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Abstract. This paper addresses a new path planning method, whose objective is to 
build a process to generate a path which connects two configurations of car-like 
mobile robots. The generated path is constituted by both cubic spirals and straight 
lines, and has continuous and bounded curvature. We will show the procedure to find 
the path with theoretical minimal length and to simplify it for the reason of practical 
use. Mobile robots with forward and backward driving abilities and only uni-direction 
driving ability are both considered. This method is flexible and is eligible to 
incorporate with other constraints like wall-collision avoidance. This will also be 
discussed.      
     
I. Introduction 
Path planning problem of autonomous mobile robot has been widely studied in recent 
years. The essential topic is to generate an acceptable path to join two distinct 
configurations with some constraints and optimize it. L. E. Dubins first discussed the 
shortest paths with bounded curvature synthesized by arc and straight line in 1957[8]. 
J. A. Reeds and L. A. Shepp further studied the same path with cusp, i.e. the vehicle 
can drive both forward and backward, in 1990[9]. A complete characterization of path 
synthesized by arc of circle and straight line was addressed by P. Souères and J. 
Laumond[2]. These studies concentrated on the finding of the path with theoretical 
minimal length. They showed such kind of path has at most two cusps. However, its 
non-continuous curvature results in a control difficulty. At the junction of a straight 
line and an arc, mobile robot needs to stop its wheel motion to make the perfect 
tracking achievable.  
A. Scheuer and Ch. Laugier [3][4]added a new constraint that the derivative of 



curvature is bounded to the path planning problem and made the planned path 
smoother. Different from Dubins’ path, the curvature value along the path has a 
trapezoid shape and is continuous.  
Y. Kanayama and N. Miyake suggested another set of curve called clothoid curves or 
Cornu spirals to form a smooth path which has continuous curvature [10]; A. Scheuer 
and Ch. Laugier in [4] also have a similar discussion. A more natural and smoother set 
of curve called cubic spiral is introduced by Kanayama and Hartman in 1997[1]. 
Cubic spiral is a kind of trajectory which direction function is cubic. Kanayama cut a 
cubic spiral in its two inflection points to obtain a curve with finite length and has 
zero curvature on both end-points. This portion of a cubic spiral can connect two 
configurations that are symmetric. Two configurations which are not symmetric can 
be joined through an intermediate configuration, which is called symmetric mean, by 
two cubic spirals. Instead of path length, Kanayama used path curvature and 
derivative of path curvature as criteria to optimize it. The physical meanings of these 
two criteria are in fact the centripetal (lateral) acceleration and the variation of it.             
Though the cubic spiral method can generate smoother path than other ones, it does 
not consider the bounded curvature constraint of car-like mobile robots. An 
unreasonable high value of curvature happens when the initial and end configurations 
are too close, and the “smoothest” criteria make the path too long if two 
configurations are relative far.  
In this paper, we address a new path planning method. Following Kanayama’s cubic 
spiral method, we incorporate it with straight line segments in its zero curvature 
points. The result path has both continuous and bounded curvature. It has two cubic 
spiral segments and at most two straight line segments and is optimized by a 
shortest-length criterion. This method can be also applied to the vehicle with both 
forward and backward moving abilities.  
In the next section, the cubic spiral method is briefly reviewed, and notations used in 
this paper are introduced. Section three we will address the improved cubic spiral 
method and the procedure to find a shortest path. Other characteristics will be 
discussed in section four, including wall collision avoidance and motion direction 
constraint of mobile robot. The last section is the conclusion.                 
 
II. Review of Cubic Spiral Method  
II.1 Background 
Y. J. Kanayama and B. I. Hartman suggested the using of cubic spirals to find the 
“smoothest” path for mobile robot path planning problem. They claimed the set of 
cubic spiral is theoretical more meaningful than the set of clothoids. The 
characteristics of continuous curvature and criterion of minimal centripetal 



acceleration or minimal change of centripetal acceleration are indeed rational. 
However, this method has some constriction and drawbacks and is not suitable for 
practical use. Later we will briefly describe this method and its main drawbacks. 
   
II.2 Notations and Representation of a Curve  
In this paper, we follow most of Kanayama’s notations. A triple ( , , )q x y θ≡  is to 
represent a vehicle configuration. For an arbitrary configuration q , [ ]q denotes its 
position ( , )x y , and ( )q its directionθ . For a configuration pair 1 2( , )q q , the size is the 
distance between the two points 1[ ]q and 2[ ]q , and the angle is the difference between 
the two directions 1( )q and 2( )q , i.e. 

1 2 1 2

1 2 2 1

( , ) ([ ],[ ])
( , ) (( ) ( ))

size q q d q q
angle q q q q

≡
≡ Φ −

       (1) 

where the angle-normalizing function Φ is defined as  

       ( ) 2
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π
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       (2) 

If the function angle is applied to a vector vG , it means 

    ( ) atan2( , )y xangle v v v=G           (3) 

and x yv v are scalars denote the x and y components of vG . If these two functions are 

applied to a cubic spiral, they are in fact applied to its two end-configurations. 
A directed curve Π  with finite length A is defined by a triple, 

0( , , )qκΠ ≡ A             (4) 
where : [0, ]κ →A \  is its curvature and 0 0 0 0( , , )q x y θ≡  is its initial configuration 
(Lipshutz 1969). Its direction θ and position ( , )x y at arc length s are evaluated by  
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            (5) 

At the initial point 0 0( , )x y , s is defined as 0. A configuration 

( )( ) ( , ( ), ( ))q s x s y s sθ=  is naturally defined by this set of simultaneous equations.  

 
II.3 Cubic Spirals 
By definition, cubic spiral is a set of trajectories that their direction functions θ  are 
cubic. An entire cubic spiral has infinite length, but the useful portion is cut from its 
two inflection points and has finite length. The curvature function of this portion of 



cubic spiral with length A  is represented as 
( ) ( )s As sκ = −A             (6) 

where A is a constant to be determined. At the inflection points ( 0s and s= = A ) the 
cubic spiral has zero curvature. The constant A of a cubic spiral joining two separated 
configurations which have relative angle of ( ) (0)α θ θ= −A can be solved by the first 
equation of (5) and the curvature function becomes, 

3
6( ) ( )s s sακ = −A
A

            (7) 

If the length of a cubic spiral is 1, its size is given by[1]  
1/ 2 2

0

3( ) 2 cos( ( 2 ) )
2

D t t dtα α≡ −∫              (8) 

There is no close form to represent the size of a cubic in any length. Since all cubic 
spirals are similar, a pre-calculated ( )D α  table can evaluate the relation of A and 

1 2( , )d size q q=  by α  using the following equation, 

          
( )
d

D α
=A          (9) 

The ( )D α table is plotted in Fig. 1.  
 
II.4 Concept of Symmetric Configurations 
A configuration pair 1 2[ , ]q q is said to be symmetric if  
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The symmetric property is essential in this method because a cubic spiral can connect 
two symmetric configurations. 
 
II.5 Sketch of Cubic Spiral Path Planning Method 
Because one cubic spiral can connect two symmetric configurations, we need at least 
two cubic spirals to connect any two configurations. A symmetric mean q  of any 
configuration pair 1 2[ , ]q q is a configuration that both 1[ , ]q q and 2[ , ]q q are symmetric 
pairs. Kanayama proved that all symmetric means of a configuration pair 1 2[ , ]q q forms 
a circle. The optimization is to choose one symmetric mean q  from this circle to 
minimize the cost functions. 
 
II.6 Drawbacks 
Kanayama’s method can generates smoother path than other method, and is easy to be 
implemented by software programming. However, there are two main drawbacks of 



this method that make it not fit practical use. First, the cost functions of Kanayama’s 
method either minimize the integration of centripetal force or the change of 
centripetal force; they do not consider the arc length and maximal (or minimal) 
curvature. As shown in Fig. 2, Configurations pairs which have the same relative 
position and relative angle but different size have similar “smoothest” path, yet the 
length of this path is too long when the size is large and the curvature is too high 
when the size is small. 
Secondly, the method fails in the configuration pair that two configurations are 
originally symmetric. Though he declared this kind of configuration pair can be 
joined by simple curve (one symmetric curve), but in some cases, like 1 [0,0,0]q =  
and 2 [ ,0,0]q a= − , the simple curve may have infinite length. 
 
III. Our Solution: the Improved Cubic Spiral Method 
The cubic spiral indeed has many good properties that are suitable to be the path of 
mobile robots. Therefore we improve Kanayama’s method to assemble a path by at 
most two cubic spirals and two straight lines. The assembled path still has continuous 
curvature. Different from original method, the improvement adds a maximal (or 
minimal) value of curvature as constraints and path length as cost criterion. It can be 
applied to path planning problem that allows or doesn’t allow backward motion. It 
also has simple wall-collision avoidance abilities. We will show the procedure to find 
the theoretical shortest path and some simplification to fit practical use. 
 
III.1 Problem Statement  
The problem is to find the path joining a given ordered pair of configurations 1 2[ , ]q q  
with bounded and continuous curvature along it. The path is assembled by at most 
two cubic spirals and two straight lines and is optimized to be shortest.  
 
III.2  Constraints of Maximal Curvature 
In general, the path of a mobile robot has its minimal radius of curvature which is 
constrained by wheel arrangement[5][6][7]. This constraint also may dynamically 
changes according to driving velocity or control performance. We use a constant 

maxκ to describe the absolute value of maximal curvature of the planned path. Because 
curvature of a straight line is zero, this constraint only affects the cubic spiral segment 
of the path.  

For a specific cubic spiral with angleα , since 3
6( ) ( )s s sακ = −A
A

 is the curvature 

polynomial, it has the maximal (or minimal, if 0α <  ) value at the middle point, 



where 
2

s = A , and  
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Therefore if we have a constraint of curvature which is max( )sκ κ≤ . It can be 

transformed to the size constraint, 

max

3 ( )
2

D
d

α α
κ

≥       (12) 

The minimal d can be solved as a function of α  

min
max

3 ( )
( )

2
D

d
α α

α
κ

=     (13) 

 
III.2  Minimal Locomotion 
In this section, we will show the computation of the minimal locomotion 
from 1q through an intermediate direction mθ to 2( )q . The maximal curvature 
constraint discussed in above section is applied, and there are 16 kinds of different 
minimal locomotion vector can be generated for a given mθ .   
We restrict the angle of a cubic spiral in the range [ 2 ,2 ]π π− , for an initial 
configuration 1q which has direction 1θ  to the intermediate configuration with 
direction mθ , there exists two cubic spirals that all have the maximal curvature. 
Angles of these two cubic spirals are,  

       1 1

1 1 1

( )

sgn( ) (2 )
c m

c c c

α θ θ

α α π α

+

− +

= Φ −

= − ⋅ +
     (14) 

If 1cα
+ is positive, then 1cα

− must be negative, and vice versa. The above notation assures 

that 1 [ , ]cα π π+ ∈ −  and 1cα
− outside this range, as shown in Fig. 1. To achieve both 

angles there are two kinds of motion: forward and backward. Therefore the amounts 
of cubic spirals are four. We use another positive or negative sign to represent these 
four kinds of motion, 

1 1 1 1( ) ,( ) ,( ) ,and( )c c c cα α α α+ + + − − + − −              (15) 

Positive sign outside the bracket means forward motion, and negative one means 
backward motion. Fig. 3 shows the four trajectories. Although they have the same 

maxκ constraints, four traveling distance are different due to the angles and motion 
directions are different. These four intermediate configurations are named 



, , ,m m m mq q q and q++ +− −+ −− respectively. The first superscript denotes the range of the angle 

and the second superscript represents the motion direction. The four distance are also 
named by the same notation, 
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      (16) 

Note the result of ( )mind i is always positive, but above four 1cd may be negative. The 

negative value means the motion is accomplished by backward motion of vehicle. 
Four vectors are defined as 
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                   (17) 

 
Use the same procedure again, if 2 2( )c mα θ θ= Φ − , there are also four trajectories 

exist for each mq . The corresponded vectors are 2 2 2 2, , ,c c c cv v v v++ +− −+ −−G G G G , and their length are 

2 2 2 2, , ,c c c cd d d d++ +− −+ −− . As a result, for a specific intermediate direction mθ , there are 16 

different paths with maximal curvature to arrive at the end direction 2θ . The 
symmetric mean circle can only represent two of them. 

The minimal locomotion vector of a given mθ is ,ij kl
cvG , defined by 

{ }

,
1 2 ,

, , , ,

ij kl ij kl
c c cv v v where

i j k l
= +

∈ + −

G G G
     (18) 

corresponded minimal distance can be also represented as 1 2and ij kl
c cd d . Fig. 4 shows 

the sixteen end positions of minimal locomotion. One of these cases is plotted to 
show the combination of minimal locomotion vector. 

 
III.3 Assemble a Path  
Following Kanayama’s method, we adapt two cubic spirals to form a path. There are 



three zero curvature points at a two-cubic-spiral path. These points can be extended 
by straight lines without lose the feature of continuous curvature. Combining with two 
cubic spirals, we now have five segments to assemble a path to connect a given 
configuration pair. The five directions are 
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Their corresponded vectors are  

1 1 2 2, , , , ,c m cv v v v and vG G G G G                    (20) 
Five vectors are all adjustable; a successful combination of these vectors is to fulfill 
the below equation, 

    2 1 1 1 2 2[ ] [ ] c m cq q v v v v v= + + + + +
G G G G G                  (21) 

Since the directions of the five vectors are known, we need only to solve their length. 
Define unit vectors of the above five vectors as  
     1 1 2 2, , , , ,c m cn n n n and nG G G G G                  (22) 
The positive direction of these five unit vectors are forward motion direction. Then 
(21) becomes 

2 1 1 1 1 1 2 2 2 2[ ] [ ] c c m m c cq q d n d n d n d n d n= + + + + +
G G G G G        (23) 

where 1 1 2 2, , , ,and ,c m cd d d d d are length to be decided.  
By (16), the constraints are 
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d d

 > >

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
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                   (24) 

1 2, ,md d and d could be positive or negative. We must emphasis again that positive 
value of each d denotes forward motion and negative does backward one. 
 
III.4  Criterion of Minimal Length  
The objective of this section is to find a minimal length solution. Assume mθ and i, j, 
k, and l have been selected already. The cost criterion can be defined as 

1 2
1 2

1 2

cost( )
( ) ( )

c c
mi k

c c

d d
d d d

D Dα α
Π = + + + +         (25) 

1 2 and i k
c cα α as defined in (14).  

1 1 2 2, , , ,and c m cd d d d d should be solved by (23) under the constraint (24) and to 



minimize the above cost criterion. Because 1
ij
cd and 2

kl
cd have been chosen, 

1( )i
cD α and 2( )k

cD α are constant now. The cost of minimal locomotion is 
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This part of cost cannot be reduced. We define 

*
1 1 1

*
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Then to minimize (25) is equivalent to minimize 
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And the constraints (24) become 
*
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                (29) 

 
III.5  Vector Choose 
Substitute (27) to (23), we have 

* *
2 1 1 1 1 1 1 1 2 2 2 2 2 2[ ] [ ] ( ) ( )ij kl

c c c c m m c c c cq q d n d n d n d n d n d n d n= + + + + + + +
G G G G G G G     (30) 

Define 

     2 1 1 1 2 2[ ] [ ] ( )ij kl
goal c c c cv q q d n d n= − − +
G G G              (31) 

where 1 1 2 2
ij kl
c c c cd n d n+
G G  is the minimal locomotion vector ,ij kl

cvG solved in (18). Then the 

equation to solve becomes 

     * *
1 1 1 1 2 2 2 2goal c c m m c cv d n d n d n d n d n= + + + +

G G G G G G    (32) 

1 2, ,and md d d can be positive or negative, but the signs of * *
1 2and c cd d are pre-decided 

by (29). It is not convenient to solve such a problem. Therefore we define 



 and n n n n+ −
∆ ∆ ∆ ∆= = −
G G G G       (33) 

{ }1, 1, , 2,2c m c∈+ . Define a vectors set` , 

{ }1 1 2 2 1 2, , , , , , ,j l
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and  is j l or+ − , and its corresponded coefficient set ^ , 
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Then all unknowns are positive, and we have total eight unknowns to be solved. The 
criterion (28) becomes 

* 1 2
1 1 2 2

1 2

cost ( )
( ) ( )

j l
c c

m mi k
c c

d dd d d d d d
D Dα α

+ − + − + −Π = + + + + + + +   (38) 

The solution is not as hard as it looks like. In fact, to minimize (38) we need only two 
terms in (35), and let others remain zero. The reason will be addressed in appendix 1. 
Assume now we have chosen a pair of vector and a bn n ∈

G G ` , and the corresponded 
and a bd d ∈^ , (36) becomes 

goal a a b bv d n d n= +
G G G              (39) 

By Appendix B, the solution of and a bd d is 
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( ( ) ( ))

( ( ) ( ))
a goal

b goal

angle n angle v

angle n angle v

θ

θ

+

−

= Φ −

= Φ −
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The choose of and a bn nG G will letθ + be positive and θ − negative. Then, by (39),(40), 



and (41), coefficients 1 1 2 2, , , ,and c m cd d d d d is solved and (25) is minimized. Note 

because 1 2and ij kl
c cd d is usually non-zero, the amounts of non-zero coefficients are 

between two and four, i.e., there is at least one zero coefficient.  
      
III.6  Procedure to Find a Best Path 
The procedure to find a best path is to search all possible combination of cubic spiral 
pairs, and find the one that minimizes the cost criterion (25). From previous section, 

we have found the shortest path of a specific mθ and one of its ,ij kl
cvG . To find the best 

path, we should compute the cost of each case that mθ from π− to π and its 

sixteen ,ij kl
cvG . Though there may be thousands of cases to check, the task is in fact not 

so hard. This is because we do not have to compute each cubic spiral data to measure 
the path length, but only have to generate five d to compute the cost. The Procedure 
is  
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next
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next
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(42)    

θ∆ can be chosen according to requirements, as we will further discuss later. Some 
paths planned by the algorithm are shown in Fig. 5 and 6. Fig. 7 is an example to 
represent the procedure to optimize. 
 
IV Further Discussion  
Some important feather of this path planning method is discussed in this section. 
 
IV.1  Forward and Backward Motion 
The path planning algorithm suggested in this paper is for the vehicle which can drive 
both forward and backward. However, it also can be applied to the uni-direction path 



planning problem. We should simply restrict 1Direction C and 2Direction C  be 
forward, and use 

     
{ }
{ }

1 2 1 2

1 2 1 2

, , , , ,

, , , ,
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f m c c
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≡
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to replace and ` ^ . Then the solution can fit our use. But one should note that when 
solve (39), the requirement for positive solution ( and a bd d ) is  

 and 
2 2
π πθ θ+ −< > −        (44) 

In the forward motion case, for some mθ and ,ij kl
cvG , such a pair of ( ),a bv vG G may not 

exist, then the algorithm is failure to generate a path. Its cost is set to be an extreme 
large value to avoid being chosen as solution. Fig. 8 and 9 show some uni-direction 
path planned by this algorithm.  
 
IV.2  Wall-Collision Avoidance 
For practical use a vehicle path usually has more constraints, because the space is not 
obstacle-free or is restricted by some walls. A complete path planning method should 
also consider these restrictions. Our revised path planning method can generate many 
acceptable paths speedily. Though in previous section we only choose the shortest 
path to be the best one, this does not means other paths are not usable. Here we 
introduce another term in the cost function to simply avoid wall-collision.  
There are six points along a planned path can be computed when ^ is solved; they 
are 
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=
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     (45) 

where ( , )i ix iyp p p≡ is a coordinate in 2\ . Some of these points may be identical, 

because some d  are zero. A wall-type obstacle is modeled as a straight line equation 
in 2\ space, 

0 0mx c y+ − =         (46) 
Points 0 5and p p are automatically collision-free, so they must lie on the same side of 
above straight line equation. Therefore, define function ( )O p as, 

     0( ) x yO p mp c p≡ + −      (47) 



Then if 

0( ) ( ) 0,for  1,2,3,4iO p O p i⋅ > =    (48) 
Then we can conclude that all five points are collision-free. For a (46) type obstacle 
and a straight line segment of a path, its two end points collision free means this 
segment is collision free. However for a cubic spiral segment, this may not be true. 
Therefore we should check more points to make sure the safety. There is no easy way 
to compute the coordinate of selected points on a cubic spiral without using equation 
(5). But the integration costs too much computation time. Therefore we implement a 
simplified method to generate check points, as described below. 
For a cubic spiral segment, we design to add two more check points. We generate 
three straight line segments to fit a cubic spiral one, and use the two more vertex as 
check points. The total lengths of these three straight line segments are equal to the 
length of cubic spiral. As shown in Figure 10, assume a cubic spiral has size 1cd and 
direction vG . The second portion is parallel to the vG , and its length is 1ch , we have 
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Rearrange above equation, we obtain 
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Lengths of the other two line segments are, 
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From fig 10, the two more check points can be solved by vector addition.  
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These two points are close to the original cubic spiral, and check them can be a good 
approximation of collision detection of this segment. Furthermore, one may note that 
this two more check points are collinear with the two straight line segments that 
connect with this cubic spiral. For a line type segment we need only to check its two 
end points to know whether the collision happens or not. Therefore, finally the check 
points remain five or less than five. To use the points of (52) or to the original ones is 
dependent on the motion direction change of the path.  



We can simply set cost( )Π to be an extreme large value to avoid choosing path that 
collision will happen, i.e. some check points that let (48) be failure to hold. This 
method is effective and can eliminate most unqualified trajectories. Some examples 
are shown in Fig 11.   
         
IV.3  An Effective Search 
In (42) if we set 0.0873θ∆ = , which is approximately equal to 5 degree, then we 
should search 1152 cases to find a best one. But in the forward-and-backward and free 
space case one can found a cubic spiral which angle outside the range[ , ]π π−  seldom 
appears in the result path. We shall explain this and try to find a more efficient 
procedure to search an acceptable solution. 
The abstract of the explanation is that first we will assume a result path includes a 
cubic spiral with angle outside the range[ , ]π π− , and then prove that in most cases 
there exists at least one shorter path and the shorter one will replace the original one 
due to the linear programming optimization. Following are the details.   
 
Assume in a path optimized by the method described in previous sections there is one 
cubic spiral with an angle outside the range [ , ]π π− . By our definition, its angle 

α has a superscript “-“, i.e. α− . And the following equation must hold 

min ( )d d α−≥                          (53) 

where d is the size of the cubic spiral. The length of this portion of path is 

      
( )
d

Dα α− −=A                          (54) 

 Because the corresponded angleα+ inside the range[ , ]π π−  also steers the vehicle to 
the same direction, we can also build another path byα+ to substitute this one without 
contradict the continuous curvature constraint. Following are two cases: 

Case 1, min ( )d d α+≥  

In this case an alternate path can be constructed by a single cubic spiral with angle 
α+ and size d, the path length is 

      
( )
d

Dα α+ +=A                          (55) 

By Fig. 1, we can directly figure that for any two angle 1 2and β β , 
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Case 2, min ( )d d α+≤  

The alternate path can be constructed by a single cubic spiral with angleα+ and size 

min ( )d α+ and two straight lines, the path length can be computed as, 

min
min

2sin( )( ) 2( ( ) )
( ) sin( )

d d d
Dα

α
α α
α α+

+

+
+

+ += + − ⋅A                (58) 

 Then 

 
min

min

,

2sin( )( ) 2( ( ) ) 0
( ) sin( ) ( )

if

d dd d holds
D D

α α

α
α α
α α α

+ −

+

+
+

+ + −

≥

+ − ⋅ − ≥

A A

            (59) 

The above condition can be rearranged as 
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Multiply both side of (56) by min
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Fig. 13 shows the value of LHS of (61). By the assumption, RHS of (61) must be 

larger or equal than 1, but in the figure, it is easy to point that when 139oα+ < , all 

values of LHS are less than 1. Furthermore only when 
min

1.0734
( )
d

d α− < , (61) is 

possible to hold. The gray region on the figure is where
α α+ −≥A A holds. Apparently it 

is small; so that the condition that cubic spiral with angleα− cannot be replaced by 
corresponded α+ one seldom happens. 
Both on the above two case we can almost find a shorter path to replace the original 



cubic spiral with angleα− . By the shortest path criterion, this original cubic spiral can 
not appear in the final result if the shorter is found.  
This concludes that in a two-direction and no-obstacle path planning problem, we 

need not to check the 1 2and c cα α− − cases, and can save half of computation time with 

little optimization sacrifice.  
 
V. Conclusion 
In this paper we discuss an improved path planning method using both cubic spiral 
and straight line segments. A planned path is constituted by at most two cubic spirals 
and two straight lines, and can be assured the shortest one of this combination. The 
improved method is suitable for various vehicles or mobile robots’ path planning 
because it considers the bounded curvature constraint and can generate paths with or 
without cusp, i.e., direction change. Moreover, the continuous curvature of generated 
path makes controller design easier. The complete method searches all possible paths 
via the change of intermediate configuration, but we also show that a faster search is 
achievable with few optimization loss. As for practical use, a mobile robot usually 
executes its task in a constraint workspace, so a simple wall collision avoidance 
scheme is discussed. It checks a few points of the path and excludes dangerous ones. 
This method is being applied to a robot soccer game project that we design a ball 
passing strategy and use multiple mobile robots to realize it by change their formation 
dynamically. It works well.        
Appendix 
A Minimal Length 
If we let 
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Then the original problem becomes a canonical form of linear programming problem, 

*maximize      -cost ( )=
subject to      
                     0

Tc x
Ax b
x

Π
=

≥
      (A2) 

which can be solved by simplex method suggested by George B. Dantzig in 1947[11]. 



Because one of the extreme point is the optimal solution, we can directly know that 
the optimal solution of x has only two non-zero elements ax and bx . A reduced vector 
is defined as 

[ ],r a bx x x=          (A3) 

and the corresponded columns of matrix A is also collected, 
[ | ]r a bA A A=         (A4) 

Then the below equation also holds 

r r goalA x v=
G         (A5) 

This equation is equivalent to (39) if let  and a a b bd x d x= = . 
The number of iterations is of order 2 to 4 times the number of rows of matrix A, and 
the total running time has been found roughly to the equation 

3( .  )Time K No of Rows of A= ×        (A6) 

However, due to the specific geometric relations, we do have a faster method to find 
which two constraints, i.e. which two rows of A, forms the extreme point. The method 
is described here.  
 
A.2 A Faster Method    
Let 

{ }( ( ) ( )) :goalAngle angle n angle v nΘ ≡ − ∈
G G G `     (A7) 

Then let  
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If the corresponded nG s of both and mp Mnθ θ are not 1 2or j l
c cn nG G , then 

and mp Mnθ θ θ θ+ −= =        (A9) 

Else if either the corresponded or mp Mnθ θ is 1 2or j l
c cn nG G , then we should check 

vMn and vmpθ θ  to compare which solution is maximal. Two more combinations of 
solutions could exist, 
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Finally if corresponded nG s of both and mp Mnθ θ are 1 2or j l
c cn nG G , one more combination 

of solution should be check, 
             and vmp vMnθ θ θ θ+ −= =       (A11) 
Therefore, we should check at most four combinations of solutions to find the extreme 
point. 
 
B. Notes of ( )S α  
As shown in Fig.14, use of two unit vectors 1 2and n nG G to represent a known vector 

0vG usually happens in our discussion. The angle between 1 0and n vG G is 1γ ; 0 2and v nG G is 2γ . 
Two lengths 1 2and d d can be solved by, 
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The solution of above equation can be obtained by 
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If 2 1γ γ= − , we have 

1
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and  
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which is the form of ( )S α . 
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Fig. 1 Distance function of cubic spirals. The dashed line represents 180oα = ; left 

side of this line is α+ region and right side is α− region [1]. 
Fig. 2 Two paths planned by Kanayama’s cubic spiral method. 
Fig. 3 Four trajectories from an initial configuration 1q to an intermediate direction 
( )mq  with maximal (or minimal) curvature value at their middle points.  
Fig. 4 Sixteen different end positions of 1q through minimal locomotions. The cubic 
spirals of one of them is plotted to show the combination of minimal locomotion 
vector. ( : , : , : , , : )i j k and l+ + + −     
Fig. 5 Selected path planning results. Each path has the same 2( )q but different 2[ ]q .   
Fig. 6 Selected path planning results. Each path has the same 2[ ]q but different 2( )q .  
Fig. 7 This figure shows a example of finding an shortest path if mθ and , , ,andi j k l  

have been decided. First we use the minimal locomotion vector 1 2
ij kl
c cv v+G G to find 



the goalvG . Then two vectors to be extended are selected from eight candidates. In this 

case, 2 1and l
cv v +G G are chosen, so the result path plotted in solid line includes one straight 

line and two cubic spirals.    
Fig. 8 Selected path planning results of uni-direction cases. Each path has the same 

2( )q but different 2[ ]q . 
Fig. 9 Selected path planning results of uni-direction cases. Each path has the same 

2[ ]q but different 2( )q .  
Fig. 10 This figure shows how to generate two more check points 

* *
1 2and p p form 1 2and p p . Note that *

1p will replace 1p in check equation (48), but 

*
2p will not replace 2p . This is because *

2p lie between 2p and 3p , and we need only 

check two endpoints of a straight line. 
Fig. 11 Selected cases to show the wall-collision avoidance path planning results. 
Fig. 12 This figure shows the method to generate an alternate path by α+ cubic spiral 

to replace α− one if min ( )d d α+< . The α− path is plotted in dotted line and the 

alternate path is dashing line, which includes two straight line segments and an 
α+ cubic spiral. 
Fig. 13 The value of LHS of (61).  
Fig. 14 Use two vectors 1 2and n nG G to represent a known vector 0vG . 1 2and γ γ are angles 
between 1 0 0 2( , )and ( , )n v v nG G G G . 



 

Fig. 1 Distance function of cubic spirals. The dashed line represents 180oα = ; left 

side of this line is α+ region and right side is α− region [1]. 

 

Fig. 2 Two paths planned by Kanayama’s cubic spiral method. 

0 50 100 150 200 250 300 350 0

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1

(degree)α

( )D α

α+ α−

End configuration 2 End configuration 1 

Initial configuration 



 
Fig. 3 Four trajectories from an initial configuration 1q to an intermediate direction 
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Fig. 11 Selected cases to show the wall-collision avoidance path planning results. 
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