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Abstract 

The paper investigates the global ρ -exponential stabilizability of nonholonomic Caplygin 

systems. A novel decomposition of state is given first. When systems are linear in certain state 

variables, a simple and easily verified rank condition can be proposed to guarantee the global 

ρ -exponential stabilizability of Caplygin systems. In our design, all parameters can be explicitly 

determined from the constraint function. Moreover, an interesting coordinate transformation can be 

used to change a Caplygin system into another one so that the proposed criterion can be applied to 

various situations. For an important class of Caplygin systems, the rank condition is further reduced 

to some conditions relating to the degree and non-zero property of the lowest polynomials of 

constraint function. Several interesting examples including of the knife-edge, the extended 

power-form, the rolling wheel and hopping robot systems are shown that they can be exponentially 

stabilized by an easy test.  
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I. Introduction 

  The paper investigates the exponential stabilizability of Caplygin systems that can be described as 

follows: 

uq =1��                                            (1) 

                              ,)( 112 qqJq �� −=                                     (2) 

where nq ℜ∈1 , mq ℜ∈2 and nu ℜ∈ ; the constrain function J  is a matrix-valued analytic 

function defined on nℜ  [2]. The target is to provide a simple and easily checked criterion for the 

exponential stabilizability of Caplygin systems.  

  Caplygin systems as a subclass of nonholonomic systems were introduced in [2] for the control 

community. Practical examples includes the knife edge, the two-wheel mobile robots, the rolling 

wheel, and extended power form, e.t.c., [2], [6]. In recent years, the interests for such systems were 

from the fact that they have no static time-invariant continuous stabilizers [3]. Simultaneously, there 

are no time-varying smooth controllers that can exponentially stabilize them. To overcome this 

drawback, several approaches, such as the homogeneous and the discontinuous feedback methods, 

were proposed to guarantee the exponential stabilizability in present literature [1], [5], [7]-[8], [10]. 

Observe these results, the homogeneous feedback method needs some special construction for the 

controllers and thus can be applied only to certain specific systems. In the contrast, the discontinuous 

feedback method can be modified to solve the exponential stabilizability problem for a large class of 

systems as shown in [7].  

This paper will adopt the latter approach and propose a further improvement for Caplygin 

systems based on the results given in [7]. Indeed, a novel decomposition will be propose such that a 

Caplygin system can be transformed into a cascade system. Then, a simplified controllability-like 

rank condition will be proposed by borrowing the main result in that paper. Comparing with [7], all 

parameters can be explicitly determined from the constraint function J  in this paper. Moreover, an 

interesting coordinate transformation can be used to change a Caplygin system into another one so 

that the proposed criterion can be applied to various situations. For an important class of Caplygin 
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systems, the rank condition will be further reduced to certain easily tested conditions relating to the 

degree and non-zero property of the lowest polynomials of constraint function J . Several 

interesting examples including of the knife-edge, the extended power-form and the rolling wheel 

systems will be given to demonstrate that they satisfy the proposed conditions by an easy test and 

thus can be exponentially stabilized. As a final example, a set-point control problem for the hopping 

robot system is also studied and shown that an exponential convergence result can be attained based 

on our approaches.  From these applications, it can be seen that the proposed criterion does provide 

a direct and simple test with respect to the results given in present literature for determining whether 

a Caplygin system can be exponentially stabilized.                                         

 

II. Brief Review of Newly Developed Criterion 

In this section, an exponential stabilizability criterion given in [7] will be reviewed briefly. 

Firstly, several basic definitions are recalled. Throughout this paper, let mn×ℜ  denote the set of all 

mn×  matrices and rD  denote the diagonal matrix with diagonal elements taken from the elements 

of a vector r . Let 2211: mnmnA ×ℜ→ℜ×ℜ  be a matrix-valued function. Suppose the elements of 

A  are all analytic.  

Definition 1. For any 21 ni ≤≤  and 21 mj ≤≤ , let ),( wvp A
ij denote the lowest homogeneous 

polynomial in the Taylor expansion of the ),( ji entry of A at the origin and A
ijd  denote the degree 

of A
ijp . Notice that, 0≡A

ijp  when the ),( ji entry of A  is the zero function. In this case, we 

define ∞=A
ijd .  

Definition 2. Let 22),( mnsr ℵ×ℵ∈ be any integer-valued vector satisfying jidsr A
ijji ∀∀+≤ ,, . Let 

),( wvp rsA
ij  be defined as follows: 

                          






+<

+=
=

.,0

,,
A

ijji

A
ijji

A
ijrsA

ij dsrif

dsrifp
p                             (3) 
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 In the following, let us recall the definitions of dilation operation, homogeneous norm and 

global ρ -exponential stability given in [7] and [8]. 

Definition 3. Let 2

2
),,,( 21

nT
nvvvv ℜ∈= " . A dilation 22: nnr ℜ→ℜ∆ζ  on 2nℜ  is defined by 

assigning 2n  real numbers ),,,(
221 nrrrr "=  and a nonzero real number ζ  such that 

),,,(
2

221
21 n

rrrr vvvv nζζζζ "=∆ . Similarly, let 22)( mn
ijaA ×ℜ∈= . A dilation 2222: mnmnrs ×× ℜ→ℜ∆ζ  

on 22 mn ×ℜ  is defined by assigning 22 mn +  real numbers ),,,(
221 nrrrr "=  and 

),,,(
221 mssss "= , and a nonzero real number ζ  such that )( ij

srrs aA ji −=∆ ζζ .                         

Definition 4. A positive definite continuous function ℜ→ℜ n̂:ρ  is called a homogeneous norm w. 

r. t. the dilation r
ζ∆  if nr xxx ˆ,0),()( ℜ∈∀≠∀=∆ ζζρρ ζ .                                    

Definition 5. The equilibrium point 0=x  is globally ρ -exponentially stable if there exist a 

homogeneous norm ρ  and two positive constants 1σ  and 2σ such that for any solution )(tx , the 

following inequality holds: 

                          .,))(())(( 0
)(

01
02 ttetxtx tt ≥∀≤ −−σρσρ                     (4) 

    In the remainder of this section, let us consider a class of cascaded systems described in the 

following form 

11111 uBxAx +=�                                     (5) 

211221122 ),(),( uuxBxuxAx +=� ,                         (6) 

where in
ix ℜ∈  and im

iu ℜ∈ , 2,1=∀ i ; 1A  and 1B  are matrices with suitable dimensions; 

),( 112 uxA  and ),( 112 uxB  are analytic matrix-valued functions. Assume that the following 

hypothesis holds. 

(H1) There exists an integer-valued vector 22),( mnsr ℵ×ℵ∈  satisfying the following inequalities 



 5

2A
ijji drr +≤  and .~,,,2~~ jjidsr B

jiji ∀∀∀+≤                       (7) 

Under (H1), ),( 11
2 uxp rrA

ij  and ),( 11~ 2 uxp rsB
ji  can be defined as (3). For any positive constant k , 

denote )),((),( 11112
2 uxpkDuxA rrA

ijr +=  and )),((),( 11~112
2 uxpuxB rsB

ji= . Then, the following result 

can be proposed. It was proven in [7] and can be viewed as a preliminary result in our study of the 

exponential stabilizability for Caplygin systems. 

Proposition 1. Consider a system of the form (5)-(6). Suppose that (H1) and the following 

hypothesis hold for some integer-valued vector 22),( mnsr ℵ×ℵ∈ . 

(H2) For some positive constant k  and some vector 11),( mnba ℜ×ℜ∈  satisfying 

0)( 11 =++ bBaAkI , the pair ),( 11 BA  and )),(),,(( 22 baBbaA  are both controllable.  

Let  21

1

),1,,1(ˆ nn

n

rr +ℜ∈= 
	�…  and 11
1

nmK ×ℜ∈  and 22
2

nmK ×ℜ∈  be two matrices such that the 

matrices 111 KBAkI ++  and 222 ),(),( KbaBbaA +  are both stable. Then, the origin of the 

closed-loop system is globally ρ -exponentially stable when the controller ),( 21 uu  is chosen as in 

the following 

1111 )( xKaKbu +−= λ  , 




=
≠∆

=
,0))(),((,0
0))(),((,

0201

020122
2 txtxif

txtxifxK
u

sr
λ          (8) 

for any 00 ≥t  where ))(),(( 0201
)( 0 txtxe ttk ρλ −−=  with ρ  being any homogeneous norm w.r.t. 

dilation r̂
ζ∆ .                                                                        

 

III. ρ -Exponential Stabilizability via A Simplified Rank Condition 

A. Rank condition and ρ -exponential stabilizability 

   In this subsection, a simplified rank condition will be given to achieve the ρ -exponential 

stabilizability for Caplygin systems based on Proposition1. To this end, the following assumption is 

useful to transform a Caplygin system into a system of the form (5)-(6).  
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(C1) (Linear in partial state variables). There exist a decomposition of partial state vector 1q  and 

input vector u  defined as TTT zzq ][ 211 = and TTT uuu ][ 21=  with 

212

2

1
212222121 ,,),,,(, nnn

n
n uuzzzzz ℜ∈ℜ∈ℜ∈=ℜ∈ "  and 21 nnn += so that the constraint 

function )]()([),( 12211121
2 zJzzJzzJ jj

n

j∑ =
=  with 11:1

nmn
jJ ×ℜ→ℜ , 21 nj ≤≤∀ , and 

21:2
nmnJ ×ℜ→ℜ  being matrix-valued analytic functions (only depending on the state variables 1z ). 

   For the compactness, we define a matrix-valued function 211:1
nmnnJ ×ℜ→ℜ×ℜ as  

          .,,])()()([),( 11

2 3131131123111311
nn

n zzzzJzzJzzJzzJ ℜ∈∀ℜ∈∀= "        (9) 

Then, it is straightforward to see that 212211111 )(),()( zzJzzzJqqJ ��� +=  and  

.,,),,(),( 1
31311311 ℜ∈∀ℜ∈∀= ζζζ nzzzzJzzJ                           (10) 

Let 1][ 111
nTTT zzx ℜ∈= �  and 2][ 2222

nTTTT zzqx ℜ∈= �  with 11 2nn =  and 22 2nmn += . 

Then, a Caplygin system of the form (1)-(2) can be rewritten into the form of (5)-(6) where the 

matrices 1A  and 1B , and the matrix-valued functions 2A  and 2B  can be described as follows: 









=

00
0

1

I
A  , 








=

I
B

0
1 , 















 −−
=

000
00

0 21

2 I
JJ

A  and 















=

I
B 0

0

2 .            (11) 

It is easy to see that ),( 11 BA  is in the controllable canonical form (CCF) [4]. To verify (H1), let us 

define the following parameters 

 ),(min 2

2

1

1
2221 1,1

J
ij

J
ijnjnji ddd

≤≤≤≤
= and 1+= ii dr , mi ≤≤∀ 1 .                  (12) 

By the direct computation, it can be checked that the “degree matrices”of 2A  and 2B  can be 

described as follows 

              



















∞∞∞
∞∞

∞

= 0

)()(

)(

2

2

1

1

2

J
ij

J
ij

A
ij

dd

d and .
0

)( 2~
















∞
∞

=B
jid                         (13) 

Let ),,,( 21 mdddd "= , ),,,( 21 mrrrr "= , )1,,1,(
22

	�…

n

rr = , )1,,1,1(
2


	�"
n

s =  and a matrix  
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2

2

][ nm

n

TTT
d dddE ×ℜ∈= ��
��	� " . Then, the following inequalities hold: 

             )(

00

00)( 2A
ij

T
d

T
d

dd

ji drr ≤



















Ε−

Ε−

ΕΕ∗

=−  and )(
0
0)( 2~~

B
ji

d

ji d
E

sr ≤















=− .          (14) 

Now, (H1) follows from the inequalities above.  

In the following, let us compute the matrix-valued functions 2A  and 2B . First, for each 

mi ≤≤1 , 211 nj ≤≤ , 221 nj ≤≤ , define the homogeneous polynomials ℜ→ℜ×ℜ 11

1
:1 nn

ijp  and 

ℜ→ℜ 1

2
:2 n

ijp  relating to 1J  and 2J , respectively, as follows: 





 =
=

,,0

,, 1

1

1

1

1

1

otherwise

ddifp
p i

J
ij

J
ij

ij     and  




 =
=

.,0

,, 2

2

2

2

2

2

otherwise

ddifp
p i

J
ij

J
ij

ij                  (15) 

Denote )),(()( 11
1

11 1
zzpzP ij=  and ))(()( 1

2
12 2

zpzP ij=  for all 1z  in 1nℜ . Notice that for any 

positive constant k , every solutions 112),( nnba ℜ×ℜ∈  satisfying the equation 

0)( 11 =++ bBaAkI  can be described as TTT ka ],[ ηη −=  and η2kb =  for all 1nℜ∈η  in view 

of the form of 1A  and 1B  given in (11). Then, we have 

,),()),(()),(( 1

11 1
11 nTT
ij

TT
ij Pkpkkp ℜ∈∀−=−=− ηηηηηη              (16) 

by employing the definitions of 1
1ijp  above and the property of 1J  given in (10). Since 1J  and 

2J  only depends on ),( 111 zzx �=  (and independent on 1u ), the matrix-valued function 

)(),( 12112 xAuxA ≡  is also independent on 1u . Thus, the function 2rrA
ijp  described in Definition 2 

can be viewed as a function defined on 11 nn ℜ×ℜ . Moreover, it can be checked that 













+≤≤+++≤≤+

+≤≤++≤≤

+≤≤+≤≤

=
−−−

,,0

,21,1,

,21,1,

,1,1,

222))((

22
2

2
1

2

2

otherwise

nmjnmnmimif

nmjnmmiifp

nmjmmiifp

p
nmjmi

ij

ij

rrA
ij

δ
              (17) 

in view of (11)-(14) and by the definition of 2rrA
ijp  where Iij =)(δ  is the 22 nn ×  identity matrix. 
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Thus, the matrix-valued functions 2A  can be explicitly written as  















 −
=














 −−−

=−+=
kI
IkI

PPkDk

kI
IkI

pkpDk

kpkDaA
rijijr

rrA
ijr

00
0

)()(

00
0

))(()),((

)),(()(
21

21

2
2

ηηηηη
ηη , (18) 

for all 0>k , all 1nℜ∈η  with TTT ka ],[ ηη −= .  Similarly, it can be verified that 

[ ]TrsB
ji IBpB 00)( 2~2

2 =≡= . To check the controllability of the pair )),(( 22 BaA , let us assume 

that the following condition holds. 

(C2) (Reduced order controllability). Suppose mPDPDPrank m
rr =− )](,),(),([ 0

1
00 ηηη "  for 

some 1
0

nℜ∈η , where  

).()()()( 21 ηηη PDPP d−=                          (19) 

Before verify the controllability of )),(( 22 BaA , we need a technique lemma stated as follows. 

Lemma 1. Consider three matrices nmA ×ℜ∈ , pmB ×ℜ∈  and nnC ×ℜ∈ . Suppose the matrix C  is 

invertible and mBrank =)( . Then, the following equality holds: 

                      .
0

nm
C

BA
rank +=








 

Proof. It only needs to show that for any vector nmyy ℜ×ℜ∈),( 21 , there exists a vector 

pn ℜ×ℜ∈),( 21 ζζ such that the following equality holds: 

                         .
0 2

1

2

1








=















y
y

C
BA
ζ
ζ

 

From the equation above, it is sufficient to choose 2
1

1 yC −=ζ . Since mBrank =)( , there exists 

also a vector pℜ∈2ζ such that 112 ζζ AyB −= . It is straightforward to see that the equation 

described in the above holds by the choice of ).,( 21 ζζ  The proof of the lemma is completed.     

  Under condition (C2), the controllability of )),(( 22 BaA  can be guaranteed in the following 

result. 

Proposition 2. Suppose  (C2) holds for some 1
0

nℜ∈η . Let k be any given positive constant, 
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[ ]TIB 002 =  and the matrix-valued function )(2 aA  be defined as in (18) with 

TTT ka ][ 00 ηη −= .  Then, )),(( 22 BaA  is controllable. 

Proof. First, notice that dr DID =−  in view of (12). According to (18) and by employing the 

equation above, the following equality relating to the controllability matrix can be derived via 

elementary column operations: 

],,,,,[])(,,)(,)(,[ 354322
1

22
2

2222 +
+ = m

m BBBBBrankBaABaABaABrank "" ,          (20) 

where TT IPBkBaAB ]0)([)( 022223 η−=−= , TTPBkBaAkB ]00)([))()(/1( 03324 η=−=  

and 11,
0
0

)(
))()(/1(

0

3024 −≤≤∀















== ++ mi

PD
BaAkB

i
r

ii

η
. Since 








0

0
I

I
 is invertible, we have   

        

,2
0000
0000

)()()()(0
],,,,,[ 2

0
1

0002

35432 nm
I

I
PDPDPP

rankBBBBBrank

m
rr

m +=














 −
=

−

+

"
"
"

"
ηηηη

 

in view of (C2) and Lemma 1. This results in the controllability of )),(( 22 BaA  according to (20).  

Remark 1. In fact, it is not difficult to show that (C2) is also a necessary condition of the 

controllability of )),(( 22 BaA . Since we don’t need this property, its proof is omitted.            

  The following theorem is readable from Propositions 1-2 and the previous discussions. 

Theorem 1. Consider a Caplygin system of the form (1)-(2). Suppose (C1)-(C2) hold for some 

1
0

nℜ∈η . Let id  and ir  be the constants defined in (12) for each mi ≤≤1 . For any positive 

constant k , let 1111][ 12111
nnnnKKK ×× ℜ×ℜ∈=  and 22222][ 2322212

nnnnmnKKKK ××× ℜ×ℜ×ℜ∈=  

be two matrices such that the following matrices  
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







+ 1211 KkIK
IkI

 and 
















+

−

232221

0201

0
)()(

KkIKK
IkI

PPkkDr ηη
               (21) 

are both stable. Choose the controller ),( 21 uu  as in the following 

                11211101211
2

1 )( zKzKkKKIku �+++−= λη                            (22) 

and          






=
≠++∆=

.0))(),(),((,0
,0))(),(),((,)(

020101

0201012232222/121
2 tqtqtqif

tqtqtqifzKzKqKu
d

�
��λ             (23) 

where ))(),(),(( 020101
)( 0 tqtqtqe ttk �ρλ −−=  with ρ  being any homogeneous norm w.r.t. dilation 

vector ),1,,1,1(~
2

rr
n

	�"= . Then, the origin of the closed-loop system is globally ρ -exponentially 

stable.                                      

Proof. Based on previous discussions and Proposition 2, hypotheses (H1)-(H2) hold for 

)1,,1,(
22

	�…

n

rr = , )1,,1,1(
2


	�"
n

s = , TTT ka ][ 00 ηη −=  and 0
2ηkb = . Moreover, the homogeneous norm 

),,( 211 qqq �ρ w.r.t. dilation ),1,,1,1(~
2

rr
n

	�"=  can be viewed as a homogeneous norm  

),][,]([),(ˆ 2212121 qzzzzxx TTTTTT ��ρρ =  w.r.t. r̂
ζ∆  with 21

1

),1,,1(ˆ
2

nn

n

rr +ℜ∈= 
	�…  where 21 nnn += ,  

TTT zzq ][ 211 = , TTT zzx ][ 111 �=  and TTTT zzqx ][ 2222 �= . Notice that the two matrices given in (21) 

are equal to 111 KBAkI ++  and 222 )( KBaA + , respectively. Thus, it remains to show that the 

controllers given in (8) can be written into the form (22)-(23). Using the fact TTT zzx ][ 111 �=  and 

][ 12111 KKK = , it can be directly computed that 

11211101211
2

1111 )()( zKzKkKKIkxKaKbu �+++−=+−= ληλ . 

That is to say that 1u  can be written into the form (22). Similarly, using the fact TTTT zzqx ][ 2222 �=  

and ][ 2322212 KKKK = , the following equations hold: 

                .][ 323222221

2

2

2

23222122 zKzKqK
z
z
q

KKKxK rsrssr ++∆=















∆=∆ λλλ

�
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Let )(21 ijkK = . Then, we have 





















==∆

−−−

−−−

−−−

−

mn
d

n
d

n
d

m
ddd

m
ddd

ij
rsrs

kkk

kkk

kkk

kK

m

m

m

ji

22

2

2

1

21

21

21

22221

11211

21 )(

λλλ

λλλ

λλλ

λλ

"

#"#
"

"

. 

In view of the equation above, it can be seen that .2/121221 qKqK drs
λλ ∆=∆  Hence, we have 

.3232222/12122 zKzKqKxK dsr ++∆=∆ λλ  Particularly, 2u  can be written in the form (23) by virtual 

of (8). The global ρ -exponential stability follows from Proposition 1. This completes the proof of 

the theorem.                                                                      

B. Second form of Caplygin systems 

   In this subsection, an alternative representation of Caplygin systems will be given. It will be 

useful in the study of practical systems. An illustrated example will be given in next section.  

   In the remainder of this paper, we always assume that (C1) holds. Thus, the constraints function 

J  can be written as )]()([),( 12211121
2 zJzzJzzJ jj

n

j∑ =
= . For each 21 nj ≤≤ , let jJ1

~  be 

defined as follows: 

                      ,/~
1211 zJJJ jjj ∂∂−=                                       (24) 

where jJ 2  is j-th column vector of 2J . Consider the following coordinate transformation: 

                       .)(~
21222 zzJqq +=                                       (25) 

Then, we have  

       
,~~)/(

)/(~

112111212122221211

121212222

222

2

qJzzJzzzJzJzJzzJ

zzzJzJqq

jj
n

jjj
n

jjj
n

j

jj
n

j

������

����

−=−=∂∂++−−=

∂∂++=

∑∑∑
∑

===

=  

where  

]0)(~[),(~
211121

2

jj
n

j
zzJzzJ ∑ =

= .                            (26) 

In new coordinate )~,,( 211 qqq � , the transformed system is still a Caplygin system in the form (1)-(2). 
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For the convenience, it can be called as the second form of Caplygin systems. Moreover, (C1) also 

holds by (26). Then, theorem 1 can be used to study the exponential stabilizability for new system. 

We summarize the previous discussions into the following proposition. 

Proposition 3. Consider a Caplygin system of the form (1)-(2). Suppose (C1) holds. Using the new 

coordinate )~,,( 211 qqq �  with 2
~q  being defined as (25), the new system called as second form is also 

a Caplygin system of the form (1)-(2) and (C1) still holds where the new constraint function can be 

described as (24) and (26).                                                           

Remark 2. It may be guessed that (C2) is invariant under various coordinate transformations since it 

is a controllability condition. Unfortunately, it is not true in general. In fact, we will show that the 

rolling wheel as a Caplygin system does not satisfy (C2) in its original coordinate representation, but 

using the coordinate transformation described above, (C2) becomes to be true for the new system in 

next section. That is to say that (C2) is a condition depending on coordinate transformations.   

 

IV. A Simple Degree Criterion and Examples 

In this section, Theorem 1 will be used to study an important class of Caplygin systems. Again 

we assume that (C1) holds. Throughout this section, we assume that 12 =n . Under this assumption, 

a simple criterion can be proposed to check (C2) as follows. 

Proposition 4. Let id  be the constant defined in (12) for each mi ≤≤1 . Let 

1,))(,),(),(()( 21
nT

maaaP ℜ∈∀= ηηηηη " . Assume that (C1) holds and 12 =n . Then, (C2) holds if 

and only if the following conditions hold. 

(a) There exists a vector 1
0

nℜ∈η  so that miai ≤≤∀≠ 1,0)( 0η . 

(b)  jidd ji ≠∀≠ , . 

In addition to 011 ≡J , (C2) is equivalent to the following conditions. 

(c) There exists a vector 1
0

nℜ∈η  so that mipp J
i

J
ni ≤≤∀≠=+ 1,0)()( 010)1(

2

1
ηη . 
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(d)  jiddandmidd J
nj

J
ni

J
i

J
ni ≠∀≠≤≤∀≠= +++ ,,1,0 )1()1(1)1( 11

2

1
. 

Proof. Let 1+= ii dr  as defined in (12), mi ≤≤∀ 1 . It is straightforward to see that that 

1,))(,),(),(()( 2211
nT

mmr arararPD ℜ∈∀= ηηηηη " . Thus, the determinant of the controllability-like 

matrix given in (C2) can be explicitly computed as follows: 

[ ]

).()()()(

1

1
1

det)(det),,,det(

1111

1

1
22

1
11

1

1

2
1

2222

1
1

1111

1

jmji i
m

i ijmji i
m

i i

m
mm

m

m

m

i i

m
m

mmmm

m

m

m
rr

ddarra

rr

rr
rr

a

arara

arara
arara

PDPDP

−=−=





















=





















=

∏∏∏∏

∏

≤<≤=≤<≤=

−

−

−

=

−

−

−

−

"
#%##

"
"

"
#%##

"
"

"
 

by using the property of Vandermode matrix. This implies that  (C2) holds if and only if conditions 

(a) and (b) holds. Since 12 =n  and 011 ≡J , we have ]0[ 2JJ = . In this case, we have 

,1,)1(1 1

2 middd J
ni

J
ii ≤≤∀== +  by the definition. Thus, it can be directly checked that 

TJ
nm

J
n

J
n pppP ),,,( )1()1(2)1(12 111 +++= "  in view of (15). Moreover, the matrix-valued function P can be 

computed as TJ
nmm

J
n

J
nd pdpdpdPDP ),,,( )1()1(22)1(112 111 +++ −−−=−= " . Then, (a) is equivalent to (c) 

and 0≠id .1, mi ≤≤∀  It finishes the proof of the proposition by the previous discussions.      

  In the following, three illustrated examples are given based on Theorem 1 and Proposition 4.  

Example 1. (Knife edge). Consider a knife edge system as follows [2]: 

                             

,
,

,
,
,

25

2
513214

513

52

41

vy
yyyvvy

yyy
yy
yy

=
−+=

−=
=
=

�
�
�
�
�

                              (27) 

where iy  is state variable, 51 ≤≤∀ i , and jv  is control variable, 21 ≤≤∀ j . Consider the 

following coordinate transformation: 
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.],[,,,,],[,, 2122
2
513211322115211

TT uuuvuyyyvvuyqzzqyzyz ==−+=====       (28) 

Then, the system (27) can be transformed into a Caplygin system of the form (1)-(2) with 1=m  

and the constraint function TzJ ]0[ 1= . Moreover, (C1) holds with 11 =n , 12 =n , 011 ≡J  and 

12 zJ = . Thus, it only needs to verify conditions (c)-(d) in Proposition 4 to exponentially stabilize 

the systems (27). Since 1=m  and 12
1112 == JJ dd , it is easy to see that condition (d) holds. 

Furthermore, 0,0)()( 00011012
2 ≠∀≠== ηηηη JJ pp . Thus, condition (c) also holds and the origin is 

globally ρ -exponentially stabilizable according to Theorem 1 and Proposition 4.               

Example 2. (Extended power form). Consider an extended power form system as follows [6]: 

,
,

,)!1/(

,

22

123

1
121

11

uy
yyy

nyyy

uy
n

n

=
=

−=

=
−

+

��
��
#
��

��

                               (29) 

where iy  and jy�  are state variable, 11 +≤≤∀ ni , 21 ≤≤∀ j , and ju  is control variable, 

21 ≤≤∀ j . The system (29) is a Caplygin system of the form (1)-(2) with 

TT
n

T uuuyyqyyq ],[,],,[,],[ 21312211 === + " , 1−= nm  and the constraint equations ]0[ 2JJ =  

where Tn ynyJ ])!1/([ 1
1

12 "−−= − . Notice that condition (C1) holds with 11 yz =  and 22 yz = , 

11 =n , 12 =n and 011 ≡J . Thus, it only needs to verify conditions (c)-(d) in Proposition 4 to 

exponentially stabilize the systems (29). It is easy to see that indd J
i

J
i −== 2

12 , 11 −=≤≤∀ nmi , in 

view of the form of 2J . Hence, condition (d) holds. Moreover, 

.0,11,0)!/()()( 00102
2 ≠∀−=≤≤∀≠−−== − ηηηη nmiinpp inJ

i
J
i  Thus, condition (c) also holds and 

the origin is globally ρ -exponentially stabilizable according to Theorem 1 and Proposition 4.     

Example 3. (Rolling wheel). Consider a rolling wheel system as follows [2]: 
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,
,2/

),sin(
),cos(

,
,

26

15

254

253

62

51

vy
vy

yyy
yyy

yy
yy

=
=
=
−=
=
=

�
�
�
�
�
�

                                 (30) 

where iy  is state variable, 61 ≤≤∀ i , and jv  is control variable, 21 ≤≤∀ j . 

Consider the following coordinate transformation: 

.],[,2/,,],[,],[,, 2112214322111221
TTT uuuvuvuyyqzzqyzyz =======       (31) 

Then, the system (30) can be transformed into a Caplygin system of the form (1)-(2) with 2=m  

and the constraint functions  









−

=
)sin(0

)cos(0

1

1

z
z

J .  

Thus, (C1) holds with 11 =n , 12 =n , 011 ≡J  and TzzJ )]sin(),[cos( 112 −= . To apply Theorem 1, 

it is necessary to verify conditions (c)-(d) in Proposition 4. However, the condition (d) in Proposition 

4 does not hold since 12
1112 == JJ pp  and 02

1112 == JJ dd . Alternatively, let us try to very (C2) for the 

second form of Caplygin system described in subsection III.B. According to (24), the new constrain 

function ]0~[~
211zJJ =  where 

                             .
)cos(
)sin(

/~
1

1
121111 








=∂∂−=

z
z

zJJJ  

In this case, 02 ≡P  and .,,])cos(,)[sin()(~),( 3131313111311 ℜ∈∀ℜ∈∀== zzzzzzzzJzzJ T  Thus, 

TJ
i zzzp ],[)( 3311

1 =  and ).1,2(),(),( 11
211121 === JJ ddddd  Then, 

.,],[)),(()),(()()()()()( 2
1

1
1121

1 ℜ∈∀====−= ηηηηηηηηηηη TJ
iid ppPPDPP  

Particularly, conditions (a)-(b) in Proposition 4 hold for any 00 ≠η . Thus, the origin is globally 

ρ -exponentially stabilizable for new coordinated system by Theorem 1 and Proposition 4.       
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  As a final example, let us consider the set-point problem for a hopping robot system. 

Example 4. (Hopping robot). Consider a hopping robot system as follows [9]: 

,
)1(1

)1(
,

,

2

2

ωθ

ωψ

++
+

−=

=

=

lm
lm

vl

l

l�

�
�

                             (32) 

where ),,( θψ l  denote the body angle, leg extension, and leg angle of the robot; lm  is the mass of 

the leg at the foot; ω  and v  are the velocities of ψ  and l , respectively; Let τ  and T  denote 

the torque and the force w.r.t. ψ  and l , respectively. Then, we have  

                           J/τω =� , 

                           ,/ MFv =�                                          (33) 

where J  and M  represents the inertial mass and the mass, respectively.  

The so-called set-point problem is to find a controller ),( Fτ  so that every trajectory 

),,,,( vl ωθψ  of system (32)-(33) converges to a specific target ),,,,( vl ωθψ = )0,0,,,( 000 θψ l  for 

some non-negative constant 0l . Define the following error variables and control variables as 

follows: 

])1(1/[)1()(,],[,, 2
0

2
00022110201 +++−+−==−=−= lmlmqzzqzllz ll

T ψψθθψψ ,   (34) 

and .],[,/,/ 2121
TuuuJuMFu === τ                                              (35) 

Thus, the set-point problem is reduced to a stability problem since 0))(),(),((lim 121 =
∞→

tqtqtq
t

�  is 

equivalent to ))(),(),(),(),((lim tvtttlt
t

ωθψ
∞←

= )0,0,,,( 000 θψ l . Moreover, the error system can be 

transformed into a Caplygin system of the form (1)-(2) with 1=m  and the constraint functions  

[ ])(0 12 zJJ = ,  

where 2
0

2
0

2
01

2
01

2 )1(1
)1(

)1(1
)1(

++
+

−
+++
++

=
lm

lm
lzm

lzm
J

l

l

l

l  and (C1) holds with 11 =n , 12 =n , 011 ≡J . 

Notice that 1
22

001112 ])1(1/[)1(22 zlmlmpp ll
JJ +++==  and thus 12

1112 == JJ dd . It is straightforward 

to see that conditions (c)-(d) holds. Then, the origin of the error system is globally ρ -exponentially 
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stabilizable according to Theorem 1 and Proposition 4. That is to say that the set-point control 

problem can be solved via the controller (22)-(23) by employing Theorem 1.                   

Remark 3. Example 4 particularly shows that the set-point problem for Caplygin systems can also be 

solved by considering the error systems and employing Theorem 1. Due to a limited space, a formal 

description is omitted.                                                              

 

V. Conclusions 

  The ρ -exponential stabilizability of nonholonomic Caplygin systems was studied. The 

global ρ -exponential stabilizability of the origin was guaranteed based on a simplified rank 

condition. The proposed criterion is easily checked and simpler than the result given in [7]. An 

interesting coordinate transformation (second form) of Caplygin systems was also given so that the 

proposed criterion can be applied to various situations. For the case of 12 =n , the rank condition 

was further reduced to some conditions relating to the degree and non-zero property of the lowest 

polynomials of constraint functions. Several illustrated examples were given to validate the 

effectiveness of our approaches. The future work may toward to deduce a similar result for a more 

general class of nonholonomic systems. In this direction, the results proposed in [11], can be served 

as a guiding line. On the other hand, the robustness for the proposed controllers is also interesting 

and deserves more discussion in view of the recent result given in [5].  
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