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Abstract. Virtual private networks (VPNs) provide customers with a secure and manageable communication 

environment. The allocation of bandwidth for VPNs to meet the requirements specified by customers is now one of 

the most important research issues in the field of traffic engineering. A VPN resource-provisioning model called 

hose-model was developed to provide customers with a flexible and convenient way to specify the bandwidth 

requirements of a VPN. Several hose-model VPN provisioning algorithms have already been proposed. They focus 

on the bandwidth efficiency issue in the case of establishing a single hose-mode VPN. However, these algorithms 

cannot achieve a satisfactory rejection ratio when: (1) the residual bandwidths on links of the network backbone 

are finite and (2) multiple VPN setup requests are handled on-line. In this paper, we propose a new hose-model 

VPN provisioning algorithm called MTRA to address the issue. MTRA can process multiple VPN setup requests 

rapidly and reduce the rejection ratio effectively. Theoretical upper bounds of rejection ratios achieved by several 

VPN provisioning algorithms are also derived. The experiments verify that MTRA performs better in regards to the 

rejection ratio than other provisioning algorithms. 
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1. Introduction 

 
Traditionally, a private network (PN) is established by grouping dedicated lines 

connecting several geographically dispersed sites (endpoints). As the number of endpoints is 

growing, connecting them with dedicated lines is becoming increasingly expensive [1]. As a 
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result, VPNs have emerged as replacements for PNs in recent years. The VPN is a logical 

network that is established on top of a packet switched network backbone. Its goal is to 

provide a service comparable to a PN. The two most important issues that must be addressed 

for VPN are data security and bandwidth guarantees. The former is usually achieved by 

cryptographic methods, while the latter is achieved by reserving sufficient bandwidths on the 

links. 

The two most common VPN resource-provisioning models are: (1) the customer-pipe 

model [2-4] and (2) the hose model [3, 4]. In the customer-pipe model, customers must have 

precise predictions in advance about the complete traffic requirements of each endpoint pair 

in a VPN. The Network Service Provider (NSP) then finds a data transmission path, pathu,v, 

for traffic between each endpoint pair, (u,v), in a VPN and allocate sufficient bandwidth for 

the path according to the traffic requirement. However, customers may be unwilling, or 

unable, to know the traffic requirements of each endpoint pair in a VPN. This is especially 

true when the number of endpoints per VPN is large. 

In the hose model, customers only need to specify the ingress bandwidth requirement, 

b-(v), and egress bandwidth requirement, b+(v), for each endpoint, v, of a VPN. The value b-(v) 

is the maximum rate of traffic that endpoint v receives from the network at any time, and the 

value b+(v) is the maximum rate of traffic that endpoint v sends into the network. As the 

hose-model appears to provide customers with more flexibility and convenience in specifying 

their bandwidth requirements, we only consider hose-model VPNs in this paper. 

The most important VPN provisioning algorithms for hose-model VPNs are: (1) 

provider-pipes [3, 4], (2) hose-specific state [3, 4], (3) VPN-specific state [3, 4], and (4) tree 

routing [5]. For the approaches of selecting a data transmission path, pathu,v, between each 

endpoint pair, (u,v), in a VPN and the allocated bandwidth on links of the paths in these 

algorithms, please refer to [3, 5, 6]. The path pinning capacity provided by MPLS 

(multiprotocol label switching) technology can be used to direct the routing of a data 

transmission path between each endpoint pair in a VPN [7, 8]. Our approach can be 

implemented on a MPLS network as well. 
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VPN provisioning algorithms can be implemented in two ways: (1) off-line provisioning 

and (2) on-line provisioning. In off-line provisioning, the NSP has a prior knowledge of all 

VPN setup requests. In this setting, the VPN provisioning plan is optimized on some 

performance metrics (e.g., revenue, network link utilization and the amount of bandwidth 

reservation) by rejecting selected requests. In the on-line provisioning, when a VPN setup 

request is received, it is processed based on the current state of the network. As the NSP does 

not know future VPN setup requests, the on-line decision only achieves optimal provisioning 

for the current network state. In this paper, we focus on on-line VPN provisioning. 

To our knowledge until now, issues about the rejection ratios achieved by hose-model 

VPN provisioning algorithms have not been investigated. In this paper, we consider the 

problem of minimizing the rejection ratio of provisioning algorithms when (1) the residual 

bandwidths on links of the network backbone are finite, and (2) multiple VPNs need to be 

established on-line on the network backbone. Once the data transmission paths between each 

endpoint pair in a VPN are determined, the provisioning algorithm needs to explicitly allocate 

sufficient bandwidth on the links of these paths to meet the bandwidth requirement specified 

by customers. As the bandwidth allocation of VPNs is executed on-line, the previous 

allocation may affect the feasibility of the next VPN provisioning. One of the requisites of a 

good VPN provisioning algorithm is that it should achieve a low rejection ratio. However, 

previous hose-model VPN provisioning algorithms [3-5] have been unable to meet this 

requirement. We therefore propose a new provisioning algorithm, the Modified Tree Routing 

Algorithm (MTRA), to address this issue. Our experimental simulations show that the MTRA 

can reduce the rejection ratio effectively. In addition, it can also rapidly process multiple VPN 

setup requests. Given a network graph G with n nodes and m edges, MTRA spends only O(mn) 

time for a VPN setup request. 

The contributions of this paper are summarized as follows: (1) We show by concrete 

examples that all four of the hose-model VPN provisioning algorithms mentioned previously 

are unable to achieve satisfactory rejection ratios. To address this issue, we propose a new 

hose-model VPN provisioning algorithm called MTRA. (2) The theoretical upper bounds of 
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the rejection ratios achieved by the provider-pipes, tree routing and MTRA provisioning 

algorithms for the problem we consider are also derived in this paper. 

The remainder of this paper is organized as follows. In Section 2, we review related works. 

In Section 3, we define the On-line Hose-model VPN Establishment Problem (OHVEP) where 

an NSP establishes hose-model VPNs online on a network backbone composed of links with 

finite residual bandwidths. In OHVEP, the performance metric for comparison with various 

VPN provisioning algorithms is the rejection ratio. In Section 4, we exemplify the reasons 

why the provisioning algorithms proposed in [3-5] cannot achieve a satisfactory rejection 

ratio. In Section 5, we present MTRA. In Section 6, we derive the theoretical upper bounds of 

the rejection ratios for several hose-model VPN provisioning algorithms under the OHVEP. 

In Section 7, we show five experimental simulations to compare the performance of MTRA 

with other VPN provisioning algorithms. Finally, in Section 8, we give our conclusions and 

indicate the direction of our future work. 

 

 

2. Related Works 

 
The hose-model was first introduced by Duffield et al. in [3, 4]. In their papers, 

provider-pipes, hose-specific state and VPN-specific state provisioning algorithms for 

hose-model VPNs were also presented. Duffield et al’s work inspired other researchers to 

develop provisioning algorithms for bandwidth-optimization hose-model VPNs. Kumar et al. 

argued that bandwidth-optimization hose-model VPNs should be based on a tree topology 

(hereafter called: VPN tree) [5]. They also presented an algorithm to compute the VPN tree 

which needs minimum total bandwidth allocation on tree links (hereafter called: 

bandwidth-optimization VPN tree) where the links on the network backbone have infinite 

capacity and the bandwidth requirement of each endpoint is symmetric (i.e., b+(v) = b-(v) for 

all VPN endpoint v). If the links on the network backbone have infinite capacity and the 

bandwidth requirement of each endpoint is general, Kumar et al. proved that it is NP-hard to 



 5

compute the bandwidth-optimization VPN tree and proposed a 10-approximation algorithm to 

solve the problem. Gupta et al. improved the approximation ratio to 9.002 [9]. Swamy and 

Kumar further reduced the ratio to 5 [10]. In the case where the links on the network 

backbone have finite capacity, Gupta et al. also proved that computing the 

bandwidth-optimization VPN tree is NP-hard [9]. Note that NP-hard is a class of problems 

with tremendous computational complexity. For more details of NP-hard, please refer to [11]. 

Jűttner et al. compared the bandwidth allocation efficiency of the hose-model VPN with 

that of the customer-pipe model VPN [6]. They also conducted simulations to compare the 

bandwidth allocation efficiency of the four hose-model VPNs provisioning algorithms 

mentioned in Section 1. Italiano et al. proposed a restoration algorithm for a hose-model VPN 

tree under the single-link failure model [1]. Balasubramanlan and Sasaki compared the 

bandwidth allocation efficiency of several restoration algorithms for a hose-mode VPN tree 

under the single-link failure model through experimental simulations [12]. Gupta et al. 

investigated the issues about MPLS labels design and routing protocol for a VPN tree [8]. 

Chou proposed a multi-objective traffic-engineering framework for off-line provisioning of a 

series of M customer-pipe model VPNs [13]. The goal of Chou’s framework is to minimize 

the maximum link utilization on the network backbone while minimize the total bandwidth 

allocation for establishing the M VPNs. 

 

 

3. Problem Formulation and Modeling 

 
In this section, we formulate the problem considered in this paper. The network backbone 

managed by the NSP is modeled in subsection 3.1. The VPN setup request describing the 

VPN service requested by customers is modeled in subsection 3.2. Finally, the On-line 

Hose-model VPNs Establishment Problem (OHVEP) is described in subsection 3.3. 

 

3.1. Network Backbone Modeling 
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The MPLS network backbone is modeled by an undirected graph G=(N,L), where N and L 

are the set of routers and the set of links, respectively. Let n and m denote the cardinality of N 

and L, respectively. Let B be the set of residual bandwidths of links on L, and the amount of 

residual bandwidth on link l (l∈L) is denoted by B(l). A subset AR = {ar1,ar2,…,arp} of N (AR 

⊆ N) is the set of VPN access routers. Each endpoint ei of a VPN gains access to VPN service 

by connecting to a specific VPN access router ari in AR. In other words, for each endpoint of 

a VPN, there is a corresponding VPN access router in AR. 

The elliptic region in Figure 1 is an example of the MPLS network backbone G. The 

round regions (A to G) inside G are routers in N. The solid lines between any two routers in G 

are links in L. The number beside each link is the amount of residual bandwidth on it (B(l)=5 

for all l∈L in this figure). The VPN access routers set AR = {A, E, G}. The round regions (1, 2 

and 3) outside G are endpoints (e1, e2 and e3, respectively, in our notation) of a VPN which 

gain access to VPN service via routers in AR. The dotted lines labeled as pathi,j is the data 

transmission path for VPN traffic between ei and ej. 

 

 

 

 

 

 

Figure 1. An example of MPLS Network Backbone G. 

 

3.2. VPN Setup Request Modeling 

The demands for VPN service of customers are described by VPN setup requests. In this 

paper, we consider that the bandwidth requirement of each endpoint ej is symmetric and use 

b(ej) to denote the bandwidth requirement of ej. Let Maxr denote the maximum bandwidth 

guarantee provided by the NSP, and vri be the ith VPN setup request from customer for the 
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NSP to establish. Each vri is represented by a p-tuple vector (r1,r2,…,rp), where p is the 

cardinality of the access routers set AR. The number of nonzero elements in vri represents the 

number of endpoints contained in the corresponding VPN. The value of jth element, rj, of vri 

represents the bandwidth requirement of endpoint ej. 

 

3.3. On-line Hose-model VPNs Establishment Problem 

The OHVEP defined in this paper is similar to the work in [14-18] which mainly 

considers on-line establishment of bandwidth-guaranteed point-to-point tunnels. However, in 

the context of VPN provisioning, the basic unit of concern is a VPN consisting of numerous 

point-to-point tunnels, as opposed to one point-to-point tunnel, that makes the problem more 

challenging.  

In OHVEP, the NSP manages an MPLS network backbone G (as described in subsection 

3.1) on which VPNs are established. We consider the situation where (a) VPN setup requests 

arrive one-by-one independently, and (b) the NSP do not have a priori knowledge about 

future VPN setup requests. This knowledge includes the number of future VPN setup requests, 

the number of endpoints contained in each VPN setup request, and the bandwidth 

requirement of each endpoint. In this situation, the NSP must process each VPN setup request 

in an on-line manner. 

Upon receiving a VPN setup request vri, the NSP triggers the provisioning algorithm to 

establish a corresponding VPN. The provisioning algorithm performs this task by first 

choosing a data transmission path, pathu,v, between each endpoint pair, (u,v), and then 

allocating bandwidth on each link of the path. If there is not enough residual bandwidth on the 

link when the bandwidth is being allocated, vri will be rejected. We use the rejection ratio as 

the performance metric to compare different hose-model VPN provisioning algorithms. Note 

that the authors of [14-18] also use the rejection ratio (of tunnel setup requests) as the 

performance metric to compare different on-line tunnel establishment algorithms. The 

rejection ratio is defined as:  
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received requests of numbers total

rejected requests ofnumber   ratio rejection =  

The optimization goal of provisioning algorithms is to minimize the rejection ratio, which 

in turn will maximize the number of requests successfully established on the network 

backbone. 

In the OHVEP, we assume that the NSP uses a server-based strategy [19] for processing 

VPN setup requests. In a server-based strategy, the VPN provisioning algorithm is run on a 

single entity called VPN request server (VRS). The VRS also keeps the complete link state 

topology database and is responsible for computing an explicit data transmission path for each 

endpoint pair of a VPN. Then the paths can be setup using a signaling protocol such as RSVP 

or CR-LDP. For computing the explicit paths, the VRS needs to know the current network 

topology and link residual bandwidth. We assume that a link state routing protocol for 

information acquisition exists. 

 

 

4. Motivation for New Provisioning Algorithms 

 
In subsection 4.1, we exemplify the reasons why the four provisioning algorithms 

proposed in [3-5] cannot achieve satisfactory rejection ratios under OHVEP. We present two 

scenarios to support our argument. Then, in subsection 4.2, we list the factors influencing the 

rejection ratios achieved by provisioning algorithms. 

 

4.1 The Drawbacks of Other Algorithms 

Scenario 1: The higher bandwidth allocation of provider-pipes, hose-specific state and 

VPN-specific state results in higher rejection ratio than tree routing 

Under the same routing pattern, the following relationship holds for the bandwidth 

allocated on each link between different provisioning algorithms to establish a VPN (the 

relation also holds for total bandwidth allocation): 
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BW Provider-pipes ≥BWHose-specific ≥BW VPN-specific [6] 

In addition, the simulation results in [6] show that the allocated bandwidth of tree routing 

is less than that of VPN-specific. To highlight the difference between the allocated bandwidths 

of the provisioning algorithms, we compare provider-pipes with tree routing in this scenario. 

When the NSP receives a VPN setup request, vr1=(2,2,3), in the case of adopting the 

provider-pipes algorithm, the resulting allocations on the backbone G are shown in Figure 2. 

The numbers beside the three endpoints represent their bandwidth requirements (b(e1), b(e2), 

and b(e3)). The numbers beside the dotted lines represent the amount of bandwidth needed on 

the respective links. Note that the amount of allocated bandwidth on lA,C, lC,F, lE,F and lF,G is 4 

in the provider-pipes algorithm, whereas it is 2, 2, 2, and 3, respectively in the tree routing 

algorithm. Moreover, the provider-pipes algorithm has over-allocated bandwidth on lA,C, lC,F, 

lE,F and lF,G. For example, the traffic rate through lA,C at any instant will not exceed 

min(b(e1),b(e2)+b(e3)), which is equal to 2. However, the provider-pipes algorithm has 

allocated 4 units of bandwidth to it (a similar problem also occurs on lC,F, lE,F and lF,G). 

 

 

 

 

Figure 2. A sketch of G for Scenario 1. 

 

Scenario 1 illustrates the difference between the allocated bandwidths of different 

provisioning algorithms in establishing a single VPN. In the case of establishing multiple 

VPNs, the difference between the allocated bandwidths of the provider-pipes, hose-specific 

state, and VPN-specific state algorithms (compared with the tree routing algorithm) will be 

greater. If the residual bandwidths on links in L are finite, the phenomenon will result in a 
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higher rejection ratio in provider-pipes, hose-specific state, and VPN-specific. In Scenario 2, 

we show that even the tree routing algorithm cannot guarantee a satisfactory rejection ratio. 

 

Scenario 2: Disregarding the amount of residual bandwidths on links in tree routing algorithm 

results in a higher rejection ratio 

When the NSP receives two VPN setup requests vr1=(2,3,3) and vr2=(3,3,3), the result is 

shown in Figure 3. Initially, the residual bandwidth on all links in L is 5 units (the numbers 

beside the solid lines). The round region labeled as ei,j represents the jth endpoint of the VPN, 

vri. The number beside each ei,j represents its bandwidth requirement. In the case of the tree 

routing algorithm, the VPN trees corresponding to vr1 and vr2 are depicted as the trees formed 

by dotted lines and dashed lines, respectively. The numbers beside dotted lines and dashed 

lines represent the amount of bandwidth allocated on respective links. In this figure, neither 

lE,F nor lF,G have enough bandwidth to accommodate the second request after processing the 

first one. The rejection ratio achieved by the tree routing algorithm in Scenario 2 is 50%. 

 

 

 

 

Figure 3. A sketch of G for Scenario 2. 

 

In fact, the amount of available resources on G is enough to accommodate both requests. 

If we rearrange the VPN tree of vr2 as shown by the dashed lines in Figure 4, then both vr1 

and vr2 can be accepted in this case. The rejection ratio achieved by this rearrangement is 0%. 
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Figure 4. Optimal arrangement for Scenario 2. 

 

The tree routing algorithm may still reject requests even though the amount of available 

resources on G is sufficient to process them. This is because the tree routing algorithm insists 

on using the links forming the bandwidth-optimization VPN tree for each request, regardless 

of the amount of residual bandwidths on them. If the amount of residual bandwidths on the 

links of the bandwidth-optimization VPN tree is thinly spread, it is obvious that the 

optimization behavior of tree routing will raise the likelihood of rejection. 

 

4.2 The Factors Influencing Rejection Ratio 

In this case, the links of the network backbone have a finite amount of residual bandwidth 

and the NSP needs to establish multiple VPNs on the network backbone on-line (as described 

in the OHVEP). The two most important factors influencing the rejection ratio achieved by 

the provisioning algorithms are: 

(1)Bandwidth allocation efficiency: As mentioned in Scenario 1 of subsection 4.1, this 

issue has been widely discussed in previous literature [3-6]. 

(2)A Load balancing mechanism that considers the amount of residual bandwidth on links: 

As described in Scenario 2 of subsection 4.1, provisioning algorithms must take the residual 

bandwidths of links into account and avoid using links that are thinly spread. This will 

balance the load on G and reduce the rejection ratio. 
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5. MTRA 

 
To alleviate the drawbacks of (a) inefficiency on bandwidth allocation, and (b) 

disregarding the amount of residual bandwidth for links selection (described in subsection 

4.1), we propose a new provisioning algorithm called the Modified Tree Routing Algorithm 

(MTRA). The tree routing and MTRA provisioning algorithms are both tree-based (i.e., they 

establish a VPN base on tree topology (VPN tree)). While tree routing has excellent 

bandwidth allocation efficiency, it does not consider maximizing the accommodation of 

on-line VPN requests. On the contrary, MTRA considers both bandwidth allocation efficiency 

and accommodation of on-line VPN requests by achieving balance of link residual 

bandwidths. 

The major difference between tree routing and MTRA is that the cost function they 

defined for VPN tree selection. Let T be a VPN tree consisting of k links. The cost functions 

of tree routing and MTRA are defined as following:  

,
)(
)()(

1
∑

≤≤

=
kx x

x
MTRA lB

lRSTCost  and ∑
≤≤

=
kx1

xrouting tree )RS(l(T)Cost   

, where RS(lx) and B(lx) represent the amount of bandwidth allocation needed and the amount 

of residual bandwidth on the xth link, lx, respectively. The cost function of MTRA is derived 

by the cost function defined in the routing algorithms proposed in [17, 20] for route selection. 

When processing a request, MTRA tries to find a VPN tree that minimizes the cost 

function defined above. It is clear the additional cost for using a link lx in building a VPN tree 

is proportional to the value of RS(lx) and is reciprocal to the value of B(lx). Therefore, MTRA 

tries to find a VPN tree with links of abundant residual bandwidths and low overall bandwidth 

allocation. As a result, MTRA can satisfy both bandwidth allocation efficiency and balance of 

residual bandwidths. The pseudo code of MTRA is described in Table 1. 
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Table 1. Pseudo code for MTRA. 

Modified Tree Routing Algorithm (MTRA) 

Input: A Network graph G=(N,L), VPN access routers AR=(ar1,ar2,…,arp)⊆N, 

residual bandwidth constraints B on L, and a VPN setup request vri =(r1,r2,…,rp). 

Output: A minimum cost VPN tree VTMC for vri, on which all leaf nodes are VPN 

access routers arj with rj>0. 

Algorithm: 

1. VTMC :=Ø;  

2. For each v∈N  

3. { 

4.   Tv:= BFS_Tree(G,v); 

5.   PTv:=Prune_Tree(Tv, vri); 

6.   Compute_RS(PTv, vri); 

7.   if(Cost(PTv)<Cost(VTMC) ) VTMC:= PTv; 

8. } 

9. if (Cost(VTMC) = ∞)  

10.   {Reject(vri); Return Ø;}  

11. else{  

12.    For each link lx∈VTMC {B(lx):= B(lx)-RS(lx);} 

13.    Accept(vri); Return(VTMC); 

14.    } 

 

 

Given a network graph G consisting of n nodes, to process a VPN setup request vri, MTRA 

iterates totally n times, once for each v∈N. In each iteration, MTRA first finds a candidate 

VPN tree PTv rooted at v for vri, and then computes the amount of bandwidth needed to be 

allocated to each link lx of PTv. Finally the cost value associated with PTv can be computed. 
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After finding all PTv (v∈N), if there is not any PTv (v∈N) on which all links have enough 

residual bandwidth for allocation, MTRA will reject vri. In the case of accepting vri, MTRA 

will return the VPN tree with the minimum cost value among all PTv (v∈N) for vri, which is 

denoted by VTMC. In addition, MTRA then allocates bandwidth to each link lx of VTMC by 

performing B(lx):= B(lx)-RS(lx). 

To find a candidate VPN tree PTv rooted at v, MTRA first find a BFS tree (breadth first 

search tree [21]) Tv rooted at v (by calling Function BFS_Tree). Tv contains all nodes in G and 

in addition, Tv may contain nodes that are not VPN access routers used in vri as leaf nodes. 

Therefore, MTRA prunes Tv and obtains a candidate VPN tree PTv, on which all leave nodes 

are VPN access routers used in vri (by calling Function Prune_Tree). 

MTRA computes the amount of bandwidth needed for each link lx of a VPN tree T 

according to the bandwidth requirement information in vri (by calling Function Compute_RS 

in Table 2). To compute the value of RS(lx) (lx∈T), we first remove lx from T which partitions 

the VPN tree into two subtrees Tx
a and Tx

b. Let BR_Tx
a and BR_Tx

b denote the accumulated 

bandwidth requirement of the VPN access routers (endpoints) on Tx
a and Tx

b, respectively. 

Then RS(lx) is determined by the minimum value of BR_Tx
a and BR_Tx

b. For more details 

about computing the RS(lx) value for each lx on a VPN tree, please refer to [5]. 

Given a VPN tree T, in a normal case, the function Cost of MTRA returns the cost value 

computed by the cost function defined previously. However, where T is null (Ø), or there are 

links on T that do not have enough bandwidth for allocation, the function Cost will return ∞. 

The time complexity of each iteration in MTRA is O(m), which is determined by the 

function BFS_Tree. To process a request, a total of n iterations are required. So, It is clear that 

the time complexity of MTRA for processing a request is O(mn). 
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Table 2. Pseudo code for Compute_RS. 

Function Compute_RS(T, vri) 

Let lx be the xth link on T.  

Let RS(lx) be the amount of bandwidth allocation needed on lx with respect to the 

bandwidth requirement specified in vri.  

Let Tx
a and Tx

b be the two subtrees obtained by remove lx from T. 

1. for (each lx in T) 

2. { 

3.    Initialize two variable BR_Tx
a, BR_Tx

b to value 0; 

4.    For (each element rj≠0 (1≤j≤p) of vri)  

5.     { 

6.      if(arj∈Tx
a) then add rj to BR_Tx

a  

7.      else add rj to BR_Tx
b 

8.     } 

9.    RS(lx):=min(BR_Tx
a, BR_Tx

b); 

10.  } 

 

We now consider Scenario 2 in Section 4 and adopt MTRA to process requests. Initially, 

B(l)=5 for all l in L. The sketch of G, after accepting vr1, is shown in Figure 5. The number 

beside each link in G is its residual bandwidth after accepting vr1. The dotted lines form the 

minimum cost VPN tree VTMC that MTRA will output for vr1. 

 

 

 

 

 

Figure 5. A sketch of G after processing vr1. 
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After accepting vr1, MTRA then processes vr2. Each candidate VPN tree PTv (v∈N) for vr2 

considered by MTRA is shown in Figure 6. We can find four different types of candidate VPN 

tree for vr2. Note that PTA, PTB, PTC and PTD are identical. The number beside each link of 

PTv (v∈N) is the amount of bandwidth that needs to be allocated to it. The cost value 

associated with each PTv (v∈N) is:  

==== )Cost(PT)Cost(PT)Cost(PT)Cost(PT DCBA   
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It is clear that MTRA will return PTA for vr2 (vr2 is accepted by MTRA). Hence the 

rejection ratio achieved by MTRA in Scenario 2 is 0%. 

 

 

 

 

 

Figure 6. Candidate VPN trees considered for vr2. 
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of requests received. Recall that the parameters in OHVEP are K, p, B and Maxr, where p is 
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the number of VPN access routers on G, B=(B(l1),B(l2),…,B(lm)) is the residual bandwidth on 

links of L and Maxr is the maximum bandwidth guarantee provided by the NSP.  

We define constants Bmin=Min{B(l1),B(l2),…,B(lm)}, Maxr*
2

)1p(*pRS max
pp

−
=  and 

Maxr*
2
pRS max

tree ⎥⎦
⎥

⎢⎣
⎢= . We also define an artificial request vrmax=(Maxr, Maxr,…,Maxr). In this 

section, a new parameter q, which represents the number of link-disjoint candidate VPN trees 

PTv (v∈N) that MTRA can find for vrmax on G, was also introduced.  

 

Definition 1. Given two vectors a=(a1,a2,…,ap) and b=(b1,b2,…,bp), a is defined to be not less 

than b, denoted by a≥b, if all elements in a-b are all non-negative. 

 

Property 1. Given a network graph G=(N,L) on which the residual bandwidths on links of L 

are finite, two VPN setup requests vra=(a1,a2,…,ap) and vrb=(b1,b2,…,bp) with vra≥vrb, if vra is 

accepted by a deterministic provisioning algorithm PA in G, then vrb is also accepted by PA in 

G. 

 

Lemma 1. Given an arbitrary network graph G with p VPN access routers, residual 

bandwidth constraint B on L, and a sequence of K one-by-one requests with the maximum 

bandwidth requirement of each endpoint no more than Maxr, then the rejection ratio in 

provider-pipes will not exceed 

0                    , if K≤ 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

max
ppRS

Bmin  

1   -   
max
pp

max
ppmin

RSK

RS-B

*
     , if K> max

ppRS
Bmin  

Proof:  

To establish a VPN, the provider-pipes algorithm must construct a provider pipe ppi,j 

between each endpoints pair (ei,ej) and allocate bandwidth to it. A provider-pipe ppi,j is a path 

from ei to ej in G and the amount of bandwidth needed on each link of this path is 
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min{b(ei),b(ei)}. To establish a VPN containing p endpoints, the number of provider pipes 

needed to be constructed is p*(p-1)/2. 

Let K received requests be vr1,vr2,…,vrK in sequence. We also produce another K artificial 

requests vr1
’, vr2

’,…,vrK
’, where the value of each vri

’ (1≤i≤K) is equal to vrmax.  

First, we consider processing vr1
’, vr2

’,…, vrK
’ with the provider-pipes algorithm. For each 

vri
’ (1≤i≤K) accepted by the provider-pipes algorithm, the amount of bandwidth needed on 

any link of G will not exceed max
ppRS . Therefore, all of vr1

’, vr2
’,…, '

min

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
ppRS

B
vr  will be accepted 

by the provider-pipes algorithm. Because vri
’≥vri(1≤i≤K), according to property 1, vr1, vr2,…, 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
ppRS

B
vr

min

 will also be accepted by the provider-pipes algorithm. Thus the lemma follows. 

Q.E.D. 

 
Lemma 2. If the situation is the same as described in Lemma 1, the rejection ratio in any 

tree-based hose-model VPN provisioning algorithm will not exceed  

 

0                   , if K≤ ⎥
⎦

⎥
⎢
⎣

⎢
max
treeRS

Bmin  

1   -   
max
tree

max
treemin

RSK

RS-B

*
    , if K> max

treeRS
Bmin  

Proof: 

Let K received requests be vr1,vr2,…,vrK in sequence. We also produce another K artificial 

requests vr1
’, vr2

’,…,vrK
’, where the value of each vri

’ (1≤i≤K) is equal to vrmax.  

First, we consider processing vr1
’, vr2

’,…, vrK
’ with a tree-based provisioning algorithm. 

For each vri
’ (1≤i≤K) accepted by the tree-based provisioning algorithm, the algorithm will 

find a VPN tree vti
’ (1≤i≤K) for it. The amount of bandwidth allocated on each link of vti

’ 

(1≤i≤K) for each accepted vri
’ (1≤i≤K) will not exceed max

treeRS . Therefore, all of vr1
’, vr2

’,…, 

'
min

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
treeRS

Bvr  will be accepted by the tree-based provisioning algorithm. Because vri
’≥vri (1≤i≤K), 
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according to property 1, vr1, vr2,…, 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
treeRS

Bvr
min

 will also be accepted by the tree-based 

provisioning algorithm. Thus the lemma follows. 

                           Q.E.D. 

 
Theorem 1. If the situation is the same as described in Lemma 1, except that there exists q 

(q≥2) link-disjoint VPN tree PTv for vrmax on the given network graph G, the rejection ratio in 

MTRA will not exceed  

0                     , if K≤ ⎥
⎦

⎥
⎢
⎣

⎢
max
treeRS

Bq min*  

1  -  
max
tree

max
treemin

RSK

RS-(B*q

*

)       , if K> ⎥
⎦

⎥
⎢
⎣

⎢
max
treeRS

Bq min*  

Proof: 

The proof is similar to that in Lemma 2, except that for each artificial request vri
’ (1≤i≤K), 

MTRA can find at least q PTv for it. Note that MTRA will not reject a request, unless there do 

not exist any PTv (v∈N) on which all links have enough residual bandwidth for allocation. 

Therefore, all of vr1
’, vr2

’,…, '

* min

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
max
treeRS

B
q

vr will be accepted by MTRA. Thus the lemma follows.                 

Q.E.D. 

 
Corollary 1. In the situation described as Theorem 1, the theoretical upper bound of the 

rejection ratio in the tree routing algorithm is still 

0                    , if K≤ ⎥
⎦

⎥
⎢
⎣

⎢
max
treeRS

Bmin  

1   -   
max
tree

max
treemin

RSK

RS-B

*
     , if K> max

treeRS
Bmin  

Proof: 

The proof is also similar to that in Lemma 2. Although for each artificial request vri
’ 

(1≤i≤K), the tree routing algorithm can find at least q PTv for it. However, in the worst case, 

only one of them is the bandwidth-optimization VPN tree for vri
’ (1≤i≤K). The tree routing 
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algorithm will insist on using this tree. Thus, the corollary follows.                            

Q.E.D. 

 

If all other conditions hold, increasing the value of p for the provider-pipes algorithm will 

raise the upper bounds of the rejection ratio in a speed of square order (see Lemma 1). 

However, for any tree-based hose-model VPN provisioning algorithms (MTRA and tree 

routing), increasing the value of p only raises the upper bounds of the rejection ratio in a 

speed of linear order (see Lemma 2). On the other hand, increasing the value of Maxr will 

raise the upper bounds of the rejection ratio of the three provisioning algorithms in a speed of 

linear order (see Lemma 1 and Lemma 2). The rejection ratio upper bound of MTRA is 

superior to that of tree routing approximately q times (see Theorem 1 and Corollary 1). 

However, given a network graph G, the value of q depends on the density of G (the ratio of 

the number of links over the number of nodes in G (i.e., m/n)) and the distribution of VPN 

access routers on G. We investigate the effect of p, Maxr, and the density of G on the rejection 

ratios achieved by various provisioning algorithms in Section 7. 

 

 

7. Simulation and Performance Results 

7.1. Simulation Environment 

 
 To evaluate the performance of MTRA, we set up a hose-model VPN provisioning 

algorithms simulator (HVPAS). The architecture of HVPAS, shown in Figure 7, contains 4 

main elements: (1) topology generator, (2) parser, (3) hose-model VPN provisioning 

algorithms, and (4) VPN setup requests generator. We implemented all components, except 

topology generator, in Java programming language. 
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Figure 7. The Architecture of HVPAS.  

 

The topology generator of HVPAS randomly generates the MPLS network backbone G 

administrated by the NSP. Because Brite [22, 23] has been widely used in a lot of research 

literature to generate random network topologies, we also adopt it as the topology generator in 

HVPAS. We generate randomly a connected network graph G by assigning proper values in 

the configuration file used by Brite. The G output from the topology generator is parsed by 

the parser into a format readable by the provisioning algorithms of HVPAS. We have 

implemented three provisioning algorithms in HVPAS: (1) MTRA, (2) tree routing, and (3) 

WSP provider-pipes. The WSP provider-pipes algorithm is the same as the provider-pipes 

provisioning algorithm introduced in [3, 4]. However, the approach for selecting a path for 

each provider-pipe between endpoint pairs follows the Widest Shortest Path (WSP) algorithm 

[24]. The WSP is used to reduce the likelihood that there is not enough bandwidth on the 

chosen shortest path between endpoint pairs. The VPN setup requests generator in HVPAS 

randomly generates a set of VPN setup requests according to the given parameters K, p, and 

Maxr. The request set contains K requests. The number of endpoints contained in each VPN is 

generated randomly between 2 and p, and the bandwidth requirement b(ei) for each endpoint 

ei is generated randomly between 1 and Maxr. 
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In Figure 7, O1 denotes G output by Brite in a specific format, O3 denotes G in a format 

readable by provisioning algorithms implemented in HVPAS, and O2 denotes requests 

generated by the VPN setup requests generator. Both O2 and O3 are input to the provisioning 

algorithms implemented in HVPAS. For each request accepted by a provisioning algorithm, O4 

represents a corresponding VPN topology. (Recall that for MTRA and tree routing, the VPN 

topology is a tree in G.) 

 

7.2. Performance Results 

In this subsection, we describe five simulations. The first four compare the rejection ratio 

achieved by various provisioning algorithms implemented in HVPAS. The last simulation 

investigates the bandwidth allocation efficiency of MTRA. 

 
Simulation 1: Performance Comparison in KL topology 

The parameter configuration of Simulation 1 is shown in Table 3. Due to extensive 

adaptation of the KL topology as the MPLS network backbone in the literature about MPLS 

traffic engineering [14-18], we also adopt it as G. The KL topology is composed of 15 routers 

and 28 links, as shown in Figure 8. The routers labeled as ar1~ar7 are VPN access routers, the 

amount of residual bandwidth on the light links is 1500 units, and the amount of residual 

bandwidth on the dark links is 6000 units. 

Table 3. Parameter configuration of Simulation 1 

G B(li) p Maxr K 

KL topology 
Light links=1500 units 

Dark links=6000 units 
7 75 100 
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     Figure 8. The KL Topology. 

 

We conducted 15 runs in Simulation 1, in which each run randomly generated 100 

requests. The simulation results are shown in Figure 9. The x-axis represents the run number 

and the y-axis represents the rejection ratio achieved by each provisioning algorithm in each 

run. We can see that the rejection ratio achieved by MTRA is much less than that achieved by 

WSP provider-pipes and tree routing. The rejection ratios achieved by MTRA are 0% in all 

runs except in run 8 and run 10 (where they are only 2% and 1%, respectively). However, the 

rejection ratios by WSP provider-pipes and tree routing range from 30% to 55%. According to 

the simulation results, we believe that MTRA can reduce the rejection ratio effectively in the 

KL topology. 
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Figure 9. Performance comparison in KL Topology. 
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Simulation 2: The Effect of Maxr 

The parameter configuration of Simulation 2 is shown in Table 4. In order to evaluate the 

performance of MTRA on general G, we used Brite to randomly generate a connected graph G 

with 20 nodes and 40 links in each run. The value of Maxr varies from 40 to 120 with a step 

of 20. We conducted 8 runs for each value of Maxr, and took the average rejection ratio 

achieved in these 8 runs. 

 

Table 4. Parameter configuration of Simulation 2 

G B(li) p Maxr K 

Randomly generated by Brite 

with 20 nodes and 40 links 

1500 

units 
6 

40~120 

step 20 
100 

 

The simulation results are shown in Figure 10. The x-axis represents the value of Maxr, 

and the y-axis represents the average rejection ratio achieved by the provisioning algorithms. 

As expected, the average rejection ratio increases as the value of Maxr increases in all three 

algorithms. The average rejection ratio achieved by MTRA is much less than the other two 

algorithms in almost all the Maxr values considered in this simulation (except for the light 

load case, when Maxr=40, the average rejection ratios is 0% in all the three algorithms). The 

experimental results show that MTRA can indeed achieve a lower rejection ratio on general G 

compared to the other two algorithms. 
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Figure 10. The Effect of Maxr. 

 

Simulation 3: The Effect of α(G) 

The parameter configuration of Simulation 3 is shown in Table 5. We denote the ratio of 

the number of links over the number of nodes in G as α(G) (i.e., α(G) = m/n). As we want to 

investigate the impact of α(G) on the average rejection ratio, we fix the value of n and change 

the value of m in this simulation. If all other conditions hold, increasing the value of α(G) 

indicates that: (1) the resources available for establishing VPN also increases and (2) the 

value of the parameter q may also increase. We conduct 8 runs for each value of α(G), and 

took the average rejection ratio achieved in these 8 runs. 

Table 5. Parameters configuration of Simulation 3 

G B(li) p Maxr K 

Randomly generated by Brite with 20 

nodes and α(G) = 2~6 

1500 

units
6 100 100 

 

The simulation results are shown in Figure 11. The x-axis represents the value of α(G), 

and the y-axis represents the average rejection ratio achieved by the provisioning algorithms. 

As expected, in all three algorithms, the average rejection ratio declines as the value of α(G) 
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increases. For all the α(G) values we consider in this experiment, MTRA achieved the lowest 

average rejection ratio among the three algorithms. On the other hand, as the value of α(G) 

increases, the reduction speed of the average rejection ratio in tree routing is slower than that 

of the WSP-provider-pipes algorithm. The reason is that tree routing insists on choosing a 

bandwidth-optimization VPN tree for each request, regardless of the amount of residual 

bandwidth on the links of the VPN tree. If the amount of residual bandwidth on any link of the 

VPN tree is insufficient for allocation, the request will be rejected. Therefore, the effect of an 

increase in α(G) is smaller in the tree routing than the WSP provider-pipes algorithm. 
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Figure 11. The Effect of α(G) value. 

 

Simulation 4: The Effect of p 

The parameter configuration of Simulation 4 is shown in Table 6. This experiment 

investigates the impact of p on the average rejection ratio. The value of p varies from 3 to 8. 

For each p value, we conducted 8 experiments and took the average rejection ratio achieved 

in these 8 runs. If all other conditions hold, increasing the value of p has the following effects: 

(1) The average load on links becomes heavy because the average number of endpoints 

contained in a request will increase. This effect will increase the rejection ratio. 

(2) The fixed load is shared by more VPN access routers because we generate a fixed 

number of requests (totally K requests) in each run. Hence the fixed load is shared by more 
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VPN access routers (more links on G). This effect will reduce the rejection ratio. 

 

Table 6. Parameter configuration of Simulation 4 

G B(li) p Maxr K 

Randomly generated by Brite 

with 20 nodes and 40 links 
1500 units 3~8 100 100 

 

 

The simulation results are shown in Figure 12. The x-axis represents the value of p, and 

the y-axis represents the average rejection ratio achieved by the provisioning algorithms. Of 

all the p values we consider in this experiment, MTRA achieves the lowest rejection ratio 

among the three algorithms. Both MTRA and tree routing have a transition point in the figure 

(i.e., when p=4 for MTRA and when p=5 for tree routing). Before the transition point, the 

effect of (1) is smaller than (2), and vice versa. However, for the WSP provider-pipes 

algorithm, as the value of p increases, the average rejection ratio rapidly rises. As the value of 

p increases, the additional bandwidth allocation increases at a speed of square order. (Recall 

that to establish a VPN containing p endpoints, the number of provider-pipes that needs to be 

constructed is p*(p-1)/2.) 

0

10

20

30

40

50

3 4 5 6 7 8
p

A
ve

ra
ge

 re
je

ct
io

n 
ra

tio
 (%

)

WSP provider-pipes Tree routing MTRA

 

Figure 12. The Effect of p value. 
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Simulation 5: The Bandwidth Allocation Efficiency of MTRA 

The parameter configuration of Simulation 5 is shown in Table 7. This experiment 

investigates the bandwidth allocation efficiency achieved by MTRA. Because tree routing is 

certain to find a bandwidth-optimization VPN tree for each request, we compare the average 

amount of bandwidth allocated for processing 100 requests in MTRA with tree routing. As the 

cost functions defined in Section 5, we expect the behavior of MTRA will be more similar to 

tree routing as the residual bandwidth amount on links (B(lx)) is more abundant. We 

conducted 8 experiments for each amount of residual bandwidth on the links, and took the 

average on the allocated bandwidth in these 8 runs. For the comparison to be fair, only 

simulation runs that had no rejected requests were considered. 

Table 7. Parameter configuration of Simulation 5 

G B(lx) p Maxr K 

Randomly generated by Brite 

with 20 nodes and 40 links 
5000~10000 6 100 100 

 

We define RSMTRA and RSTree routing as the average amount of bandwidth allocated for 

processing 100 requests in MTRA and tree routing, respectively. We also define 

PercentExtra_BW=(RSMTRA-RSTree routing)/RSTree routing. The simulation results are shown in Table 8. 

As expected, MTRA achieves better bandwidth efficiency when B(lx) is more abundant. For all 

the B(lx) values we consider in this experiment, the values of PercentExtra_BW are all below 3%. 

Therefore, MTRA can achieve fairly good bandwidth allocation efficiency. 
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Table 8. The average amount of allocated bandwidth for 100 requests 

 

 

 

 

 

 

7.3. Running times 

While MTRA achieves a lower rejection ratio in VPN provisioning, it has a longer running 

time than other approaches. In Table 9, we briefly list the average running times (in second) 

of the three provisioning algorithms for handling 100 random requests in the first four 

simulations. MTRA uses roughly 1 second for handling a VPN request for a network up to 120 

links and 20 routers that the performance is acceptable. Note that all the simulations are 

executed on a notebook computer with 1.8GHz Pentium-M CPU and 768 MB memory, and 

Microsoft XP OS.  

 

Table 9. The average running times on the three algorithms 

B(lx) RSMTRA RSTree routing PercentExtra_BW 

5000 21704 21138.38 2.6758% 

6000 22184.63 21858.38 1.4926% 

7000 21957.25 21721.13 1.0871% 

7500 20377.63 20294.5 0.4096% 

10000 21927.63 21872.5 0.252% 

Provisioning algorithm

Simulation number 
MTRA Tree routing 

WSP 

provider-pipes 

Simulation 1 80.609 57.860 23.723 

Simulation 2 133.799 87.312 25.169 

Simulation 3 154.275 105.896 67.512 

Simulation 4 122.738 80.882 17.453 
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8. Conclusions and Future Works 

 
Several hose-model VPN provisioning algorithms have been proposed previously [3-5]. 

However, issues about the rejection ratio achieved by provisioning algorithms for establishing 

multiple VPNs on-line have not been investigated. In this paper, we show by concrete 

examples that all the provisioning algorithms proposed in [3-5] are unable to achieve a 

satisfactory rejection ratio in this case. To address the problem, we propose a new hose-model 

VPN provisioning algorithm called MTRA. We also derive the theoretical upper bounds of the 

rejection ratios achieved by provider-pipes, tree routing and MTRA, respectively. In addition, 

we set up an experimental environment, called HVPAS, to evaluate the performance of 

different hose-model VPN provisioning algorithms. According to the simulation results, 

MTRA can indeed effectively reduce the rejection ratio. 

A number of issues related to hose-model VPNs still needs to be investigated. For example: 

(1) Designing a good label assignment schemes on the MPLS network for MTRA in order to 

minimize the number of labels needed; and (2) designing an efficient restoration algorithm 

under a single element (single node or single link) failure model. We will address these issues 

in our future work. 
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