
1

MTRA: An On-Line Hose-Model VPN Provisioning Algorithm

Yu-Liang Liu and Yeali S. Sun {d8725001;sunny}@im.ntu.edu.tw

Department of Information Management, National Taiwan University, Taipei, Taiwan

Meng Chang Chen mcc@iis.sinica.edu.tw

Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. Virtual private networks (VPNs) provide customers with a secure and manageable communication

environment. The allocation of bandwidth for VPNs to meet the requirements specified by customers is now one of

the most important research issues in the field of traffic engineering. A VPN resource-provisioning model called

hose-model was developed to provide customers with a flexible and convenient way to specify the bandwidth

requirements of a VPN. Several hose-model VPN provisioning algorithms have already been proposed. They focus

on the bandwidth efficiency issue in the case of establishing a single hose-mode VPN. However, these algorithms

cannot achieve a satisfactory rejection ratio when: (1) the residual bandwidths on links of the network backbone

are finite and (2) multiple VPN setup requests are handled on-line. In this paper, we propose a new hose-model

VPN provisioning algorithm called MTRA to address the issue. MTRA can process multiple VPN setup requests

rapidly and reduce the rejection ratio effectively. Theoretical upper bounds of rejection ratios achieved by several

VPN provisioning algorithms are also derived. The experiments verify that MTRA performs better in regards to the

rejection ratio than other provisioning algorithms.

Keywords: Virtual Private Network, Hose-Model, VPN Provisioning Algorithms, Traffic Engineering.

1. Introduction

Traditionally, a private network (PN) is established by grouping dedicated lines

connecting several geographically dispersed sites (endpoints). As the number of endpoints is

growing, connecting them with dedicated lines is becoming increasingly expensive [1]. As a

 2

result, VPNs have emerged as replacements for PNs in recent years. The VPN is a logical

network that is established on top of a packet switched network backbone. Its goal is to

provide a service comparable to a PN. The two most important issues that must be addressed

for VPN are data security and bandwidth guarantees. The former is usually achieved by

cryptographic methods, while the latter is achieved by reserving sufficient bandwidths on the

links.

The two most common VPN resource-provisioning models are: (1) the customer-pipe

model [2-4] and (2) the hose model [3, 4]. In the customer-pipe model, customers must have

precise predictions in advance about the complete traffic requirements of each endpoint pair

in a VPN. The Network Service Provider (NSP) then finds a data transmission path, pathu,v,

for traffic between each endpoint pair, (u,v), in a VPN and allocate sufficient bandwidth for

the path according to the traffic requirement. However, customers may be unwilling, or

unable, to know the traffic requirements of each endpoint pair in a VPN. This is especially

true when the number of endpoints per VPN is large.

In the hose model, customers only need to specify the ingress bandwidth requirement,

b-(v), and egress bandwidth requirement, b+(v), for each endpoint, v, of a VPN. The value b-(v)

is the maximum rate of traffic that endpoint v receives from the network at any time, and the

value b+(v) is the maximum rate of traffic that endpoint v sends into the network. As the

hose-model appears to provide customers with more flexibility and convenience in specifying

their bandwidth requirements, we only consider hose-model VPNs in this paper.

The most important VPN provisioning algorithms for hose-model VPNs are: (1)

provider-pipes [3, 4], (2) hose-specific state [3, 4], (3) VPN-specific state [3, 4], and (4) tree

routing [5]. For the approaches of selecting a data transmission path, pathu,v, between each

endpoint pair, (u,v), in a VPN and the allocated bandwidth on links of the paths in these

algorithms, please refer to [3, 5, 6]. The path pinning capacity provided by MPLS

(multiprotocol label switching) technology can be used to direct the routing of a data

transmission path between each endpoint pair in a VPN [7, 8]. Our approach can be

implemented on a MPLS network as well.

 3

VPN provisioning algorithms can be implemented in two ways: (1) off-line provisioning

and (2) on-line provisioning. In off-line provisioning, the NSP has a prior knowledge of all

VPN setup requests. In this setting, the VPN provisioning plan is optimized on some

performance metrics (e.g., revenue, network link utilization and the amount of bandwidth

reservation) by rejecting selected requests. In the on-line provisioning, when a VPN setup

request is received, it is processed based on the current state of the network. As the NSP does

not know future VPN setup requests, the on-line decision only achieves optimal provisioning

for the current network state. In this paper, we focus on on-line VPN provisioning.

To our knowledge until now, issues about the rejection ratios achieved by hose-model

VPN provisioning algorithms have not been investigated. In this paper, we consider the

problem of minimizing the rejection ratio of provisioning algorithms when (1) the residual

bandwidths on links of the network backbone are finite, and (2) multiple VPNs need to be

established on-line on the network backbone. Once the data transmission paths between each

endpoint pair in a VPN are determined, the provisioning algorithm needs to explicitly allocate

sufficient bandwidth on the links of these paths to meet the bandwidth requirement specified

by customers. As the bandwidth allocation of VPNs is executed on-line, the previous

allocation may affect the feasibility of the next VPN provisioning. One of the requisites of a

good VPN provisioning algorithm is that it should achieve a low rejection ratio. However,

previous hose-model VPN provisioning algorithms [3-5] have been unable to meet this

requirement. We therefore propose a new provisioning algorithm, the Modified Tree Routing

Algorithm (MTRA), to address this issue. Our experimental simulations show that the MTRA

can reduce the rejection ratio effectively. In addition, it can also rapidly process multiple VPN

setup requests. Given a network graph G with n nodes and m edges, MTRA spends only O(mn)

time for a VPN setup request.

The contributions of this paper are summarized as follows: (1) We show by concrete

examples that all four of the hose-model VPN provisioning algorithms mentioned previously

are unable to achieve satisfactory rejection ratios. To address this issue, we propose a new

hose-model VPN provisioning algorithm called MTRA. (2) The theoretical upper bounds of

 4

the rejection ratios achieved by the provider-pipes, tree routing and MTRA provisioning

algorithms for the problem we consider are also derived in this paper.

The remainder of this paper is organized as follows. In Section 2, we review related works.

In Section 3, we define the On-line Hose-model VPN Establishment Problem (OHVEP) where

an NSP establishes hose-model VPNs online on a network backbone composed of links with

finite residual bandwidths. In OHVEP, the performance metric for comparison with various

VPN provisioning algorithms is the rejection ratio. In Section 4, we exemplify the reasons

why the provisioning algorithms proposed in [3-5] cannot achieve a satisfactory rejection

ratio. In Section 5, we present MTRA. In Section 6, we derive the theoretical upper bounds of

the rejection ratios for several hose-model VPN provisioning algorithms under the OHVEP.

In Section 7, we show five experimental simulations to compare the performance of MTRA

with other VPN provisioning algorithms. Finally, in Section 8, we give our conclusions and

indicate the direction of our future work.

2. Related Works

The hose-model was first introduced by Duffield et al. in [3, 4]. In their papers,

provider-pipes, hose-specific state and VPN-specific state provisioning algorithms for

hose-model VPNs were also presented. Duffield et al’s work inspired other researchers to

develop provisioning algorithms for bandwidth-optimization hose-model VPNs. Kumar et al.

argued that bandwidth-optimization hose-model VPNs should be based on a tree topology

(hereafter called: VPN tree) [5]. They also presented an algorithm to compute the VPN tree

which needs minimum total bandwidth allocation on tree links (hereafter called:

bandwidth-optimization VPN tree) where the links on the network backbone have infinite

capacity and the bandwidth requirement of each endpoint is symmetric (i.e., b+(v) = b-(v) for

all VPN endpoint v). If the links on the network backbone have infinite capacity and the

bandwidth requirement of each endpoint is general, Kumar et al. proved that it is NP-hard to

 5

compute the bandwidth-optimization VPN tree and proposed a 10-approximation algorithm to

solve the problem. Gupta et al. improved the approximation ratio to 9.002 [9]. Swamy and

Kumar further reduced the ratio to 5 [10]. In the case where the links on the network

backbone have finite capacity, Gupta et al. also proved that computing the

bandwidth-optimization VPN tree is NP-hard [9]. Note that NP-hard is a class of problems

with tremendous computational complexity. For more details of NP-hard, please refer to [11].

Jűttner et al. compared the bandwidth allocation efficiency of the hose-model VPN with

that of the customer-pipe model VPN [6]. They also conducted simulations to compare the

bandwidth allocation efficiency of the four hose-model VPNs provisioning algorithms

mentioned in Section 1. Italiano et al. proposed a restoration algorithm for a hose-model VPN

tree under the single-link failure model [1]. Balasubramanlan and Sasaki compared the

bandwidth allocation efficiency of several restoration algorithms for a hose-mode VPN tree

under the single-link failure model through experimental simulations [12]. Gupta et al.

investigated the issues about MPLS labels design and routing protocol for a VPN tree [8].

Chou proposed a multi-objective traffic-engineering framework for off-line provisioning of a

series of M customer-pipe model VPNs [13]. The goal of Chou’s framework is to minimize

the maximum link utilization on the network backbone while minimize the total bandwidth

allocation for establishing the M VPNs.

3. Problem Formulation and Modeling

In this section, we formulate the problem considered in this paper. The network backbone

managed by the NSP is modeled in subsection 3.1. The VPN setup request describing the

VPN service requested by customers is modeled in subsection 3.2. Finally, the On-line

Hose-model VPNs Establishment Problem (OHVEP) is described in subsection 3.3.

3.1. Network Backbone Modeling

 6

The MPLS network backbone is modeled by an undirected graph G=(N,L), where N and L

are the set of routers and the set of links, respectively. Let n and m denote the cardinality of N

and L, respectively. Let B be the set of residual bandwidths of links on L, and the amount of

residual bandwidth on link l (l∈L) is denoted by B(l). A subset AR = {ar1,ar2,…,arp} of N (AR

⊆ N) is the set of VPN access routers. Each endpoint ei of a VPN gains access to VPN service

by connecting to a specific VPN access router ari in AR. In other words, for each endpoint of

a VPN, there is a corresponding VPN access router in AR.

The elliptic region in Figure 1 is an example of the MPLS network backbone G. The

round regions (A to G) inside G are routers in N. The solid lines between any two routers in G

are links in L. The number beside each link is the amount of residual bandwidth on it (B(l)=5

for all l∈L in this figure). The VPN access routers set AR = {A, E, G}. The round regions (1, 2

and 3) outside G are endpoints (e1, e2 and e3, respectively, in our notation) of a VPN which

gain access to VPN service via routers in AR. The dotted lines labeled as pathi,j is the data

transmission path for VPN traffic between ei and ej.

Figure 1. An example of MPLS Network Backbone G.

3.2. VPN Setup Request Modeling

The demands for VPN service of customers are described by VPN setup requests. In this

paper, we consider that the bandwidth requirement of each endpoint ej is symmetric and use

b(ej) to denote the bandwidth requirement of ej. Let Maxr denote the maximum bandwidth

guarantee provided by the NSP, and vri be the ith VPN setup request from customer for the

GGDD

BB EE

AA CC FF11

22

33

MPLS Network
Backbone

Path1,2

Path1,3
Path2,3

5
5

5 5

5

5

5 5

 7

NSP to establish. Each vri is represented by a p-tuple vector (r1,r2,…,rp), where p is the

cardinality of the access routers set AR. The number of nonzero elements in vri represents the

number of endpoints contained in the corresponding VPN. The value of jth element, rj, of vri

represents the bandwidth requirement of endpoint ej.

3.3. On-line Hose-model VPNs Establishment Problem

The OHVEP defined in this paper is similar to the work in [14-18] which mainly

considers on-line establishment of bandwidth-guaranteed point-to-point tunnels. However, in

the context of VPN provisioning, the basic unit of concern is a VPN consisting of numerous

point-to-point tunnels, as opposed to one point-to-point tunnel, that makes the problem more

challenging.

In OHVEP, the NSP manages an MPLS network backbone G (as described in subsection

3.1) on which VPNs are established. We consider the situation where (a) VPN setup requests

arrive one-by-one independently, and (b) the NSP do not have a priori knowledge about

future VPN setup requests. This knowledge includes the number of future VPN setup requests,

the number of endpoints contained in each VPN setup request, and the bandwidth

requirement of each endpoint. In this situation, the NSP must process each VPN setup request

in an on-line manner.

Upon receiving a VPN setup request vri, the NSP triggers the provisioning algorithm to

establish a corresponding VPN. The provisioning algorithm performs this task by first

choosing a data transmission path, pathu,v, between each endpoint pair, (u,v), and then

allocating bandwidth on each link of the path. If there is not enough residual bandwidth on the

link when the bandwidth is being allocated, vri will be rejected. We use the rejection ratio as

the performance metric to compare different hose-model VPN provisioning algorithms. Note

that the authors of [14-18] also use the rejection ratio (of tunnel setup requests) as the

performance metric to compare different on-line tunnel establishment algorithms. The

rejection ratio is defined as:

 8

received requests of numbers total

rejected requests ofnumber ratio rejection =

The optimization goal of provisioning algorithms is to minimize the rejection ratio, which

in turn will maximize the number of requests successfully established on the network

backbone.

In the OHVEP, we assume that the NSP uses a server-based strategy [19] for processing

VPN setup requests. In a server-based strategy, the VPN provisioning algorithm is run on a

single entity called VPN request server (VRS). The VRS also keeps the complete link state

topology database and is responsible for computing an explicit data transmission path for each

endpoint pair of a VPN. Then the paths can be setup using a signaling protocol such as RSVP

or CR-LDP. For computing the explicit paths, the VRS needs to know the current network

topology and link residual bandwidth. We assume that a link state routing protocol for

information acquisition exists.

4. Motivation for New Provisioning Algorithms

In subsection 4.1, we exemplify the reasons why the four provisioning algorithms

proposed in [3-5] cannot achieve satisfactory rejection ratios under OHVEP. We present two

scenarios to support our argument. Then, in subsection 4.2, we list the factors influencing the

rejection ratios achieved by provisioning algorithms.

4.1 The Drawbacks of Other Algorithms

Scenario 1: The higher bandwidth allocation of provider-pipes, hose-specific state and

VPN-specific state results in higher rejection ratio than tree routing

Under the same routing pattern, the following relationship holds for the bandwidth

allocated on each link between different provisioning algorithms to establish a VPN (the

relation also holds for total bandwidth allocation):

 9

BW Provider-pipes ≥BWHose-specific ≥BW VPN-specific [6]

In addition, the simulation results in [6] show that the allocated bandwidth of tree routing

is less than that of VPN-specific. To highlight the difference between the allocated bandwidths

of the provisioning algorithms, we compare provider-pipes with tree routing in this scenario.

When the NSP receives a VPN setup request, vr1=(2,2,3), in the case of adopting the

provider-pipes algorithm, the resulting allocations on the backbone G are shown in Figure 2.

The numbers beside the three endpoints represent their bandwidth requirements (b(e1), b(e2),

and b(e3)). The numbers beside the dotted lines represent the amount of bandwidth needed on

the respective links. Note that the amount of allocated bandwidth on lA,C, lC,F, lE,F and lF,G is 4

in the provider-pipes algorithm, whereas it is 2, 2, 2, and 3, respectively in the tree routing

algorithm. Moreover, the provider-pipes algorithm has over-allocated bandwidth on lA,C, lC,F,

lE,F and lF,G. For example, the traffic rate through lA,C at any instant will not exceed

min(b(e1),b(e2)+b(e3)), which is equal to 2. However, the provider-pipes algorithm has

allocated 4 units of bandwidth to it (a similar problem also occurs on lC,F, lE,F and lF,G).

Figure 2. A sketch of G for Scenario 1.

Scenario 1 illustrates the difference between the allocated bandwidths of different

provisioning algorithms in establishing a single VPN. In the case of establishing multiple

VPNs, the difference between the allocated bandwidths of the provider-pipes, hose-specific

state, and VPN-specific state algorithms (compared with the tree routing algorithm) will be

greater. If the residual bandwidths on links in L are finite, the phenomenon will result in a

GGDD

BB EE

AA CC FF11

22

33

Provider-pipes:

MPLS Network
Backbone

2

2

3

22
2

2
22

Path1,2

Path1,3

Path2,3

2

2

 10

higher rejection ratio in provider-pipes, hose-specific state, and VPN-specific. In Scenario 2,

we show that even the tree routing algorithm cannot guarantee a satisfactory rejection ratio.

Scenario 2: Disregarding the amount of residual bandwidths on links in tree routing algorithm

results in a higher rejection ratio

When the NSP receives two VPN setup requests vr1=(2,3,3) and vr2=(3,3,3), the result is

shown in Figure 3. Initially, the residual bandwidth on all links in L is 5 units (the numbers

beside the solid lines). The round region labeled as ei,j represents the jth endpoint of the VPN,

vri. The number beside each ei,j represents its bandwidth requirement. In the case of the tree

routing algorithm, the VPN trees corresponding to vr1 and vr2 are depicted as the trees formed

by dotted lines and dashed lines, respectively. The numbers beside dotted lines and dashed

lines represent the amount of bandwidth allocated on respective links. In this figure, neither

lE,F nor lF,G have enough bandwidth to accommodate the second request after processing the

first one. The rejection ratio achieved by the tree routing algorithm in Scenario 2 is 50%.

Figure 3. A sketch of G for Scenario 2.

In fact, the amount of available resources on G is enough to accommodate both requests.

If we rearrange the VPN tree of vr2 as shown by the dashed lines in Figure 4, then both vr1

and vr2 can be accepted in this case. The rejection ratio achieved by this rearrangement is 0%.

BB

e1,1e1,12

3

e2,1e2,1

3
3

3

3

2 2 3

3

3

3
3 3

DD

AA CC

e1,3e1,3

e2,3e2,3

e1,2e1,2

e2,2e2,2

FF

EE

GG

5

MPLS Network
Backbone

5

5

5

5

5

5

5

 11

Figure 4. Optimal arrangement for Scenario 2.

The tree routing algorithm may still reject requests even though the amount of available

resources on G is sufficient to process them. This is because the tree routing algorithm insists

on using the links forming the bandwidth-optimization VPN tree for each request, regardless

of the amount of residual bandwidths on them. If the amount of residual bandwidths on the

links of the bandwidth-optimization VPN tree is thinly spread, it is obvious that the

optimization behavior of tree routing will raise the likelihood of rejection.

4.2 The Factors Influencing Rejection Ratio

In this case, the links of the network backbone have a finite amount of residual bandwidth

and the NSP needs to establish multiple VPNs on the network backbone on-line (as described

in the OHVEP). The two most important factors influencing the rejection ratio achieved by

the provisioning algorithms are:

(1)Bandwidth allocation efficiency: As mentioned in Scenario 1 of subsection 4.1, this

issue has been widely discussed in previous literature [3-6].

(2)A Load balancing mechanism that considers the amount of residual bandwidth on links:

As described in Scenario 2 of subsection 4.1, provisioning algorithms must take the residual

bandwidths of links into account and avoid using links that are thinly spread. This will

balance the load on G and reduce the rejection ratio.

e1,12

3

e2,1e2,1

3
3

3

3

2 2 3

3
3

AA CC

e1,3

e2,3e2,3

e1,2

e2,2e2,2

FF

BB EE

DD GG

3

3

3

3

MPLS Network
Backbone

5

5

5
5

5

5

5
5

 12

5. MTRA

To alleviate the drawbacks of (a) inefficiency on bandwidth allocation, and (b)

disregarding the amount of residual bandwidth for links selection (described in subsection

4.1), we propose a new provisioning algorithm called the Modified Tree Routing Algorithm

(MTRA). The tree routing and MTRA provisioning algorithms are both tree-based (i.e., they

establish a VPN base on tree topology (VPN tree)). While tree routing has excellent

bandwidth allocation efficiency, it does not consider maximizing the accommodation of

on-line VPN requests. On the contrary, MTRA considers both bandwidth allocation efficiency

and accommodation of on-line VPN requests by achieving balance of link residual

bandwidths.

The major difference between tree routing and MTRA is that the cost function they

defined for VPN tree selection. Let T be a VPN tree consisting of k links. The cost functions

of tree routing and MTRA are defined as following:

,
)(
)()(

1
∑

≤≤

=
kx x

x
MTRA lB

lRSTCost and ∑
≤≤

=
kx1

xrouting tree)RS(l(T)Cost

, where RS(lx) and B(lx) represent the amount of bandwidth allocation needed and the amount

of residual bandwidth on the xth link, lx, respectively. The cost function of MTRA is derived

by the cost function defined in the routing algorithms proposed in [17, 20] for route selection.

When processing a request, MTRA tries to find a VPN tree that minimizes the cost

function defined above. It is clear the additional cost for using a link lx in building a VPN tree

is proportional to the value of RS(lx) and is reciprocal to the value of B(lx). Therefore, MTRA

tries to find a VPN tree with links of abundant residual bandwidths and low overall bandwidth

allocation. As a result, MTRA can satisfy both bandwidth allocation efficiency and balance of

residual bandwidths. The pseudo code of MTRA is described in Table 1.

 13

Table 1. Pseudo code for MTRA.

Modified Tree Routing Algorithm (MTRA)

Input: A Network graph G=(N,L), VPN access routers AR=(ar1,ar2,…,arp)⊆N,

residual bandwidth constraints B on L, and a VPN setup request vri =(r1,r2,…,rp).

Output: A minimum cost VPN tree VTMC for vri, on which all leaf nodes are VPN

access routers arj with rj>0.

Algorithm:

1. VTMC :=Ø;

2. For each v∈N

3. {

4. Tv:= BFS_Tree(G,v);

5. PTv:=Prune_Tree(Tv, vri);

6. Compute_RS(PTv, vri);

7. if(Cost(PTv)<Cost(VTMC)) VTMC:= PTv;

8. }

9. if (Cost(VTMC) = ∞)

10. {Reject(vri); Return Ø;}

11. else{

12. For each link lx∈VTMC {B(lx):= B(lx)-RS(lx);}

13. Accept(vri); Return(VTMC);

14. }

Given a network graph G consisting of n nodes, to process a VPN setup request vri, MTRA

iterates totally n times, once for each v∈N. In each iteration, MTRA first finds a candidate

VPN tree PTv rooted at v for vri, and then computes the amount of bandwidth needed to be

allocated to each link lx of PTv. Finally the cost value associated with PTv can be computed.

 14

After finding all PTv (v∈N), if there is not any PTv (v∈N) on which all links have enough

residual bandwidth for allocation, MTRA will reject vri. In the case of accepting vri, MTRA

will return the VPN tree with the minimum cost value among all PTv (v∈N) for vri, which is

denoted by VTMC. In addition, MTRA then allocates bandwidth to each link lx of VTMC by

performing B(lx):= B(lx)-RS(lx).

To find a candidate VPN tree PTv rooted at v, MTRA first find a BFS tree (breadth first

search tree [21]) Tv rooted at v (by calling Function BFS_Tree). Tv contains all nodes in G and

in addition, Tv may contain nodes that are not VPN access routers used in vri as leaf nodes.

Therefore, MTRA prunes Tv and obtains a candidate VPN tree PTv, on which all leave nodes

are VPN access routers used in vri (by calling Function Prune_Tree).

MTRA computes the amount of bandwidth needed for each link lx of a VPN tree T

according to the bandwidth requirement information in vri (by calling Function Compute_RS

in Table 2). To compute the value of RS(lx) (lx∈T), we first remove lx from T which partitions

the VPN tree into two subtrees Tx
a and Tx

b. Let BR_Tx
a and BR_Tx

b denote the accumulated

bandwidth requirement of the VPN access routers (endpoints) on Tx
a and Tx

b, respectively.

Then RS(lx) is determined by the minimum value of BR_Tx
a and BR_Tx

b. For more details

about computing the RS(lx) value for each lx on a VPN tree, please refer to [5].

Given a VPN tree T, in a normal case, the function Cost of MTRA returns the cost value

computed by the cost function defined previously. However, where T is null (Ø), or there are

links on T that do not have enough bandwidth for allocation, the function Cost will return ∞.

The time complexity of each iteration in MTRA is O(m), which is determined by the

function BFS_Tree. To process a request, a total of n iterations are required. So, It is clear that

the time complexity of MTRA for processing a request is O(mn).

 15

Table 2. Pseudo code for Compute_RS.

Function Compute_RS(T, vri)

Let lx be the xth link on T.

Let RS(lx) be the amount of bandwidth allocation needed on lx with respect to the

bandwidth requirement specified in vri.

Let Tx
a and Tx

b be the two subtrees obtained by remove lx from T.

1. for (each lx in T)

2. {

3. Initialize two variable BR_Tx
a, BR_Tx

b to value 0;

4. For (each element rj≠0 (1≤j≤p) of vri)

5. {

6. if(arj∈Tx
a) then add rj to BR_Tx

a

7. else add rj to BR_Tx
b

8. }

9. RS(lx):=min(BR_Tx
a, BR_Tx

b);

10. }

We now consider Scenario 2 in Section 4 and adopt MTRA to process requests. Initially,

B(l)=5 for all l in L. The sketch of G, after accepting vr1, is shown in Figure 5. The number

beside each link in G is its residual bandwidth after accepting vr1. The dotted lines form the

minimum cost VPN tree VTMC that MTRA will output for vr1.

Figure 5. A sketch of G after processing vr1.

B
B

2

3

3

3 3

2

2

GG

E
E

FFAA CC

MPLS Network
Backbone

e 1,1

e1,3

e1,2

D
D

5

5

5

5

 16

After accepting vr1, MTRA then processes vr2. Each candidate VPN tree PTv (v∈N) for vr2

considered by MTRA is shown in Figure 6. We can find four different types of candidate VPN

tree for vr2. Note that PTA, PTB, PTC and PTD are identical. The number beside each link of

PTv (v∈N) is the amount of bandwidth that needs to be allocated to it. The cost value

associated with each PTv (v∈N) is:

====)Cost(PT)Cost(PT)Cost(PT)Cost(PT DCBA

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

,

,

,

,

,

,

,

,

,

,

GD

GD

EB

EB

DC

DC

CB

CB

CA

CA

lB
lRS

lB
lRS

lB
lRS

lB
lRS

lB
lRS

++++ ,4.3
5
3

5
3

5
3

5
3

3
3

=++++=

and .)()()(∞=== GFE PTCostPTCostPTCost

It is clear that MTRA will return PTA for vr2 (vr2 is accepted by MTRA). Hence the

rejection ratio achieved by MTRA in Scenario 2 is 0%.

Figure 6. Candidate VPN trees considered for vr2.

6. Theoretical Upper Bounds of the Rejection Ratios

In this section, we will derive theoretical upper bounds of the rejection ratios achieved by

provider-pipes, tree routing and MTRA in the scenario of OHVEP. The NSP can evaluate the

upper bounds of the rejection ratios achieved by provisioning algorithms before processing

requests according to the parameter configuration in OHVEP. Let K denote the total number

of requests received. Recall that the parameters in OHVEP are K, p, B and Maxr, where p is

 A

C

B D

E G

3

3 3

3 3

E

B

C G

A

3

3 3

3

F
3

F

EC G

A

3 3

3

G

D

C E

A

3

3 3

3

F
3

PTA=PTB=PTC=PTD PTE

PTGPTF

3

 17

the number of VPN access routers on G, B=(B(l1),B(l2),…,B(lm)) is the residual bandwidth on

links of L and Maxr is the maximum bandwidth guarantee provided by the NSP.

We define constants Bmin=Min{B(l1),B(l2),…,B(lm)}, Maxr*
2

)1p(*pRS max
pp

−
= and

Maxr*
2
pRS max

tree ⎥⎦
⎥

⎢⎣
⎢= . We also define an artificial request vrmax=(Maxr, Maxr,…,Maxr). In this

section, a new parameter q, which represents the number of link-disjoint candidate VPN trees

PTv (v∈N) that MTRA can find for vrmax on G, was also introduced.

Definition 1. Given two vectors a=(a1,a2,…,ap) and b=(b1,b2,…,bp), a is defined to be not less

than b, denoted by a≥b, if all elements in a-b are all non-negative.

Property 1. Given a network graph G=(N,L) on which the residual bandwidths on links of L

are finite, two VPN setup requests vra=(a1,a2,…,ap) and vrb=(b1,b2,…,bp) with vra≥vrb, if vra is

accepted by a deterministic provisioning algorithm PA in G, then vrb is also accepted by PA in

G.

Lemma 1. Given an arbitrary network graph G with p VPN access routers, residual

bandwidth constraint B on L, and a sequence of K one-by-one requests with the maximum

bandwidth requirement of each endpoint no more than Maxr, then the rejection ratio in

provider-pipes will not exceed

0 , if K≤
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

max
ppRS

Bmin

1 -
max
pp

max
ppmin

RSK

RS-B

*
 , if K> max

ppRS
Bmin

Proof:

To establish a VPN, the provider-pipes algorithm must construct a provider pipe ppi,j

between each endpoints pair (ei,ej) and allocate bandwidth to it. A provider-pipe ppi,j is a path

from ei to ej in G and the amount of bandwidth needed on each link of this path is

 18

min{b(ei),b(ei)}. To establish a VPN containing p endpoints, the number of provider pipes

needed to be constructed is p*(p-1)/2.

Let K received requests be vr1,vr2,…,vrK in sequence. We also produce another K artificial

requests vr1
’, vr2

’,…,vrK
’, where the value of each vri

’ (1≤i≤K) is equal to vrmax.

First, we consider processing vr1
’, vr2

’,…, vrK
’ with the provider-pipes algorithm. For each

vri
’ (1≤i≤K) accepted by the provider-pipes algorithm, the amount of bandwidth needed on

any link of G will not exceed max
ppRS . Therefore, all of vr1

’, vr2
’,…, '

min

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
ppRS

B
vr will be accepted

by the provider-pipes algorithm. Because vri
’≥vri(1≤i≤K), according to property 1, vr1, vr2,…,

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
ppRS

B
vr

min

 will also be accepted by the provider-pipes algorithm. Thus the lemma follows.

Q.E.D.

Lemma 2. If the situation is the same as described in Lemma 1, the rejection ratio in any

tree-based hose-model VPN provisioning algorithm will not exceed

0 , if K≤ ⎥
⎦

⎥
⎢
⎣

⎢
max
treeRS

Bmin

1 -
max
tree

max
treemin

RSK

RS-B

*
 , if K> max

treeRS
Bmin

Proof:

Let K received requests be vr1,vr2,…,vrK in sequence. We also produce another K artificial

requests vr1
’, vr2

’,…,vrK
’, where the value of each vri

’ (1≤i≤K) is equal to vrmax.

First, we consider processing vr1
’, vr2

’,…, vrK
’ with a tree-based provisioning algorithm.

For each vri
’ (1≤i≤K) accepted by the tree-based provisioning algorithm, the algorithm will

find a VPN tree vti
’ (1≤i≤K) for it. The amount of bandwidth allocated on each link of vti

’

(1≤i≤K) for each accepted vri
’ (1≤i≤K) will not exceed max

treeRS . Therefore, all of vr1
’, vr2

’,…,

'
min

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
treeRS

Bvr will be accepted by the tree-based provisioning algorithm. Because vri
’≥vri (1≤i≤K),

 19

according to property 1, vr1, vr2,…,
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
treeRS

Bvr
min

 will also be accepted by the tree-based

provisioning algorithm. Thus the lemma follows.

 Q.E.D.

Theorem 1. If the situation is the same as described in Lemma 1, except that there exists q

(q≥2) link-disjoint VPN tree PTv for vrmax on the given network graph G, the rejection ratio in

MTRA will not exceed

0 , if K≤ ⎥
⎦

⎥
⎢
⎣

⎢
max
treeRS

Bq min*

1 -
max
tree

max
treemin

RSK

RS-(B*q

*

) , if K> ⎥
⎦

⎥
⎢
⎣

⎢
max
treeRS

Bq min*

Proof:

The proof is similar to that in Lemma 2, except that for each artificial request vri
’ (1≤i≤K),

MTRA can find at least q PTv for it. Note that MTRA will not reject a request, unless there do

not exist any PTv (v∈N) on which all links have enough residual bandwidth for allocation.

Therefore, all of vr1
’, vr2

’,…, '

* min

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
treeRS

B
q

vr will be accepted by MTRA. Thus the lemma follows.

Q.E.D.

Corollary 1. In the situation described as Theorem 1, the theoretical upper bound of the

rejection ratio in the tree routing algorithm is still

0 , if K≤ ⎥
⎦

⎥
⎢
⎣

⎢
max
treeRS

Bmin

1 -
max
tree

max
treemin

RSK

RS-B

*
 , if K> max

treeRS
Bmin

Proof:

The proof is also similar to that in Lemma 2. Although for each artificial request vri
’

(1≤i≤K), the tree routing algorithm can find at least q PTv for it. However, in the worst case,

only one of them is the bandwidth-optimization VPN tree for vri
’ (1≤i≤K). The tree routing

 20

algorithm will insist on using this tree. Thus, the corollary follows.

Q.E.D.

If all other conditions hold, increasing the value of p for the provider-pipes algorithm will

raise the upper bounds of the rejection ratio in a speed of square order (see Lemma 1).

However, for any tree-based hose-model VPN provisioning algorithms (MTRA and tree

routing), increasing the value of p only raises the upper bounds of the rejection ratio in a

speed of linear order (see Lemma 2). On the other hand, increasing the value of Maxr will

raise the upper bounds of the rejection ratio of the three provisioning algorithms in a speed of

linear order (see Lemma 1 and Lemma 2). The rejection ratio upper bound of MTRA is

superior to that of tree routing approximately q times (see Theorem 1 and Corollary 1).

However, given a network graph G, the value of q depends on the density of G (the ratio of

the number of links over the number of nodes in G (i.e., m/n)) and the distribution of VPN

access routers on G. We investigate the effect of p, Maxr, and the density of G on the rejection

ratios achieved by various provisioning algorithms in Section 7.

7. Simulation and Performance Results

7.1. Simulation Environment

 To evaluate the performance of MTRA, we set up a hose-model VPN provisioning

algorithms simulator (HVPAS). The architecture of HVPAS, shown in Figure 7, contains 4

main elements: (1) topology generator, (2) parser, (3) hose-model VPN provisioning

algorithms, and (4) VPN setup requests generator. We implemented all components, except

topology generator, in Java programming language.

 21

Figure 7. The Architecture of HVPAS.

The topology generator of HVPAS randomly generates the MPLS network backbone G

administrated by the NSP. Because Brite [22, 23] has been widely used in a lot of research

literature to generate random network topologies, we also adopt it as the topology generator in

HVPAS. We generate randomly a connected network graph G by assigning proper values in

the configuration file used by Brite. The G output from the topology generator is parsed by

the parser into a format readable by the provisioning algorithms of HVPAS. We have

implemented three provisioning algorithms in HVPAS: (1) MTRA, (2) tree routing, and (3)

WSP provider-pipes. The WSP provider-pipes algorithm is the same as the provider-pipes

provisioning algorithm introduced in [3, 4]. However, the approach for selecting a path for

each provider-pipe between endpoint pairs follows the Widest Shortest Path (WSP) algorithm

[24]. The WSP is used to reduce the likelihood that there is not enough bandwidth on the

chosen shortest path between endpoint pairs. The VPN setup requests generator in HVPAS

randomly generates a set of VPN setup requests according to the given parameters K, p, and

Maxr. The request set contains K requests. The number of endpoints contained in each VPN is

generated randomly between 2 and p, and the bandwidth requirement b(ei) for each endpoint

ei is generated randomly between 1 and Maxr.

 Topology Generator

Parser

O1

Hose-model VPN
provisioning algorithms

O3

O2

O4

VPN Setup
Requests Generator

 22

In Figure 7, O1 denotes G output by Brite in a specific format, O3 denotes G in a format

readable by provisioning algorithms implemented in HVPAS, and O2 denotes requests

generated by the VPN setup requests generator. Both O2 and O3 are input to the provisioning

algorithms implemented in HVPAS. For each request accepted by a provisioning algorithm, O4

represents a corresponding VPN topology. (Recall that for MTRA and tree routing, the VPN

topology is a tree in G.)

7.2. Performance Results

In this subsection, we describe five simulations. The first four compare the rejection ratio

achieved by various provisioning algorithms implemented in HVPAS. The last simulation

investigates the bandwidth allocation efficiency of MTRA.

Simulation 1: Performance Comparison in KL topology

The parameter configuration of Simulation 1 is shown in Table 3. Due to extensive

adaptation of the KL topology as the MPLS network backbone in the literature about MPLS

traffic engineering [14-18], we also adopt it as G. The KL topology is composed of 15 routers

and 28 links, as shown in Figure 8. The routers labeled as ar1~ar7 are VPN access routers, the

amount of residual bandwidth on the light links is 1500 units, and the amount of residual

bandwidth on the dark links is 6000 units.

Table 3. Parameter configuration of Simulation 1

G B(li) p Maxr K

KL topology
Light links=1500 units

Dark links=6000 units
7 75 100

 23

 Figure 8. The KL Topology.

We conducted 15 runs in Simulation 1, in which each run randomly generated 100

requests. The simulation results are shown in Figure 9. The x-axis represents the run number

and the y-axis represents the rejection ratio achieved by each provisioning algorithm in each

run. We can see that the rejection ratio achieved by MTRA is much less than that achieved by

WSP provider-pipes and tree routing. The rejection ratios achieved by MTRA are 0% in all

runs except in run 8 and run 10 (where they are only 2% and 1%, respectively). However, the

rejection ratios by WSP provider-pipes and tree routing range from 30% to 55%. According to

the simulation results, we believe that MTRA can reduce the rejection ratio effectively in the

KL topology.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Run No.

R
ej

ec
tio

n
ra

tio
 (%

)

WSP provider-pipes Tree routing MTRA

(%
)

Figure 9. Performance comparison in KL Topology.

1

2

33

4

5

66

77

88
9

1111

1212

13

15

ar1

ar2

ar3

ar4

ar5

ar6

ar7

14

10

 24

Simulation 2: The Effect of Maxr

The parameter configuration of Simulation 2 is shown in Table 4. In order to evaluate the

performance of MTRA on general G, we used Brite to randomly generate a connected graph G

with 20 nodes and 40 links in each run. The value of Maxr varies from 40 to 120 with a step

of 20. We conducted 8 runs for each value of Maxr, and took the average rejection ratio

achieved in these 8 runs.

Table 4. Parameter configuration of Simulation 2

G B(li) p Maxr K

Randomly generated by Brite

with 20 nodes and 40 links

1500

units
6

40~120

step 20
100

The simulation results are shown in Figure 10. The x-axis represents the value of Maxr,

and the y-axis represents the average rejection ratio achieved by the provisioning algorithms.

As expected, the average rejection ratio increases as the value of Maxr increases in all three

algorithms. The average rejection ratio achieved by MTRA is much less than the other two

algorithms in almost all the Maxr values considered in this simulation (except for the light

load case, when Maxr=40, the average rejection ratios is 0% in all the three algorithms). The

experimental results show that MTRA can indeed achieve a lower rejection ratio on general G

compared to the other two algorithms.

 25

0

10

20

30

40

50

40 60 80 100 120
Maxr

A
ve

ra
ge

 R
ej

ec
tio

n
ra

tio
 (%

)

WSP provider-pipes Tree routing MTRA

Figure 10. The Effect of Maxr.

Simulation 3: The Effect of α(G)

The parameter configuration of Simulation 3 is shown in Table 5. We denote the ratio of

the number of links over the number of nodes in G as α(G) (i.e., α(G) = m/n). As we want to

investigate the impact of α(G) on the average rejection ratio, we fix the value of n and change

the value of m in this simulation. If all other conditions hold, increasing the value of α(G)

indicates that: (1) the resources available for establishing VPN also increases and (2) the

value of the parameter q may also increase. We conduct 8 runs for each value of α(G), and

took the average rejection ratio achieved in these 8 runs.

Table 5. Parameters configuration of Simulation 3

G B(li) p Maxr K

Randomly generated by Brite with 20

nodes and α(G) = 2~6

1500

units
6 100 100

The simulation results are shown in Figure 11. The x-axis represents the value of α(G),

and the y-axis represents the average rejection ratio achieved by the provisioning algorithms.

As expected, in all three algorithms, the average rejection ratio declines as the value of α(G)

 26

increases. For all the α(G) values we consider in this experiment, MTRA achieved the lowest

average rejection ratio among the three algorithms. On the other hand, as the value of α(G)

increases, the reduction speed of the average rejection ratio in tree routing is slower than that

of the WSP-provider-pipes algorithm. The reason is that tree routing insists on choosing a

bandwidth-optimization VPN tree for each request, regardless of the amount of residual

bandwidth on the links of the VPN tree. If the amount of residual bandwidth on any link of the

VPN tree is insufficient for allocation, the request will be rejected. Therefore, the effect of an

increase in α(G) is smaller in the tree routing than the WSP provider-pipes algorithm.

0

10

20

30

40

2 3 4 5 6
α(G)

A
ve

ra
ge

 R
ej

ec
tio

n
ra

tio

WSP provider-pipes Tree routing MTRA

(%
)

Figure 11. The Effect of α(G) value.

Simulation 4: The Effect of p

The parameter configuration of Simulation 4 is shown in Table 6. This experiment

investigates the impact of p on the average rejection ratio. The value of p varies from 3 to 8.

For each p value, we conducted 8 experiments and took the average rejection ratio achieved

in these 8 runs. If all other conditions hold, increasing the value of p has the following effects:

(1) The average load on links becomes heavy because the average number of endpoints

contained in a request will increase. This effect will increase the rejection ratio.

(2) The fixed load is shared by more VPN access routers because we generate a fixed

number of requests (totally K requests) in each run. Hence the fixed load is shared by more

 27

VPN access routers (more links on G). This effect will reduce the rejection ratio.

Table 6. Parameter configuration of Simulation 4

G B(li) p Maxr K

Randomly generated by Brite

with 20 nodes and 40 links
1500 units 3~8 100 100

The simulation results are shown in Figure 12. The x-axis represents the value of p, and

the y-axis represents the average rejection ratio achieved by the provisioning algorithms. Of

all the p values we consider in this experiment, MTRA achieves the lowest rejection ratio

among the three algorithms. Both MTRA and tree routing have a transition point in the figure

(i.e., when p=4 for MTRA and when p=5 for tree routing). Before the transition point, the

effect of (1) is smaller than (2), and vice versa. However, for the WSP provider-pipes

algorithm, as the value of p increases, the average rejection ratio rapidly rises. As the value of

p increases, the additional bandwidth allocation increases at a speed of square order. (Recall

that to establish a VPN containing p endpoints, the number of provider-pipes that needs to be

constructed is p*(p-1)/2.)

0

10

20

30

40

50

3 4 5 6 7 8
p

A
ve

ra
ge

 re
je

ct
io

n
ra

tio
 (%

)

WSP provider-pipes Tree routing MTRA

Figure 12. The Effect of p value.

 28

Simulation 5: The Bandwidth Allocation Efficiency of MTRA

The parameter configuration of Simulation 5 is shown in Table 7. This experiment

investigates the bandwidth allocation efficiency achieved by MTRA. Because tree routing is

certain to find a bandwidth-optimization VPN tree for each request, we compare the average

amount of bandwidth allocated for processing 100 requests in MTRA with tree routing. As the

cost functions defined in Section 5, we expect the behavior of MTRA will be more similar to

tree routing as the residual bandwidth amount on links (B(lx)) is more abundant. We

conducted 8 experiments for each amount of residual bandwidth on the links, and took the

average on the allocated bandwidth in these 8 runs. For the comparison to be fair, only

simulation runs that had no rejected requests were considered.

Table 7. Parameter configuration of Simulation 5

G B(lx) p Maxr K

Randomly generated by Brite

with 20 nodes and 40 links
5000~10000 6 100 100

We define RSMTRA and RSTree routing as the average amount of bandwidth allocated for

processing 100 requests in MTRA and tree routing, respectively. We also define

PercentExtra_BW=(RSMTRA-RSTree routing)/RSTree routing. The simulation results are shown in Table 8.

As expected, MTRA achieves better bandwidth efficiency when B(lx) is more abundant. For all

the B(lx) values we consider in this experiment, the values of PercentExtra_BW are all below 3%.

Therefore, MTRA can achieve fairly good bandwidth allocation efficiency.

 29

Table 8. The average amount of allocated bandwidth for 100 requests

7.3. Running times

While MTRA achieves a lower rejection ratio in VPN provisioning, it has a longer running

time than other approaches. In Table 9, we briefly list the average running times (in second)

of the three provisioning algorithms for handling 100 random requests in the first four

simulations. MTRA uses roughly 1 second for handling a VPN request for a network up to 120

links and 20 routers that the performance is acceptable. Note that all the simulations are

executed on a notebook computer with 1.8GHz Pentium-M CPU and 768 MB memory, and

Microsoft XP OS.

Table 9. The average running times on the three algorithms

B(lx) RSMTRA RSTree routing PercentExtra_BW

5000 21704 21138.38 2.6758%

6000 22184.63 21858.38 1.4926%

7000 21957.25 21721.13 1.0871%

7500 20377.63 20294.5 0.4096%

10000 21927.63 21872.5 0.252%

Provisioning algorithm

Simulation number
MTRA Tree routing

WSP

provider-pipes

Simulation 1 80.609 57.860 23.723

Simulation 2 133.799 87.312 25.169

Simulation 3 154.275 105.896 67.512

Simulation 4 122.738 80.882 17.453

 30

8. Conclusions and Future Works

Several hose-model VPN provisioning algorithms have been proposed previously [3-5].

However, issues about the rejection ratio achieved by provisioning algorithms for establishing

multiple VPNs on-line have not been investigated. In this paper, we show by concrete

examples that all the provisioning algorithms proposed in [3-5] are unable to achieve a

satisfactory rejection ratio in this case. To address the problem, we propose a new hose-model

VPN provisioning algorithm called MTRA. We also derive the theoretical upper bounds of the

rejection ratios achieved by provider-pipes, tree routing and MTRA, respectively. In addition,

we set up an experimental environment, called HVPAS, to evaluate the performance of

different hose-model VPN provisioning algorithms. According to the simulation results,

MTRA can indeed effectively reduce the rejection ratio.

A number of issues related to hose-model VPNs still needs to be investigated. For example:

(1) Designing a good label assignment schemes on the MPLS network for MTRA in order to

minimize the number of labels needed; and (2) designing an efficient restoration algorithm

under a single element (single node or single link) failure model. We will address these issues

in our future work.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments
that greatly helped improve the quality of this paper.

References

[1] G. Italiano, R. Rastogi and B. Yener, Restoration Algorithms for Virtual Private Networks in the Hose Model, in:

Proc. of IEEE INFOCOM, 2002.

[2] B.S. Davie, Y. Rekhter, MPLS Technology and Applications, Morgan Kaufmann, San Francisco, CA, 2000.

[3] N. G. Duffield, P. Goyal and A. Greenberg, A Flexible Model for Resource Management in Virtual Private

 31

Networks, in: Proc. of ACM SIGCOMM, 1999.

[4] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan and J. E. V. D. Merwe, Resource

Management with Hoses: Point-to-Cloud Services for Virtual Private Networks, IEEE/ACM Transactions on

Networking 10(5) (2002) 679-692.

[5] A. Kumar, R. Rastogi, A. Silberschatz and B. Yener, Algorithms for Provisioning Virtual Private Networks in

the Hose Model, IEEE/ACM Transactions on Networking 10(4) (2002) 565-578.

[6] A. Jűttner, I. Szabơ and Á Szentesi, On Bandwidth Efficiency of the Hose Resource Management Model in

Virtual Private Networks, in: Proc. of IEEE INFOCOM, 2003.

[7] D. O. Awduche, j. Malcom, J. Agobua, M. O’Dell and J. Mcmanus, Requirement for Traffic Engineering over

MPLS, IETF RFC 2702, September 1999.

[8] A. Gupta, A. Kumar and R. Rastogi, Exploring the Trade-off between Label Size and Stack Depth in MPLS

Routing, in: Proc. of IEEE INFOCOM, 2003.

[9] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi and B. Yener, Provisioning a Virtual Private Network: A Network

Design Problem for Multicommodity Flow, in: Proc. of the 33rd Annual ACM Symposium on Theory of

Computing (STOC), 2001.

[10] C. Swamy and A. Kumar, Primal-Dual Algorithms for Connected Facility Location Problems, in: Proc. of the

5th International Workshop on Approximation Algorithms for Combinatorial Optimization, 2002.

[11] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, Twentieth printing, MIT Press,

1998.

[12] A. Balasubramanlan and G. Sasaki, Bandwidth Requirement for Protected VPNs in the Hose Model, in: Proc.

of IEEE International Symposium on Information Theory, 2003.

[13] C. T. Chou, Traffic Engineering for MPLS-based Virtual Private Networks, Computer Networks 44(3) (2004)

319–333.

[14] K. Kar, M. Kodialam and T. V. Lakshman, Minimum Interference Routing of Bandwidth Guaranteed Tunnels

with MPLS Traffic Engineering Applications, IEEE J. Selected Areas in Communications 18(12) (2000)

2566-2579.

[15] M. Kodialam and T. V. Lakshman, Minimum Interference Routing with Applications to MPLS Traffic

Engineering, in: Proc. of IEEE INFOCOM ,2000.

[16] S. Suri, M. Waldvogel and P. R. Warkhede, Profile-Based Routing and Traffic Engineering, Computer

Communications 26(4) (2003) 351-365.

[17] B. Wang, X. Su, and C. L. Philip Chen, A New Bandwidth Guaranteed Routing Algorithm for MPLS Traffic

Engineering”, in: Proc. of IEEE International Conference on Communications, 2002.

[18] Yi Yang, L. Zhang, J. K. Muppala and S. T. Chanson, Bandwidth-Delay Constrained Routing Algorithms,

Computer Networks 42(4) (2003) 503-520.

 32

[19] G. Apostolopoulos, R. Guérin, S. Kamat, S. K. Tripathi, Server-Based QoS Routing, in: Proc. of IEEE

GLOBECOM, 1999.

[20] S. Plotkin, Competitive Routing of Virtual Circuits in ATM Networks, IEEE J. Selected Areas in

Communications 13(6) (1995) 1128-1136.

[21] E. Horowitz, S. Sahni and S. Anderson-Freed, Fundamentals of Data Structure in C, Computer Science Press,

1993.

[22] A. Medina, A. Lakhina, I. Matta and J. Byers, BRITE: Universal Topology Generation from a User’s

Perspective, http://www.cs.bu.edu/brite/publications/usermanual.pdf, April 2001.

[23] A. Medina, A. Lakhina, I. Matta and J. Byers, BRITE: An Approach to Universal Topology Generation, in:

Proc. of the International Workshop on Modeling, Analysis and Simulation of Computer and

Telecommunications Systems (MASCOTS), August 2001.

[24] R. Guerin, D. Williams and A. Orda, QoS Routing Mechanisms and OSPF Extensions, in: Proc. of IEEE

GLOBECOM, 1997.

