9

and so on. If two candidates receive the same score, their relative positions remain the same

as before. We then rearrange the involved candidates according to their assigned ranks.

4. Feature Extraction Methods for Handwritten Characters

To test the effectiveness of our method, we apply it to the recognition of handwritten

characters. We aim to test the hybrid method and compare it with some alternatives. For this

purpose, we employ two types of feature extraction method. The first consists of three fea-

ture-matching techniques: non-linear normalization, directional feature extraction and feature

blurring. According to Umeda [21], these techniques are major breakthroughs in handwritten

Chinese character recognition. The second method is the density feature extraction technique.

Details about each technique are given in the following sub-sections.

4.1 Nonlinear Normalization

The shape normalization method (Lee and Park [15]) transforms a binary image of size

I× J into a normalized image of size M× N. The transformation is expressed as

∑
∑

×= =
=

i
k I

k kH
MkHm 1
1)(

)(, ∑
∑

×= =
=

j
k J

k kV
NkVn 1
1)(

)(, (2)

where i = 1, 2, …, I; j = 1, 2, …, J; m = 1, 2, …, M; n = 1, 2, …, N. If H(i) = V(j) = 1, we ob-

tain linear normalization.

We adopt Yamada’s method (Yamada et al. [23]) for nonlinear normalization. In this

method, H(i) accumulates line density values along a vertical line whose x-coordinate is i.

The line density at a point derives its value from an inscribed circle centered at that point; the

wider the circle, the lower the line density. V(j) is similarly defined. We also adopt a modifi-

cation of Yamada’s method, proposed by Liu et al. [17], which adjusts undue distortion of the

peripheral shape in four boundaries of the character image. In our applications, we normalize

each original character image into a 64×64 image. Thus, we have M = N = 64 in (2).

 10

A problem we have encountered with normalization is that the set {g(i, j): i = 1, 2, …, I;

j = 1, 2, …, J} may be only a subset of the normalized image {(m, n): m = 1, 2, …, M; n = 1,

2, …, N}, where g(i, j) maps point (i, j) in the original image to a point in the normalized im-

age. As shown in Figure 2b, certain points in the normalized image do not correspond to

points in the original image (Figure 2a) and are set by default as white points.

 (a) (b) (c)

Figure 2. (a) The original image. (b) The normalized image before interpolation

is applied. (c) The normalized image after interpolation is applied.

To solve this problem, we use the following interpolation technique. When two

neighboring points P and Q in the original image are mapped into two non-neighboring

points R and S, we fill in the rectangle determined by R and S with black points (Figure 3).

Figure 2c shows the normalized image after interpolation.

P

Q

R

S

Figure 3. Left: Two neighboring points in the original image. Right: The

corresponding points in the normalized image. The points in the rectangle are to

be filled with black.

4.2 Directional Feature Extraction

This operation assigns directional attributes to all points in the normalized character im-

age. To assign directional attributes, we use the chain code (Freeman [8]) as shown below.

 11

(1) Extract the character contour using a contour-tracing algorithm proposed by

Haig and Attikiouzel [10] and modified by Chang and Chen [3].

(2) To each contour point A and a neighboring contour point B, assign a directional

attribute to A and B according to their relative positions. The assignment is

shown in Figure 4. For example, if B lies to the right or left of A, both A and B

are assigned attribute 1. Since a contour point has two neighbors, each contour

point can have more than one directional attribute.

A

0

0

11

2

2 3

3

Figure 4. Directional attribute assignment. If B lies at the position labeled 3, the

common directional attribute of A and B is 3.

(3) Assign a non-negative directional attribute to each non-contour point P whose

neighbors A and B are contour points with directional attribute 2 or 3 (Figure 5).

P is assigned three directional attributes: 0, 1, and 2, if A and B have directional

attribute 2; or 0, 1, and 3, if A and B have directional attribute 3. The purpose of

these assignments is to include all the attribute ambiguities associated with P.

(4) Assign all remaining points directional attribute –1.

 (a) (b)

Figure 5. P is not a contour point, but its two neighbors A and B are. The arrow

indicates the order in which contour points are traced. (a) The common direc-

tional attribute of A and B is 2. (b) The common directional attribute of A and B is

3.

 12

In our applications, we produce four feature images Fi, i = 0, 1, 2, and 3 out of a given

normalized character image E, where each Fi has the same size as E. The feature image Fi

collects points in E that have directional attribute i. These points are assigned 1 (black) in Fi.

The remaining points in Fi are assigned 0 (white).

4.3 Blurring

The four feature images Fi, i = 0, 1, 2, and 3, are further processed by a blurring tech-

nique, which absorb possible local displacements within characters. We adopt the blurring

mask proposed by Liu et al. [17]. As shown in Figure 6, this 4×4 mask approximates a Gaus-

sian mask that serves as an optimal low-pass filter.

Before applying this mask, we first reduce each 64×64 feature image Fi into a 16×16

image Gi, where i = 0, 1, 2, 3. The reduction is done in such a way that each 4×4 block re-

duces to a point whose value is the number of 1’s in this block. We add a row of zeros above

and below Gi, and a column of zeros to its left and right. We call this augmented image Hi.

The mask is then applied to every 4×4 block in Hi whose upper left point is (x, y), where both

x and y are even numbers. We thus obtain 64 values from each Hi, and 256 values in total.

These 256 values form the feature vector that we extract from each character image.

γ β β γ

β α α β

β α α β

γ β β γ

Figure 6. The blurring mask used to extract feature vectors, where α = 0.1444, β

= 0.0456 and γ = 0.0144.

 13

4.4 Density Feature Extraction

This method reduces a 64×64 original image to a 16×16 image. Each number in the lat-

ter image derives its value from the sum of 1’s in a 4×4 block of the original image. The den-

sity feature vector then consists of 16 components, whose values range from 0 to 255.

5. Experiment Results

There are seven applications in our experiments (Table 1). They can be divided into

three groups in terms of the number of class types involved. The first group contains two

small-scale classification tasks. The databases we employ are UPS [22] and CENPARMI [20]

handwritten numerals. The second group consists of two middle-scale classification tasks. In

each task, there are 350 class types of handwritten Chinese/Hiragana characters taken from

ETL8B and ETL9B databases [11]. Each class type contains the same number of samples as

the original database. These two tasks are referred to as ETL8B (subset) and ETL9B (subset).

The third group consists of two large-scale classification tasks, in which we use full ETL8B

and ETL9B sets. They are referred to as ETL8B (full set) and ETL9B (full set).

Table 1. The seven applications.

 # Class Types # Training Samples # Test Samples
UPS 10 7,091 2,007

CENPARMI (Density) 10 4,000 2,000
CENPARMI (Direction) 10 4,000 2,000

ETL8B (Subset) 350 28,000 28,000
ETL9B (Subset) 350 35,000 35,000
ETL8B (Full Set) 956 76,480 76,480
ETL9B (Full Set) 3,036 303,600 303,600

For all databases, except UPS and CENPARMI, we use the feature extraction method

consisting of nonlinear normalization, directional feature extraction and blurring described in

Section 4.1–4.3. For UPS, because all images are 16×16 in scale, we simply take each num-

ber as a component to form a 256-dimensional vector. For CENPARMI, two feature extrac-

tion methods are used. One is the same as we use for all other databases. It is referred to as

 14

‘Direction’ in Table 1. The other method is the density feature extraction technique, as de-

scribed in Section 4.4. This technique is referred to as ‘Density’ in Table 1. We apply two

feature extraction methods to the same data set to show that the relative standings of classifi-

cation methods are little affected by different feature extraction methods. In Table 1, we list

the number of class types, the number of training samples and the number of test samples in

each application.

In all applications, we compare our hybrid method to 1-NN (which uses all training sam-

ples as prototypes and finds the nearest one to each test sample), CNN, SA and DA. Since

DA outperforms CNN and SA in both the number of prototypes and accuracy rates, we take

the combination of the DA and SVM to form our hybrid solution. The confusing pairs in the

hybrid method are formed and used in the following way. In the training phase, we obtain

confusing pairs (Ci, Cj), where Ci and Cj are rank-i and rank-j candidates of a sample for 1 ≤ i,

j ≤ 5. In the testing phase, we only deal with confusing pairs that appear in the top-3 candi-

dates of each sample. We use the polynomial kernel of degree two for the choice of kernel

function. The software package, Torch [4], is used to conduct all SVM experiments.

In small-scale and middle-scale tasks, using SVM solely for classification is feasible.

We apply both the one-against-one and DAGSVM approaches to these data sets. For large-

scale classification, SVM takes an extremely long time for training (for example, it takes 32

days to complete the training for the ETL9B full set) and is, therefore, not used. In Tables 2

through 8, the first column lists all of the classification methods to be compared. The second

column lists the accuracy rates of these methods that are applied to test data, and the third

column lists the number of prototypes used in prototype-matching methods, or the number of

confusing pairs used in SVM and hybrid methods. When one-against-one and DAGSVM ap-

proaches are used, the term ‘confusing pairs’ refers to the number of binary classification

problems that must be solved in the training phase. The results in Tables 2 through 8 show

 15

that the hybrid method achieves comparable accuracy rates to the two SVM approaches and

achieves better accuracy rates than 1-NN, CNN and SA.

Table 2. UPS data.

Classification Methods Accuracy Rates Number
1-NN 94.47% Prototypes: 7,291
CNN 91.53% Prototypes: 836
SA 92.13% Prototypes: 854
DA 92.37% Prototypes: 393

One-against-one SVM 95.12% Confusing Pairs: 45
DAGSVM 95.47% Confusing Pairs: 45

Hybrid (DA + SVM) 95.22% Confusing Pairs: 45

Table 3. CENPARMI data, using density feature extraction technique.

Classification Methods Accuracy Rates Number
1-NN 92.90% Prototypes: 4,000
CNN 88.65% Prototypes: 781
SA 89.30% Prototypes: 794
DA 92.45% Prototypes: 335

One-against-one SVM 95.60% Confusing Pairs: 45
DAGSVM 95.80% Confusing Pairs: 45

Hybrid (DA + SVM) 95.95% Confusing pairs: 45

Table 4. CENPARMI data, using directional feature extraction technique.

Classification Methods Accuracy Rates Number
1-NN 96.45% Prototypes: 4,000
CNN 92.55% Prototypes: 513
SA 92.00% Prototypes: 486
DA 95.15% Prototypes: 214

One-against-one SVM 97.10% Confusing Pairs: 45
DAGSVM 97.35% Confusing Pairs: 45

Hybrid (DA + SVM) 97.60% Confusing Pairs: 45

Table 5. ETL8B (Subset) data.

Classification Methods Accuracy Rates Numbers
1-NN 98.16% Prototypes: 28,000
CNN 94.59% Prototypes: 2,504
SA 94.87% Prototypes: 2,638
DA 97.81% Prototypes: 767

One-against-one SVM 99.47% Confusing Pairs: 61,075
DAGSVM 99.47% Confusing Pairs: 61,075

Hybrid (DA + SVM) 99.45% Confusing Pairs: 17,286

 16

Table 6. ETL9B (Subset) data.

Classification Methods Accuracy Rates Number
1-NN 98.16% Prototypes: 35,000
CNN 94.59% Prototypes: 4,119
SA 94.87% Prototypes: 4,120
DA 97.81% Prototypes: 977

One-against-one SVM 99.05% Confusing Pair: 61,075
DAGSVM 99.05% Confusing Pairs: 61,075

Hybrid (DA + SVM) 98.94% Confusing Pairs: 20,228

Table 7. ETL8B (Full Set) data.

Classification Methods Accuracy Rates Number
1-NN 97.00% Prototypes: 76,480
CNN 93.30% Prototypes: 11,536
SA 93.24% Prototypes: 11,397
DA 96.67% Prototypes: 3,558

Hybrid (DA + SVM) 98.45% Confusing pairs: 64,880

Table 8. ETL9B (Full Set) data.

Classification Methods Accurate Rates Number
1-NN 91.90% Prototypes: 30,3600
CNN 85.79% Prototypes: 80,569
SA 86.02% Prototypes: 78,398
DA 92.71% Prototypes: 22,308

Hybrid (DA + SVM) 96.07% Confusing pairs: 347,702

In Table 9, we list the total training and testing time (in seconds) of the two SVM ap-

proaches and the hybrid method. The number of support vectors (# SVs) employed in each

method is also listed. Since the two SVM approaches employ the same training process, the

training results are only listed once. For the full ETL8B and ETL9B sets, SVM training times

would be too long. Their times are extrapolated from those obtained from the subset data.

The hybrid training consists of two parts: prototype and SVM training. In prototype training,

the following speed-up technique is found useful. To determine whether each sample s is ab-

sorbed or not, we only match s against the prototypes whose class types fall in Ωk(s). We pre-

determine Ωk(s) for each s as follows. For any class type D, let

), ,(min)(xsxs distDd =

 17

where x ranges over all D-samples. We then rank all class types according to the values of

ds(·). Ωk(s) is then the set of all class types whose ranks fall below k. In all Chinese/Hiragana

applications, we set k at 50. For a large value of k, the probability that the nearest prototype

to s assumes a class type in Ωk(s) is extremely high. This justifies the use of the speed-up

method.

Table 9. Training time, testing time, and number of support vectors.

One-against-one SVM DAGSVM Hybrid

Training Test Test Training Test

Time # SVs Time Time Time
(DA+SVM)

SVs Time
(DA+SVM)

UPS 139 7,233 51 9.96 261
(122+139)

7,233 3.92
(3.12+0.797)

CENPARMI
(Density)

46.9 4,950 27.46 8.65 96.7
(49.8+46.9)

4,950 4.13
(0.984+3.15)

CENPARMI
(Direction)

50.4 2,753 19.56 5.96 72.6
(22.2+50.4)

2,753 3.08
(0.687+2.39)

ETL8B
(Subset)

32,046 1,666,126 470,277 1,111 11,211
(2,184+9,027)

565,874 13.1
(3+10.1)

ETL9B
 (Subset)

37,160 1,887,218 500,815 1,504 16,029
(3,488+12,541)

689,776 16.8
(3.4+13.3)

ETL8B
(Full Set)

239,520 1.2×107 2.6×108 8,281 44,155
(10,112+34,043)

1,946,922 70
 (42+28)

ETL9B
(Full Set)

2,802,977 1.5×108 2.8×1010 112,901 245,421
(33,880+211,541)

11,317,700 650
(526+124)

Table 9 shows that, compared to the two SVM approaches, the hybrid method requires a

shorter testing time and a smaller, or equal, number of support vectors. The difference greatly

increases when N is large, as shown in all Chinese/Hiragana results. The hybrid method has a

much shorter training time than SVM when N is large. For the UPS and CENPARMI data,

the hybrid method requires the same number of confusing pairs as SVM, thus incurring a

slightly longer training time than SVM. Figure 7 shows the respective training times (in sec-

onds) required by SVM and the hybrid method for data sets of various sizes. The data sets are

derived from ETL9B and the number of character types in each set ranges from 50, 100,

150, …, up to 1000. Each character type, in any set, consists of 100 samples.

 18

-

50,000

100,000

150,000

200,000

250,000

300,000

350,000

- 200 400 600 800 1,000

SVM

HYBRID

Figure 7. Training times of SVM and the hybrid method. The numbers of character

types are plotted on the horizontal axis and the training times are plotted on the verti-

cal axis.

6. Conclusion

To remedy the costly computation of SVM when N is large, we propose a hybrid solu-

tion that combines SVM with a prototype learning/matching method. The prototype learning

method determines both the number and the location of prototypes. This is done in a learning

process that constructs prototypes within a finite number of iterations by way of training sam-

ples, and assures that each sample matches in class type with the nearest prototype. This

learning process determines confusing pairs that are processed by the SVM method. Apply-

ing the hybrid method to handwritten characters dramatically reduces training time, testing

time, and the number of support vectors, as N increases. The reduction in training time and

support vectors is due to the fact that the hybrid method deals only with a small proportion of

binary classification problems. The reduction in testing time is due to the fact that prototype

matching is faster than SVM classification. Our experiment results also show that the hybrid

method maintains relatively the same accuracy rates as SVM. These results naturally prove

that the hybrid method is a successful character recognition solution for all N scales.

 19

References

[1] E. Backer, Computer-Assisted Reasoning in Cluster Analysis, New Jersey: Prentice
Hall, 1995.

[2] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller,
E. Sackinger, P. Simard, and V. Vapnik, Comparison of classifier methods: A case study
in handwriting digit recognition, Int. Conf. Pattern Recognition, pp. 77–87, 1994.

[3] F. Chang, C.-J. Chen, and C.-J. Lu, A linear-time component labeling algorithm using
contour tracing technique, Computer Vision and Image Understanding, vol. 93, no. 2,
pp. 206-220, 2004.

[4] R. Collobert, S. Bengio, and J. Mariéthoz, Torch: a modular machine learning software
library, Technical Report IDIAP-RR 02-46, IDIAP, 2002.

[5] C. Cortes and V. Vapnik, Support-vector network, Machine Learning, vol. 20, pp. 273–
297, 1995.

[6] T. Cover and P. Hart, Nearest neighbor pattern classification, Proc. IEEE Trans.
Information Theory, IT-11, pp. 21-27, 1967.

[7] B. V. Dasarathy, NN concepts and techniques, Nearest Neighbor (NN) Norms: NN Pat-
tern Classification Techniques, B.V. Dasarathy (Ed.), IEEE Computer Society Press, pp.
1-30, 1991.

[8] H. Freeman, Techniques for the Digital Computer Analysis of Chain-Encoded Arbitrary
Plane Curves, Proc. Nat. Electronics Conf., 1961, pp. 421-432.

[9] P. Hart, The condensed nearest neighbor rule, IEEE Trans. Information Theory, pp.
515-516, May 1968.

[10] T. D. Haig and Y. Attikiouzel, An Improved Algorithm for Border Following of Binary
Images, IEE European Conference on Circuit Theory and Design, 1989, 118-122.

[11] T. H. Hilderbrand and W. Liu, Optical recognition of Chinese characters: advance since
1980, Pattern Recognition, vol. 26, no. 2, pp. 205-225, 1993.

[12] C.-W. Hsu and C.-J. Lin, A comparison of methods for multiclass support vector ma-
chines, IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415-425, 2002.

[13] Anil K. Jain and R. P. W. Duin, and J Mao, Statistical pattern recognition: a review,
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4-37, 2000.

[14] S. Knerr, L. Personnaz, and G. Dreyfus, Single-layer learning revisited: A stepwise pro-
cedure for building and training a neural network, Neurocomputing: Algorithms, Archi-
tectures and Applications, J. Fogelman, Ed. New York: Springer-Verlag, 1990.

[15] S.-W. Lee and J.-S. Park, Nonlinear shape normalization methods for the recognition of
large-set handwritten characters, Pattern Recognition, vol. 27, no. 7, pp. 895-902, 1994.

[16] A. Levine, L. Lustick, and B. Saltzberg, The nearest neighbor rule for small samples
drawn from uniform distributions, IEEE Trans. Information Theory, vol. IT-19, no. 5.,
pp. 697-699.

[17] C.-L. Liu, I.-J. Kim, and J. H. Kim, High accuracy handwritten Chinese character rec-
ognition by improved feature matching method, 4th Intern. Conf. Document Analysis
and Recognition, pp. 1033-1037, Ulm, Germany, 1997.

 20

[18] J. F. O’Callaghan, An alternative definition for neighborhood of a point, IEEE Trans.
Computers, vol. C-24, no. 11, pp. 1121-1125.

[19] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, Large margin DAG’s for multiclass
classification, Advances in Neural Information Processing Systems, Cambridge, MA:
MIT Press, 2000, vol. 12, pp. 547–553.

[20] C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, L. Lam, Computer recognition of uncon-
strained handwritten numerals, Proceedings of the IEEE, vol. 80, no. 7, pp.1162-1180,
1992.

[21] M. Umeda, Advances in recognition methods for handwritten Kanji characters, IEICE
Trans. Information and Systems, vol. E79-D, no. 5, 1996.

[22] V. Vapnik, The Nature of Statistical Learning Theory, New York: Springer Verlag, 1995.

[23] H. Yamada, K. Yamamoto, and T. Saito, A nonlinear normalization method for hand-
printed Kanji character recognition – line density equalization, Pattern Recognition, vol.
23, no. 9, pp. 1023-1029, 1990.

Appendix: The Convergence of The DA Algorithm

We want to prove that the DA algorithm terminates within a finite number of iterations,

where the number iterations is the number of times Step 3 of DA is executed. The process in

Step 3 is referred to here as the prototype-construction process, or in abbreviation, PCP. We

want to show that, as prototypes are updated in PCP, all samples are eventually absorbed by

prototypes of the same class types. This results from the fact that if we measure the distances

between the samples and the nearest prototypes of the same class types, we find that the sum

of these distances decreases by at least a constant in each iteration.

Recall that PCP performs two steps for each class type C. In the first step, a sample sC is

selected out of the set of unabsorbed C-samples that are not themselves C-prototypes. In the

second step, if sC cannot be found, no further work is done for class type C. Otherwise, the K-

means clustering method is used to form new C-prototypes using sC and all old C-prototypes

as initial seeds. We define SD(C) to be the sum of distances between the C-samples and the

nearest C-prototypes, namely,

), ,()(pxx∑= distCSD

 21

where x ranges over all C-samples and p is a C-prototype for which dist(x, p) ≤ dist(x, q) for

all other C-prototypes q. Let SDbefore(C) be the sum of distances before PCP is applied and

SDafter(C) be the sum of distances after it is applied.

Lemma 1. If a new seed sC is found for class type C, then PCP decreases the value of SD(C),

namely, SDafter(C) < SDbefore(C).

Proof. In PCP, prototypes are constructed by means of the K-means clustering method.

The K-means method produces a sequence of sets П(0), П(1), etc. П (0) is the set of prototypes

obtained in the previous iteration of DA; П(1) = П(0) ∪{sC}; П(n+1) is the set of cluster centers

obtained using members of П(n) as seeds for n = 1, 2, …. Let

),)(,()()()(xpxx
ii distCSD ∑=

where x ranges over all C-samples, p(i)(x) is the nearest member of П(i) to x for i = 0, 1, 2, ….

We want to prove that SD(i)(C) is a strictly decreasing sequence.

SD(1)(C) ≤ SD(0)(C), since the nearest member of П(1) to each C-sample is either a mem-

ber of П(0) or sC. One of the C-samples is sC whose distance to the nearest member of П(0) is

non-zero, since sC is not itself a C-prototype. The distance of sC to the nearest member of П(1)

is zero, since sC is a member of П(1). Thus, the decrement of SD(1)(C) from SD(0)(C) is at least

dist(sC, p(0)(sC)).

When the process proceeds from П(i) to П(i+1), new clusters are formed using members of

П(i) as seeds. The members of П(i+1) are the centers of these clusters. Thus,

)).(),(())(,())(,(1)()()1()(xpxpxpxxpx xxx
++ ∑+∑=∑ iiii distdistdist

It follows that

.))(,())(,()(

)1(xpxxpx xx
ii distdist ∑<∑ +

We conclude that SD(i+1)(C) < SD(i)(C). █

 22

Recall that in PCP, the seeds are chosen from unabsorbed samples that are not identical

to any prototypes of the same class types. We refer to these samples as unabsorbed non-

prototype samples.

Lemma 2. When there is an unabsorbed sample, there is an unabsorbed non-prototype sam-

ple, which is not necessarily of the same class type.

Proof. We assume that s is an unabsorbed C-sample. This means that s falls within the

attraction domain of a prototype, say p, whose class type is not C. Let the class type of p be

D.

Case1. Sample s is not a C-prototype.

Then, s is an unabsorbed non-prototype sample.

Case 2. Sample s is a C-prototype.

Since s is an unabsorbed sample, the distance from s to p cannot exceed the distance

from s to any C-prototype, including s itself. So, dist(s, p) ≤ dist(s, s) = 0, implying that

s = p. Since each prototype is the center of a cluster, let the C-cluster centered at s be

Λs and the D-cluster centered at p be Λp. We first prove that Λp contains a D-sample

other than p. Assume, on the contrary, that Λp has only one member, namely, p. Then p

is a D-sample. Since s = p, s inherits the class type of p which is not C. This is an ab-

surd result. So, let t be a member of Λp other than p (Figure 8). Since s = p, dist(t, p) =

dist(t, s), implying that t is an unabsorbed D-sample. Moreover, since t is a member of

Λp and t ≠ p, t is an unabsorbed non-prototype sample. █

p = s

t
pΛ

Figure 8. Λp has a member t and t ≠ p.

 23

We now define TSD to be the sum of the distances between the samples and the nearest

prototypes of the same class types, namely,

TSD = ∑C CSD)(.

Lemma 3. In each iteration of DA, PCP decreases TSD by at least a positive constant.

Proof. The onset of a new iteration in DA implies that there is at least one unabsorbed

sample. Lemma 2 assures that there is also at least one unabsorbed non-prototype sample.

PCP takes some unabsorbed non-prototype samples as seeds. Let s be such a sample whose

class type is C. According the argument developed in the proof of Lemma 1, SD(C) decreases

by at least dist(s, q), where q is the nearest C-prototype to s and q ≠ s.

Each C-prototype is the center of a C-cluster. Let Σ(s) be the collection of all subsets of

C-samples whose center is not identical to s. Σ(s) is non-empty, since the cluster containing q

is a member of Σ(s). Moreover, ,))σ(,(min) ,()Σ(σ centerdistdist sqs s∈≥ where center(σ) is

the center of σ. From this, it follows that TSD decreases by at least

,))σ(,(minmin)(σ centerdist sss Σ∈=δ where s ranges over all possible samples. Obviously, δ

is a positive constant. █

THEOREM. The DA algorithm terminates within a finite number of iterations.

Proof. Assume, on the contrary, that DA never terminates. Consequently, there would

always be unabsorbed samples, no matter how many iterations were performed. In each itera-

tion, TSD decreases by at least a positive constant, so TSD decreases to zero within a finite

number of iterations. This means that all samples become prototypes and are thus absorbed,

contradicting the assumption we made. █

