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Abstract. This paper presents a novel background modeling approach for day and 
night video surveillance. A great number of background models have been proposed 
to represent the background scene for video surveillance. In this paper, we propose a 
novel background modeling approach by using the phase space trajectory to represent 
the change of intensity over time for each pixel. If the intensity of a pixel which 
originally belongs to the background deviates from the original trajectory in phase 
space, then it is considered a foreground object pixel. In this manner, we are able to 
separate the foreground object from the background scene easily. The experimental 
results show the feasibility of the proposed background model. 
 
1. Introduction 

Visual surveillance has become an important research issue in recent years. Since 
the price of video sensors keeps going down, a great number of researchers have 
devoted themselves to the development of video surveillance systems [1-5]. A good 
visual surveillance system should be able to function day and night. However, most of 
the existing visual surveillance systems cannot work twenty four hours using only one 
sensor. In order to make a visual surveillance system function well during the night, a 
night vision sensor is indispensable [6]. In [6], Owens and Matthies proposed to use a 
night vision sensor (which is actually an infrared sensor) to perform monitoring 
during the night. However, a visual system that is inexpensive and is able to operate 
either at the day time or at night is always preferable. A star-light camera, under these 
circumstances, becomes a good candidate that best fits our requirements. 

In the development of a conventional visual surveillance system, foreground 
object detection is usually the first step that requires to be handled. A correct 
foreground object extraction process is fairly important because a false detection will 
make the subsequent processes, such as tracking and recognition, become invalid. 
There are three types of existing approaches that have been proposed for foreground 
detection [3-5, 7-14]. They are: temporal differencing [7], background subtraction 
[3-5, 9-14], and optical flow-based estimation [8]. The background subtraction 
approach is commonly adopted in most of the existing video surveillance systems 
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[3-5]. This approach extracts the foreground components by comparing a new frame 
with the background model, which is represented by a pre-determined background 
scene. Under the circumstances, an efficient foreground object extraction process 
depends heavily on a successful background modeling. 

There are many existing methods designed for background modeling, and the 
most famous ones are all statistical-based approaches [3, 4, 9-12]. Among a number of 
successful models, some used a single Gaussian distribution of intensity (color) for 
each pixel to represent the background model [9, 10]. If every pixel is resulted from a 
particular surface in a completely static scene, the pixel intensity can be modeled with 
a Gaussian distribution due to the nature of noises. However, if the scene is not 
completely static, multiple surfaces are needed to model a same pixel, such as waving 
trees. As a consequence, a mixture of Gaussian distributions has to be used to model 
the above non-static signal [3, 11]. For solving the same problem, Elgammal et al. [12] 
proposed to use a nonparametric kernel density function to substitute the use of the 
mixture of Gaussian. In [4], Haritaogul et al. proposed the so-called W4 system which 
used a bimodal distribution to model the background scene. The proposed system 
represents the background scene by three different values for each pixel. These values 
include: the minimum and the maximum intensity values and the maximum intensity 
change between two consecutive frames. In [13, 14], the researchers used linear 
prediction to predict the expected background, in order to separate the foreground 
from the background. 

In this paper, we propose a novel background modeling approach for day and 
night video surveillance by using a star-light camera. A star-light camera is able to 
acquire clear images even under very poor lighting conditions. A star-light camera 
uses Auto Gain Control (AGC) and Auto Electronic Shutter Control (AESC) to 
maintain the video level on a fixed IRE value, and therefore it can acquire images 
with similar brightness under various lighting conditions. Fig. 1 shows the acquired 
images taken by a conventional camera and a star-light camera, respectively, under 
three different lighting conditions. It is clear that the images taken by a star-light 
camera can maintain with a satisfactory brightness even under very poor lighting 
conditions. However, a star-light camera also has its drawback when encountering a 
light source which changes with respect to time. For example, if the light source is a 
fluorescent tube, then a star-light camera will activate AGC and AESC mechanism to 
compensate the changing lighting conditions all the time. As a consequence, the above 
mentioned compensation will cause the output video signal unstable. Fig. 2 illustrates 
the phenomenon that the intensity of a pixel over time forms a quasi-periodic signal, 
and Fig.2 (b) indicates that the intensity contributed by the foreground may replace 
the signal of the background. Having the above mentioned problem at hand, we are 
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not able to use the existing background modeling methods [3, 4, 9-14] to solve the 
problem. Since a star-light camera is inexpensive and has been widely used, we shall 
propose a new background modeling method to increase its accuracy. First, we shall 
transform the intensity signal from the time domain to the phase space. Then, a phase 
space trajectory is used to represent the intensity change over time for every pixel in 
the background scene. By observing the change of this trajectory, one is able to 
separate the foreground from the background easily. 

 

   
(a) 

   
(b) 

Fig. 1. Images taken by (a) a conventional camera, and (b) a star-light camera, 
respectively, under three different lighting conditions. 

 

  
  (a)                             (b) 

 
  (c)                             (d) 

Fig.2. The intensity of a pixel over time, (a) only background signal; (b) the 
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composite signal that includes background and foreground signals; (c) the phase 
space diagram corresponding to the signal shown in (a); (d) the phase space 

diagram corresponding to the signal shown in (b). 
 

The rest of this paper is organized as follows. In Section 2, we shall introduce 
what the phase space is. Then, the proposed background modeling will be elaborated 
in Section 3. The experimental results will be reported in Section 4, and the 
conclusion will be drawn in Section 5. 

 
2. Phase Space  

In the nature, most dynamic systems are nonlinear, and they are usually difficult 
to be solved by analytical methods. Under the circumstances, the phase space 
approach [15] is one of the possible ways that can be applied to analyze the behavior 
of nonlinear dynamic systems. The phase space approach has been successfully 
applied to many research fields, e.g. speech [16] and medicine [17]. Fig. 2 shows that 
the intensity of a pixel over time is actually a nonlinear dynamic problem. Therefore, 
the phase space method can be applied to analyze the change of intensity over time 
for each pixel. Suppose the intensity value and the rate of change of intensity are 
represented by the X-axis and Y-axis, respectively, in the phase space. Fig. 2(c) shows 
the phase space diagram that is corresponding to the signal shown in Fig. 2(a). It is 
clear that the phase space diagram has a particular appearance and trajectory. 

It has been made clear that the goal of foreground detection is to separate the 
foreground from the background. In Fig. 2(b), it is obvious that the background and 
the foreground are represented by different signals (the durations of t1 and t2 are 
foreground and the rest are background). Fig. 2(d) shows the phase space of the signal 
shown in Fig. 2(b). When some foreground objects appear at the time intervals t1 and 
t2, the corresponding trajectories are significantly deviated from the original trajectory. 
From the above observed phenomenon, it is apparent that the phase space model is 
indeed a very good tool for modeling the background scene. From the trajectories 
shown in the phase space, it is very easy to separate a foreground object from the 
background scene. 

 
3. The Proposed Method 

In this paper, the phase space trajectory is applied to represent the change of 
intensity over time for each pixel in the background scene. Therefore, the task of 
background modeling is to model the phase space trajectory. For the purpose of 
efficiency, we apply the B-spline curve fitting approach to model the phase space 
trajectory. 
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3.1 Background Modeling 
Suppose the change of intensity over time for each pixel is an intensity signal 

function of time, and the phase space is a two-dimensional space that consists of the 
intensity function (the X-axis) and its first order derivative (the Y-axis). Since a 
derivative is quite sensitive to noise, a smoothing process applying to the intensity 
signal function in advance is necessary. For each pixel x, we let the measured intensity 
signal function be )(tg x  after executing a Gaussian smoothing process. The 
measured function Nttg x ≤≤1),( , can be used as a training signal to model the 
phase space trajectory. 

Fig. 2(c) illustrates that a cycle of the phase space corresponds to one period in 
the intensity signal. Though the periodic durations of the same intensity signal are 
close to each other, they are not exactly the same. Therefore, a representative period 
which is the average period of all periods should be decided and then used to 
represent the period of the signal. 

In order to derive the average period, we extract all peaks (or valleys) in a 
training signal )(tgx , and then use all its constituent peaks to segment )(tgx  into 
k-1 periods: 
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where T is the duration of the average period. Fig. 3 illustrates an example showing 
how an average period looks like in two different diagrams. 

After an average period is calculated, we apply uniform cubic B-spline curve 
fitting [18] to model it: 
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where )(, uN Mj  are the jth B-spline function of order M = 4, Qj is the jth control point, 

and the set of knots are as follows: 
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Finally, we use ))(),(()( uGuGuB xxx ′=  to represent the phase space trajectory of any 
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single pixel x. 
In addition to background modeling, background updating is also an important 

task, because the background scene won’t stay still forever. In this work, we update 
the phase space trajectory while a new period emerges. We use the previously derived 
average period to calculate the new average period and then use it as a new average 
period. 

 
Fig. 3. An example showing how an average period looks like in two different 

diagrams. 
 

3.2 Foreground/Background Determination 
After the training signal is modeled by a phase space trajectory, the trajectory 

model can be used in the foreground/background determination process for 
subsequent signals. Fig. 2(d) illustrates clearly that the trajectory deviates from its 
original (background) path when some foreground objects cover this pixel. In order to 
make a correct judgement on whether a pixel is occupied by a foreground object or by 
a background scene, we need to fully utilize the trajectories of the phase space. 
Suppose the phase space trajectory of the original intensity signal is 

))(),(()( tgtgtv xxx ′= , and the trajectory model is ))(),(()( uGuGuB xxx ′= . In Fig. 4, it 
is clear that )(tvx  cannot completely fit )(uBx , but )(tvx  will encircle along the 
surrounding of )(uBx  following the time order. Thus we can calculate the shortest 
distance from )(tvx  to )(uBx  under the time order constraint. The distance can be 
taken as the criterion for determining foreground or background, and the trajectory 
point )(uBx  with the shortest distance can be represented as the predicted point.  
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Fig. 4. The phase space trajectory of the original intensity signal and the 
established trajectory model using B-spline fitting. 

Assume that the previously predicted point is )'(uBx , and then we calculate u to 
make the distance from )(tvx  to )(uBx  the shortest under the constraint 

ruuu +<< '' . r here is a given maximum possible change. Therefore, the distance can 
be calculated as follows: 

22 ))()(())()(( tguGtguGd xxxx ′−′+−= ,       (6) 

222 ))()(())()(( tguGtguGd xxxx ′−′+−= .       (7) 

When the distance is minimal, the first derivative of d is zero. 
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The order of this equation is five, and it is hard to compute. Thus, we use linear 
interpolation to estimate u. Finally, the pixel can be classified as foreground if d > T, 
where T is a given threshold. Otherwise, the pixel is a background pixel. The physical 
meaning of the above formulation is as follows. When a pixel is part of the 
background, its corresponding intensity won’t deviate from the original trajectory too 
far. On the other hand, if there is a foreground object covering this pixel, its 
corresponding intensity will soon jump away from the original background trajectory. 
 
4. Experimental Results 

We have conducted a series of experiments to test the effectiveness of the 
proposed method. The upper half of Fig. 5 shows the intensity signal of a background 
pixel. The lower half of Fig. 5 shows the estimated distance to the background 
trajectory. We used the first period of the signal as the training signal to model the 
background trajectory. After the training process, it is clear that at each instant the 
estimated intensity distance to the background trajectory was non-zero, but very close 
to zero. In the second part of the experiment, we used a synthetic signal to conduct the 
experiment. The upper half of Fig. 6 shows a synthesized intensity signal with t1 and 
t2 durations replaced by other signals (this is equivalent to placing an object on the 
background). Again, we used the first period to train the system. From the estimated 
distances shown in the lower half of Fig. 6, it is apparent that the estimated distances 
located in t1 and t2 durations were much larger than those located in other durations. 
This means whenever there are any non-periodic signals occurred and some durations 
of the original periodic background signals were replaced, the corresponding 
estimated intensity distances of these replaced durations would jump to significantly 
high. Therefore, we are able to easily separate the foreground from the background by 
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examining the estimated distance change. In the last part of the experiment, we used a 
real intensity signal to conduct the experiment. From t = 220 to t = 690, the real 
intensity signal corresponds to the background. At the duration from t = 700 to t = 730, 
a foreground object emerged and it covered the target pixel. It is clearly seen in the 
lower half of Fig. 7 that the estimated distances between t = 700 to t = 730 were 
significantly high in comparison with the estimated distances measured at other 
instants. 

 

 
Fig. 5 The distance estimation for a background signal. 

    
Fig. 6. The distance estimation for a synthetic intensity signal, including background 

and foreground signals. 

 
Fig. 7. The distance estimation for a real intensity signal, including background and 

foreground signals. 
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5. Conclusion 
We have proposed a novel background model for day and night video 

surveillance. We use the phase space trajectory to represent the change of intensity 
over time for each pixel in the background scene. Furthermore, we detect the 
foreground by determining whether the current trajectory deviates from the 
background trajectory or not. The experimental results show the feasibility of the 
proposed background model. Since there are many issues in the background modeling, 
such as waving trees and shadows, our future work is to solve these issues based on 
the proposed background model. 
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