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Abstract

The paper investigates the global p-exponential stabilizability of nonholonomic Caplygin
systems. A novel decomposition of state is given first. When systems are linear in certain state
variables, a simple and easily verified rank condition can be proposed to guarantee the global
p-exponential stabilizability of Caplygin systems. In our design, all parameters can be explicitly
determined from the constraint function. Moreover, an interesting coordinate transformation can be
used to change a Caplygin system into another one so that the proposed criterion can be applied to
various situations. For an important class of Caplygin systems, the rank condition is further reduced
to some conditions relating to the degree and non-zero property of the lowest polynomials of
constraint function. Several interesting examples including of the knife-edge, the extended
power-form, the rolling wheel and hopping robot systems are shown that they can be exponentially

stabilized by an easy test.
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I. Introduction

The paper investigates the exponential stabilizability of Caplygin systems that can be described as
follows:

g, =u (1)

4, =-J(a)4q, )
where ¢, 00", ¢, 00"and »0"; the constrain function J is a matrix-valued analytic
function defined on [1" [2]. The target is to provide a simple and easily checked criterion for the
exponential stabilizability of Caplygin systems.

Caplygin systems as a subclass of nonholonomic systems were introduced in [2] for the control
community. Practical examples includes the knife edge, the two-wheel mobile robots, the rolling
wheel, and extended power form, e.t.c., [2], [6]. In recent years, the interests for such systems were
from the fact that they have no static time-invariant continuous stabilizers [3]. Simultaneously, there
are no time-varying smooth controllers that can exponentially stabilize them. To overcome this
drawback, several approaches, such as the homogeneous and the discontinuous feedback methods,
were proposed to guarantee the exponential stabilizability in present literature [1], [5], [7]-[8], [10].
Observe these results, the homogeneous feedback method needs some special construction for the
controllers and thus can be applied only to certain specific systems. In the contrast, the discontinuous
feedback method can be modified to solve the exponential stabilizability problem for a large class of
systems as shown in [7].

This paper will adopt the latter approach and propose a further improvement for Caplygin
systems based on the results given in [7]. Indeed, a novel decomposition will be propose such that a
Caplygin system can be transformed into a cascade system. Then, a simplified controllability-like
rank condition will be proposed by borrowing the main result in that paper. Comparing with [7], all
parameters can be explicitly determined from the constraint function J in this paper. Moreover, an
interesting coordinate transformation can be used to change a Caplygin system into another one so

that the proposed criterion can be applied to various situations. For an important class of Caplygin
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systems, the rank condition will be further reduced to certain easily tested conditions relating to the
degree and non-zero property of the lowest polynomials of constraint function J . Several
interesting examples including of the knife-edge, the extended power-form and the rolling wheel
systems will be given to demonstrate that they satisfy the proposed conditions by an easy test and
thus can be exponentially stabilized. As a final example, a set-point control problem for the hopping
robot system is also studied and shown that an exponential convergence result can be attained based
on our approaches. From these applications, it can be seen that the proposed criterion does provide
a direct and simple test with respect to the results given in present literature for determining whether

a Caplygin system can be exponentially stabilized.

I1. Brief Review of Newly Developed Criterion

In this section, an exponential stabilizability criterion given in [7] will be reviewed briefly.

Firstly, several basic definitions are recalled. Throughout this paper, let [1"" denote the set of all

n>xm matrices and D, denote the diagonal matrix with diagonal elements taken from the elements

of a vector r. Let A4:0" xO™ - O™ be a matrix-valued function. Suppose the elements of

A are all analytic.

Definition 1. For any 1: i: n, and 1: j: m,, let p; (v,w) denote the lowest homogeneous
polynomial in the Taylor expansion of the (i, j) entry of A at the origin and d UA denote the degree
of p;. Notice that, p; =(0 when the (i,j)entry of 4 is the zero function. In this case, we
define d; = .

Definition 2. Let (r,s)[100"™ x[1™ be any integer-valued vector satisfying 7, <s j+d;, 0i, Oj . Let

—rsA

p; (v,w) be defined as follows:

if =5, +d},
3)

. A
if'r,<s,+d;.

—rsd —

P %p';’
=
E
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In the following, let us recall the definitions of dilation operation, homogeneous norm and

global p -exponential stability given in [7] and [8].

Definition 3. Let v=(v1,v2,---,vnz)T Ooo™. A dilation A, :0"™ - 0% on 0% is defined by
assigning »n, real numbers r=(7,r,,-,5, ) and a mnonzero real number ¢ such that
Ny =({"v,{"v,, -, {™ v, ). Similarly, let 4=(a,;)0 0% . A dilation Aj :0%*= - 0%
on O™ is defined by assigning n,- m, real numbers r=(r,7, 7, ) and
s =(s,,5,,"",5,, ), and a nonzero real number ¢ suchthat A74=({""a,).

Definition 4. A positive definite continuous function ©:0" — O is called a homogeneous norm w.

r. t. the dilation A, if (A, x)={p(x), 0 #0,0x00 "

Definition 5. The equilibrium point x =0 is globally p -exponentially stable if there exist a
homogeneous norm o and two positive constants ¢, and ¢, such that for any solution x(#), the

following inequality holds:

o(x(1) € g,p(x(t,))e "™, Ot =t,. 4)
In the remainder of this section, let us consider a class of cascaded systems described in the
following form
x,= A4 x, - By, ®))
Xy, = A, (x,u,) x, - By(x,,u,) uy, (6)
where x, 00" and »,00™, [i=1,2; A4 and B, are matrices with suitable dimensions;

A,(x,,u;) and B,(x,,u;) are analytic matrix-valued functions. Assume that the following
hypothesis holds.

(H1) There exists an integer-valued vector (r,s)0™ x[0™ satisfying the following inequalities



rSrd and r <s+df, 06 04,0 (7)
Under (H1), ﬁ;’Az (x,,u,) and 1_7;7'532 (x,,u,) can be defined as (3). For any positive constant &,
denote 4, (x,,u,) = kD, +(p;™ (x,u,)) and B, (x,,u,) =(p/>" (x,,u,)). Then, the following result

can be proposed. It was proven in [7] and can be viewed as a preliminary result in our study of the
exponential stabilizability for Caplygin systems.

Proposition 1. Consider a system of the form (5)-(6). Suppose that (H1) and the following
hypothesis hold for some integer-valued vector (r,s)J0"™ x[",

(H2) For some positive constant k£ and some vector (a,b)000" x[O™  satisfying
(kI - A))a- B,b=0,the pair (4,,B,) and (Zz (a,b), B,(a,b)) are both controllable.

Let 7=(...,Lr)O00"™ and K, OO0™" and K, O™ be two matrices such that the
\ﬁr_J

matrices kI - A - B,K, and A,(a,b)+B,(a,b)K, are both stable. Then, the origin of the

closed-loop system is globally p-exponentially stable when the controller (u,,u,) is chosen as in

the following

— (. ) — mb;szzaif(%(to):xz(to)) 0
=0 KA R %Jv if (x,(t)),x,(t,)) =0, ®)

for any ¢, =20 where A=e¢""" p(x,(t,),x,(t,)) with o being any homogeneous norm w.r..

dilation 4. |

III. p-Exponential Stabilizability via A Simplified Rank Condition
A. Rank condition and p-exponential stabilizability
In this subsection, a simplified rank condition will be given to achieve the p-exponential
stabilizability for Caplygin systems based on Propositionl. To this end, the following assumption is

useful to transform a Caplygin system into a system of the form (5)-(6).



(C1) (Linear in partial state variables). There exist a decomposition of partial state vector ¢, and
input  vector u defined  as q,=[z,/2z,'1  and u=[u ull with
z, U an, z, = (221,222,---,zzﬁ2 ) U ar ,u, U on ,u, U 0% and n= n, - n, so that the constraint
function J(z,,z,) :[z 72:1 Ji;(z)zy, Jy(z)] with J,:0" - 0" | Cl: j:n, , and

J,:0" - O™ being matrix-valued analytic functions (only depending on the state variables z, ).

For the compactness, we define a matrix-valued function J, :0" xO0" — 0" as
Ji(z1,23) = (2)zy Jp(2)z o Jy(z)z], Oz, 007,000, 9)
Then, it is straightforward to see that J(q,)q, =J,(z,,2,)z, +J,(z,)Z, and

J(z,,{ z,)={ J (2,,25),0z,,z, 00", 0 00, (10)
Let x, =[z z/]"00" and x,=[q; z; z,]' 00" with n,=2n, and n, =m- 27, .
Then, a Caplygin system of the form (1)-(2) can be rewritten into the form of (5)-(6) where the

matrices A4, and B,, and the matrix-valued functions 4, and B, can be described as follows:

0 /0 oo 8 T TP o0
A= o BEhE 4= 0 I gand B, = . (11)
. B o of 38

It is easy to see that (4,,B,) is in the controllable canonical form (CCF) [4]. To verify (H1), let us

define the following parameters

d = min (d),d”)and 7 =d +1, Cl:i: m. (12)

1sj,sm, 1<, 7
By the direct computation, it can be checked that the “degree matrices” of 4, and B, can be

described as follows

o (d)) (d])E [3o[]
A O l -0 B Il
df)=@ © 00 and (%)= (13)

U
0 ooE @)B

Let d=(d,.d,,--,d,) , 7F=@.n,F), r=FL...1), s=QL--1) and a matrix
ﬁ_/ %/_/

2n, n,



E-=[d" d"---d"]100™" . Then, the following inequalities hold:
NS —

ny

M E

S DES
(rl.—r_/)=El-E§ 0 oEs(d;‘z) and (1, —s;) = %) = (d?). (14)
SEL 0 o0f 0B

Now, (H1) follows from the inequalities above.

In the following, let us compute the matrix-valued functions 4, and B,. First, for each

l<ism,l: j« n,,le j,« n,, define the homogeneous polynomials p, :0" x0O" - O and

pU2 0% - O relatingto J, and J,, respectively, as follows:

{1 : d7 d ?2’- djz =d,
51;1 = %U[ f i and Z—)ljzz — %1]2 U(‘ ifs i (15)

H), otherwise, H), otherwise.

Denote P,(z,)=(p, (z,,z,)) and P,(z)=(p; (z)) for all z in O". Notice that for any
positive constant k , every solutions (a,b)00°" xO"  satisfying the equation
(kI - A)a- B,b=0 canbe describedas a=[n",-kn"]" and b=k’n forall nOO™ in view
of the form of 4, and B, givenin (11). Then, we have

(py, (1" =kn")) = =k(p;, (7" .n")) ==kB(7), On 0 O™, (16)
by employing the definitions of ﬁ;& above and the property of J, given in (10). Since J, and
J, only depends on x, =(z,%) (and independent on u, ), the matrix-valued function

A, (x,,u,) = 4,(x,) is also independent on u,. Thus, the function 1_9;”42 described in Definition 2

can be viewed as a function defined on 0" x[J"™ . Moreover, it can be checked that

1
i

2 . . — . —
1—9’”12—?’7’ ifl<ism,m+n,+1<j<m+2n,,
g

ifl<i<smm+1<j<m+n,,

(17)

[b_(i_m)(j_m_%),ifm+1£i£m+ﬁz,m+ﬁ2 +1<j<m+2n,,

, otherwise,

in view of (11)-(14) and by the definition of p;mz where (¢,) =1 isthe n,xn, identity matrix.



Thus, the matrix-valued functions 4, can be explicitly written as

EkD; = (p; (17.=kn)) —(1‘9,,2-(/7))% k D. kP (1) —132(/7)%
A, (a) = kD, + (5" (n.-k1p) = [0 K IR M 1 508)
3 0 HoH B 0 K[

for all k>0, all pO0O" with a=[n",-kn"]" .  Similarly, it can be verified that

B, =(p2*)=B, = [O 0 ]]T. To check the controllability of the pair (Zz (a),B,), let us assume

i

that the following condition holds.

(C2) (Reduced order controllability). Suppose rank[P(n,), D.P(1,),--,D""P(n,)]=m for
0 7 0 r 0

some /7, 00", where

P(n) = B(1) = (D;)P, (1) (19)
Before verify the controllability of (Zz (a),B,), we need a technique lemma stated as follows.

Lemma 1. Consider three matrices A00™", BOO™? and COO™ . Suppose the matrix C is

invertible and rank(B) = m . Then, the following equality holds:

rank =m+n
O .
%j 0

Proof. 1t only needs to show that for any vector (y,,y,)00" x[O", there exists a vector

(¢, ,¢,)00" xO7 such that the following equality holds:

M B, 0_0n0O

t oy 5.0

From the equation above, it is sufficient to choose ¢, =C™'y,. Since rank(B)=m, there exists
also a vector ¢, J0”such that B¢, =y, - A¢,. It is straightforward to see that the equation
described in the above holds by the choice of ({, ,{,). The proof of the lemma is completed. H

Under condition (C2), the controllability of (Zz (a),B,) can be guaranteed in the following

result.

Proposition 2. Suppose (C2) holds for some 77, 00" . Let k be any given positive constant,



B, = [0 0 I]T and the matrix-valued function A4,(a) be defined as in (18) with
a=[/70T —k/70T]T. Then, (4,(a),B,) is controllable.
Proof. First, notice that D; - [ = D5 in view of (12). According to (18) and by employing the

equation above, the following equality relating to the controllability matrix can be derived via

elementary column operations:

rank[B,, 4,(a)B,,A; (a)B,,--, A" (a)B,] = rank[B,,B,,B,,B;,-, B, .1, (20)
where B, = A4,(a)B, —kB, =[-P," (7,)I 01" , B, =(/k)A,(a)B, —kBy)=[P"(,) 0 0]"

[D;P(17,)0
= - = 0 . . 0/0 . . .
and B,,, =(/k)(4,(ay)B,.;) = %) @ Ulsi<m-1.Since ! OD is invertible, we have
ERE

-
-

0 _}_)2(’70) 13(’70) Dr]_)(no) Drm_ll_)(ﬂo)g
rank[§2,§3,§4,§5,---,§m+3]:rank%) I 0 0 0 [=m+2n,,

H o o 0o - 0 H

in view of (C2) and Lemma 1. This results in the controllability of (Zz (a),B,) according to (20). W

Remark 1. In fact, it is not difficult to show that (C2) is also a necessary condition of the

controllability of (22 (a),B,). Since we don’t need this property, its proof is omitted. u
The following theorem is readable from Propositions 1-2 and the previous discussions.

Theorem 1. Consider a Caplygin system of the form (1)-(2). Suppose (C1)-(C2) hold for some

n, 00" . Let d, and 7, be the constants defined in (12) for each 1¢ i: m. For any positive
COl’lStant k , let K] — [K” K]z] |:| |:|}11><nl X DnIan and K2 - [I<21 K22 K23] I:I DnZXm X I:InZXnZ X DnZan

be two matrices such that the following matrices



kI I 0O kD kﬁl(ﬂo) _132(’70)

O

O

and kI 1 21

%(11 kI+K12E |:| ( )
Ekzl K kI+K23E

are both stable. Choose the controller (u,,u,) as in the following

u, = (kzI_Kll +kK )N A+ Kz, + K, 2 (22)
and u, = @<21(A‘?/Aq2)+K2222 +K52,,1f (q,(y),4,(ty),q,(t,)) 20, (23)
E)’ lf(Ql(tO): q‘l (to)aqz (to)) = 0

where A =e™™ p(q,(t,),4,(t,).q,(t,)) with p being any homogeneous norm w.r.t. dilation

vector 7 =(LL,---,1,7). Then, the origin of the closed-loop system is globally p -exponentially
H_/

2n

stable.

Proof. Based on previous discussions and Proposition 2, hypotheses (H1)-(H2) hold for

r=@F1...0), s=1L---1), a=[n, —kn,"1" and b =k?n,. Moreover, the homogeneous norm
E’_/ W_J

2n, n,

0@4q,,49,,9,) wurt. dilation 7 =(LL---,L¥F) can be viewed as a homogeneous norm
2n

px,x,)=p(z] 2,112 2,1.q,) wrt. A, with 7#=(l...,Lr)00"™ where n=n,- n,,
2,

" and x, =[q! z] z]]". Notice that the two matrices given in (21)

q, :[erzzT]Ta x =[z z]
are equal to kI - 4, - BK, and A,(a)+B,K,, respectively. Thus, it remains to show that the

controllers given in (8) can be written into the form (22)-(23). Using the fact x, =[z 2/ ]" and

K, =[K,, K], it can be directly computed that
u, =(b-K,a)A+Kx, =(k’I - K,, +EK ), )0 A + Kz, + K2

That is to say that u, can be written into the form (22). Similarly, using the fact x, =[q; z) 25 ]"

and K, =[K,, K,, K,,], the following equations hold:

(g, 0
sr — ST L D_ ST
A} K,x, =[A}K,, K, Kz3]ﬁ2 s Ny Ky g, + Kyyzy + Kz,

ENS

10



Let K, =(k;). Then, we have

DTJ‘ku A_JzkIZ /]_JMk“" .

57 ST _ 5’1_% kzl /‘_Jzkzz /‘_Emem B
A/]Kzl_(/] /kij)_D : : 0
a - ' -

E/Ldl kﬁzl /]_dz k7,22 ”. A_dm kﬁzm E

In view of the equation above, it can be seen that A" K, g, =K21A‘¥/ 149,. Hence, we have

N K, x, = K21A"z/ 149, + Kz, + K,;z,. Particularly, u, can be written in the form (23) by virtual
of (8). The global o -exponential stability follows from Proposition 1. This completes the proof of
the theorem. |
B. Second form of Caplygin systems

In this subsection, an alternative representation of Caplygin systems will be given. It will be
useful in the study of practical systems. An illustrated example will be given in next section.

In the remainder of this paper, we always assume that (C1) holds. Thus, the constraints function

J can be written as J(zl,zz)=[§ ;21 J1:(2))zy; J,(z,)]. For each 1: j: m,, let jlj be

defined as follows:

T,

= J, -0, /0z, 24)
where J,; isj-th column vector of J, . Consider the following coordinate transformation:

4, =4, +j2(Z1)Zz- (25)
Then, we have
q9, =4, +.722'2 + Z’:; (anj. /(3zl)zzjz'1
== Jymh L 5+ Y (00,,/02)z2,,5 = =5 " Tz 5 = -4y,
where

J(z,2) =13 7, (207, 0. (26)

In new coordinate (q,,4,,q,), the transformed system is still a Caplygin system in the form (1)-(2).

11



For the convenience, it can be called as the second form of Caplygin systems. Moreover, (C1) also
holds by (26). Then, theorem 1 can be used to study the exponential stabilizability for new system.
We summarize the previous discussions into the following proposition.

Proposition 3. Consider a Caplygin system of the form (1)-(2). Suppose (C1) holds. Using the new
coordinate (q,,4,,4,) with ¢, being defined as (25), the new system called as second form is also
a Caplygin system of the form (1)-(2) and (C1) still holds where the new constraint function can be
described as (24) and (26). [ |
Remark 2. 1t may be guessed that (C2) is invariant under various coordinate transformations since it
is a controllability condition. Unfortunately, it is not true in general. In fact, we will show that the
rolling wheel as a Caplygin system does not satisfy (C2) in its original coordinate representation, but
using the coordinate transformation described above, (C2) becomes to be true for the new system in

next section. That is to say that (C2) is a condition depending on coordinate transformations.

IV. A Simple Degree Criterion and Examples
In this section, Theorem 1 will be used to study an important class of Caplygin systems. Again

we assume that (C1) holds. Throughout this section, we assume that 7, =1. Under this assumption,

a simple criterion can be proposed to check (C2) as follows.

Proposition 4. Let d. be the constant defined in (12) for each 1:i: m . Let

P(7) = (a,(17),a,(17),++,a, ()" ,0p O O™ . Assume that (C1) holds and 7, =1. Then, (C2) holds if

and only if the following conditions hold.

(a) There exists a vector 77, JU™ sothat a,(7,)#Z0,L1: i: m.
(b) d, #d,,0i% ).
In addition to J,, =0, (C2) is equivalent to the following conditions.

(c) There exists a vector 77, JO™" so that pl.J(ﬁl () = pl{z ) #0,0l<i<m.

12



d) di,., =d20,01<i<m and di,, #d/; . 0% j.

J(m+1)2
Proof. Let 7 =d. +1 as defined in (12), Cl: it m. It is straightforward to see that that

D.P(n) = (ra,(n),ra,(n), -, 7 a, ()" ,0n00™. Thus, the determinant of the controllability-like

matrix given in (C2) can be explicitly computed as follows:

Lo, ra, - ﬁm_lal O o 7 ;71’"_1 -
o ra N E S 4 B

= Y m-1p N\ — 2 272 2 2 U= " 2 :
det([P,D;P,"',D; P])—detD : . D_(l_l,qa,')detm. 5
|:| _ R |:| D — —m-1 D
@m rmam o rm am E @ r’" ’ ”m D

= (l_lzmzl ai)|_|15i<j5m (’71 _’7/) = (l_lzmzl ai)l_llsi<_j5n1 (dl B 671)

by using the property of Vandermode matrix. This implies that (C2) holds if and only if conditions

(a) and (b) holds. Since 7, =1 and J, =0, we have J=[0 J,]. In this case, we have

d, = d,{z = di‘fﬁlﬂ), l<i<m, by the definition. Thus, it can be directly checked that
P, = (plj(ﬁlﬂ),pzj(ﬁlﬂ);--,pi@ﬂ))T in view of (15). Moreover, the matrix-valued function P can be
computed as P = =D, P, = (~d, pjiz 1)~ Py oty» s~y Pai )| - Then, (a) is equivalent to (c)

and a_’l Z0,C1¢ i m. It finishes the proof of the proposition by the previous discussions. u

In the following, three illustrated examples are given based on Theorem 1 and Proposition 4.

Example 1. (Knife edge). Consider a knife edge system as follows [2]:

Vi =Vss

V2 = Yss

Vs =TV Yss (27)
TR U i P _ylySZ,

Vs =y,

where y, is state variable, [1: i: 5, and v, is control variable, [1: j: 2. Consider the

following coordinate transformation:

13



2 =Y.z, = V5.4, =[20,2,]7 .4, = y.u SV, _J’1y52>”2 =v,,u =[ug,u,]". (28)
Then, the system (27) can be transformed into a Caplygin system of the form (1)-(2) with m =1

and the constraint function J =[0z,]". Moreover, (C1) holds with 7, =1, n, =1, J,, =0 and

J, =z,. Thus, it only needs to verify conditions (c)-(d) in Proposition 4 to exponentially stabilize

the systems (27). Since m=1 and d;, :dljf =1, it is easy to see that condition (d) holds.

Furthermore, p;,(17,) = pljf (n7,)=n, #0,0n, # 0. Thus, condition (c) also holds and the origin is

globally p-exponentially stabilizable according to Theorem 1 and Proposition 4. u

Example 2. (Extended power form). Consider an extended power form system as follows [6]:

Yy =,
Ve =)-}2y1;7—1 f(n =1,
: (29)
Vs = Va0
V, =u,,

where y, and y, are state variable, [1: i: n-1, [l: j: 2, and u; is control variable,
Ll: j« 2 . The system (29) is a Caplygin system of the form (1)-(2) with
g, =1y, v, 1".q, =[Viu1» >y o =[u,,u,]", m=7n-1 and the constraint equations J =[0 J,]

where J, =y /(m =1)!---y,]" . Notice that condition (C1) holds with z, =y, and z, =y,,
n, =1, n, =landJ,, =0. Thus, it only needs to verify conditions (c)-(d) in Proposition 4 to
exponentially stabilize the systems (29). It is easy to see that d?, = d,{z =n-i,Ll:i:m=n-1,in
view of the form of J, . Hence, conditon (d) holds. Moreover,
po(n,) = pjz (n,)=-n" /(m-i)#20,01<i<m=n—-1,0n#0. Thus, condition (c) also holds and
the origin is globally 0 -exponentially stabilizable according to Theorem 1 and Proposition 4. u

Example 3. (Rolling wheel). Consider a rolling wheel system as follows [2]:

14



V= Ys

Y2 =DYe>
V3 ==yscos(y,),

) . (30)
Y4 = yssin(y,),
ys =v, /2,
Ve = Vas
where y, is state variable, [1: i 6,and v, iscontrol variable, [1: j: 2.
Consider the following coordinate transformation:
Zy = Y252y = V154, = [Zlazz]TaQ2 = [y39y4]Tsu1 =v,,uy =v,/2,u = [ulauz]T- 31

Then, the system (30) can be transformed into a Caplygin system of the form (1)-(2) with m =2

and the constraint functions

_ 0 cos(z,) O
J = %) . B!
sin(z,)

Thus, (C1) holds with 7, =1, 7, =1, J,, =0 and J, =[cos(z,),~sin(z,)]". To apply Theorem I,

it is necessary to verify conditions (¢)-(d) in Proposition 4. However, the condition (d) in Proposition
4 does not hold since p, = p> =1 and d;, =d’> =0. Alternatively, let us try to very (C2) for the
second form of Caplygin system described in subsection III.B. According to (24), the new constrain

function J =[J,;z, 0] where

~ — [8in O
Jy=J,-0J,/0z, = (ZI)G
[gos(z,)]

In this case, P, =0 and J,(z,,z,) =J,,(2,)z; =[sin(z,)z,,c08(z,)z,]", Oz, 00,0z, OO. Thus,
(pi)=lz,25.2,]" and d =(d,,d,) = (d}}.d5}) = (2.]). Then,

P() = R =(D)P, () = B = (P (0.) = (pit (2.7) =[0*,n1, On 0L
Particularly, conditions (a)-(b) in Proposition 4 hold for any 7, # 0. Thus, the origin is globally

p -exponentially stabilizable for new coordinated system by Theorem 1 and Proposition 4. u
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As a final example, let us consider the set-point problem for a hopping robot system.

Example 4. (Hopping robot). Consider a hopping robot system as follows [9]:

[=v, 32
(32)

m, (1 +1)*
1+m, (I +1)°

where (4 ,/,6) denote the body angle, leg extension, and leg angle of the robot; m, is the mass of
the leg at the foot; a and v are the velocities of ¢ and [/, respectively; Let 7 and 7 denote
the torque and the force w.r.t. ¢ and /, respectively. Then, we have

G =1/J,

v=F/M, (33)
where J and M represents the inertial mass and the mass, respectively.

The so-called set-point problem is to find a controller (7,F) so that every trajectory

(4 ,l,6,a,v) of system (32)-(33) converges to a specific target (¢,/,6,¢,v)=(Y ,,l,,6,,0,0) for
some non-negative constant /,. Define the following error variables and control variables as

follows:
zy=l=1y,z, =00 = ¢,,q, :[zl,zz]r,qz :H—HO (W -¢y)m(, +1)2 MM +m,(l, +1)2]5 (34)
and u, =F/M,u, =1/J,u =[u,,u,]". (35)

Thus, the set-point problem is reduced to a stability problem since lim(q,(?),q,(¢),4,(¢)) =0 1is
equivalent to lim(y (2),/(¢),6(t),a (2),v() =Y ,.,,6,,0,0) . Moreover, the error system can be

transformed into a Caplygin system of the form (1)-(2) with m =1 and the constraint functions

= T,

m,(z, +1, +1)° _m(l, +1)°

L+m, (2, +1,+1)*  1+m,(l, +1)°

where J, = and (Cl1) holds with 7, =1, 7, =1, J,, =0.

Notice that p, = p2 =2m, (I, +1)/[1+m,(l, +1)**z, and thus d;, =d? =1.Itis straightforward

to see that conditions (c)-(d) holds. Then, the origin of the error system is globally o -exponentially

16



stabilizable according to Theorem 1 and Proposition 4. That is to say that the set-point control
problem can be solved via the controller (22)-(23) by employing Theorem 1. u
Remark 3. Example 4 particularly shows that the set-point problem for Caplygin systems can also be
solved by considering the error systems and employing Theorem 1. Due to a limited space, a formal

description is omitted. [ |

V. Conclusions

The p-exponential stabilizability of nonholonomic Caplygin systems was studied. The
global p -exponential stabilizability of the origin was guaranteed based on a simplified rank
condition. The proposed criterion is easily checked and simpler than the result given in [7]. An
interesting coordinate transformation (second form) of Caplygin systems was also given so that the
proposed criterion can be applied to various situations. For the case of 7, =1, the rank condition
was further reduced to some conditions relating to the degree and non-zero property of the lowest
polynomials of constraint functions. Several illustrated examples were given to validate the
effectiveness of our approaches. The future work may toward to deduce a similar result for a more
general class of nonholonomic systems. In this direction, the results proposed in [11], can be served
as a guiding line. On the other hand, the robustness for the proposed controllers is also interesting

and deserves more discussion in view of the recent result given in [5].
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