
Parametric Optimization of Open Real-Time Systems

Farn Wang�

Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
+886-2-27883799 x 1717 FAX:+886-2-27824814 farn@iis.sinica.edu.tw

Hsu-Chun Yen

Dept. of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC
yen@cc.ee.ntu.edu.tw

Abstract

For controllable timed automata, a general parametric optimization framework based on automata-

theory is proposed. The framework is general enough to incorporate both the parametric analysis

problem and the controller synthesis problem of computer systems. We propose an algorithm for the

construction of the characterization of the parameter constraints and controller synthesis, which in turn

yields a linear programming solution to parametric optimization.

1 Introduction

As increasing e�orts have been devoted to applying CAV techniques to real-world systems, it becomes

urgent to design appropriate models and analytical techniques to deal with parametric optimization of

real-time systems. Many (if not most) of the conventional CAV techniques are only capable of classifying

a given system as 'good' or 'bad.' To make things even more complicated, the behavior of many of the

real-world systems is often inuenced by various engineering constraints, e.g. assumptions on environments

in which the systems reside. Suppose the performance of a system is evaluated once with respect to a given

constraint setting. Once the constraint changes, traditionally either the evaluation process is restarted,

or the performance under the new constraint is calculated using the so-called extrapolation technique

utilizing results from known system constraints. The former is somewhat time-consuming, whereas the

latter su�ers from imprecision. In addition, neither technique is appropriate for answering a question like:

�nd the environment assumptions under which the system performs best. It is therefore highly desirable

to employ an evaluation strategy that is parametric in nature. That is, the variations of the engineering

constraints are treated as parameters, and the evaluation ends up including such parameters as part of the

performance measure.

We demonstrate in this paper a general framework within which parametric optimization is carried out

in a parametric fashion for real-time systems modeled by controllable timed automata. As we shall see

later, our framework incorporates both parametric analysis and controller synthesis, which are two issues

that have received increasing attention in the CAV community lately [3, 4, 5, 6, 7, 11, 13, 16, 17, 18]. Aside

from being more general than the problem of parametric analysis or controller synthesis alone, a unique

feature of our solution to parametric optimization lies in that we are able to construct a characterization

of the parameter constraints and controller synthesis, which in turn yields a linear programming solution

�To whom all correspondence should be sent.

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

..

..
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
...
...
...
.....
.......

..
....
..
..
..
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
...
......
..

.....
...
...
...
..
..
...
..
..
..
..
..
..
..
..
..
..
.
..
.
..
..
..
.
..
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

..

..
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
...
...
...
.....
.......

..
....
..
..
..
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
...
......
..

.....
...
...
...
..
..
...
..
..
..
..
..
..
..
..
..
..
.
..
.
..
..
..
.
..
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...
....
...
....
....
....
....
...
....
...
..

.........
....................

....................
....................

....................
....................

....................

....................
.
.
..
.
..
.
.
..
.
..
.
..
.

x := 0;

x � 1

q0 � ^ cost > 10 q1

Figure 1: A simple controllable timed automaton.

to parametric optimization. Such a characterization is valuable both in the construction of a solution

controller and in the derivation of the optimal performance. By doing so, re-evaluation of the performance

of a system under a new constraint setting is as easy as solving the parameterized inequalities with respect

to a new set of parameters. More interestingly, by encapsulating the environment's parameters into our

framework of performance evaluation, it becomes feasible to �nd out the best system performance by

solving an optimization version of the parametric inequalities.

Example 1 A simple automaton. To give the reader a better feel for the issue of parametric optimiza-

tion of controllable timed automata, consider Figure 1 in which a simple controllable timed automaton is

shown. Two operation modes are represented by the ovals in which we have mode names q0 and q1, and

invariance conditions x � 1 and true, respectively. Between the modes, there is an arc for a transition

labeled with a triggering condition (above). The triggering condition contains a special symbol � which

represents the enabling signal from the controller. In this paper, we shall adopt the approach in [6, 7, 13]

which assumes that � is an uninterpreted Boolean function of regions [1]. Notice that the automaton is

parametric in the sense that \cost" is a static parameter for some optional functions of the automaton.

An example speci�cation which we may want to analyze is written in PCTL (Parametric CTL, de�ned

in Section 2) as follows.

� � (cost < 100) ^ (� � 1) ^ (82<�q0)

The formula says that the cost must be less than 100 dollars, parameter � is greater than or equal to 1,

and we want to �nd out the characterization of � such that q0 is true in all computations within � time

units from the initial state. As the transition from q0 to q1 is `controlled' by the environment through the

control symbol �, whether � holds depends not only on the values of the static parameters but also on the

control policy imposed on the automaton by the controller (i.e., environment).

Suppose we are given an optimization metric like `cost� �.' For the aforementioned `parametric' timed

automaton, speci�cation, and optimization metric, parametric optimization in our setting boils down to

�nding a control policy under which the optimization metric is maximized for a parameterized automaton

meeting the speci�cation.

Our framework is capable of analyzing trace-oriented optimization problems of real-time systems. For

example, with the same automaton used in �gure 1, we may have another speci�cation �
0 = cost <

12 ^ 82(q0 ! 83��q1), which says that q1 will eventually be true in time � � whenver q0 is true, and

an optimization metric ��. Then the parametric optimization problem asks for the deadline value in all

computations, from a q0 state to a q1 state, subject to the restriction of �. Thus it is easy to see that our

framework is more general than previous ones like [10].

In example 4 of subsection 3.5 after we have presented our alogirhtms, we shall present the answers to

the parametric optimization problems with these two just-mentioned sets of speci�cations and optimization

2

metrics. k

Our parametric optimization problem can be thought of as a generalization of both parametric analysis

(\what parameter settings make a system correct?") [3, 4, 11, 16, 17, 18] and controller synthesis (\what

controller if any induces a correct behavior?") [5, 6, 7, 13] of timed automata. For parametric analysis,

parameter variables are associated with either temporal operators or timed automata, and problems such

as `Does there exist a valuation of the parameters so that the system meets a given property?' or `Is it

the case that for all valuations of the parameters the given property always holds for the system?' are

being thought. It has been shown that for parametric timed automata in which parameter variables are

allowed to be compared with clocks, the veri�cation problem is in general undecidable [4]. If, however,

parameter variables are in existence in the speci�cation (i.e., temporal formulas) only, then the problem

becomes decidable [4]. In the context of parametric analysis, Alur et al. [3] considered the so-called `model

measuring' problem for parametric linear time temporal logic (PLTL). Model measuring is an extension

of the standard model checking problem in that the latter only returns `yes/no' answers, whereas the

former provides answers to a number of questions regarding the set of parameter valuations for which

the given speci�cation is ful�lled. Emerson and Treer [11], on the other hand, investigated the model

checking problem for parameterized real-time computation tree logic (PRTCTL). In [3], PLTL is de�ned

over conventional Kripke structures, whereas in [11], both untimed and (discrete) timed structures are

considered for PRTCTL. With respect to dense-time automata, Wang [16] gave a complete characterization

of the set of parameter valuations satisfying a speci�cation expressed in parametric computation tree logic

(PCTL) in terms of a set of linear inequalities. The work of [16] has subsequently been generalized in

[17], which shows that parametric analysis remains decidable for the model in which timed automata are

augmented by static parameters (i.e., nontiming parameters) and temporal formulas are parameterized

by both timing and nontiming parameters. In comparison with its predecessors in parametric analysis of

timed automata, Wang's algorithm in [17], based upon the technique of dynamic programming, is easier

to understand, implement, and analyze.

What makes controller synthesis an important issue is that many interesting real-world systems tend to

be open in nature, meaning that their behaviors are inuenced by the environment. Since the seminal work

of Ramadge and Wonham [14], the use of automata and formal languages to reason about controllability

of discrete event dynamic systems has received much attention in the control community in the past

decade. Being recognized as one of the most popular models for representing real-time systems, timed

automata [2] have naturally become the underlying model for which various controller synthesis issues

are investigated, aside from a very successful role such a model has played in the veri�cation aspects of

real-time systems. Consider a dynamic system (modeled by a timed automaton) whose behaviors are to

be controlled in a certain way so as to meet certain prede�ned requirements. The controller synthesis

problem, simply speaking, is to �nd out whether, for a given system, there is a controller through which

the interaction between the system and the controller results in only computations of `good' behavior. (If

such a controller exists, it is also desirable to construct it e�ectively.) The interested reader is referred

to [6] for a symbolic approach for controller synthesis. As opposed to providing only yes/no answers in

the conventional framework of controller synthesis, a recent article [5] dealt with quantitative properties of

behaviors for controllable timed automata.

In this paper, we move a step further from previous work [3, 4, 5, 6, 7, 11, 13, 16, 17, 18] by considering

the controller synthesis issue for parametric timed automata with respect to system requirements speci�ed

by parametric computation-tree logic (PCTL) (see [16, 17]). By explicitly allowing static parameters in

our model, a richer parametric optimization framework, in comparison with that of [5], is provided. To

the best of our knowledge, our work is the �rst that addresses parametric approach for the optimization

3

of synthesized controller. Unlike the (�xed-point based) backward reachability approach employed in [13]

for the controller synthesis problem of timed automata, we generalize the parametric analysis technique

devised in [17] to derive, for a given parametric timed automaton A and a PCTL formula �, a complete

characterization of the parameter constraint and controller synthesis which is satis�able if and only if

there exists a controller forcing A to meet property �. The characterization contains the information for

both controller synthesis and parameter constraint, which enables us to formulate a uni�ed framework in

integer linear programming for parametric optimization of real-time systems. We feel that our approach

is interesting in its own right and may have applications to the analysis of related problems for real-time

systems.

The remainder of this paper is organized as follows. Section 2 introduces the model of statically paramet-

ric plants, parametric computation tree logic, as well as the parametric optimization problem. An algorithm,

together with an illustrating example, is demonstrated in Section 3 for solving the parametric optimization

problem. Section 4 concludes our work.

2 Parametric optimization problem

A parametric optimization problem instance in our framework is given as a tuple hA;�; �i such that A is

a controllable timed automaton (statically parametric plant, de�ned in subsection 2.1) for the description

of the system behavior, � is a temporal logic formula for the requirements on the system behaviors, and

� is a linear expression of parameters for the performance measurement. The aim of the problem is to

�nd a valuation (interpretation) of the parameters that maximizes � and makes A satisfy � under the

interpretation for some control strategy. A framework for minimization of � can be similarly de�ned by

changing the signs of coe�cients in �.

2.1 Statically parametric plant (SPP)

An SPP is a timed automaton extended with linear constraints of static parameters and transition controls.

In an SPP, people may combine control signals, timing inequalities on clock readings, and linear inequalities

of static parameters to write the invariance and transition conditions. Such a combination is called a state

predicate and is de�ned formally in the following. Given a set P of basic propositions, a set X of clocks,

and a set H of parameter variables, a state predicate � of P , X, and H has the following syntax rules.

� ::= false j p j x� y � c j x � c j
P
ai�i � c j �1 _ �2 j :�1

where p 2 P , x; y 2 X, ai; c 2 N , �i 2 H, � 2 f�; <;=;�; >g, and �1; �2 are state predicates. Notation-

ally, we let B(P;X;H) be the set of all state predicates on P , X, and H. Note the parameter variables

considered in H are static because their values do not change with time in computation of an automaton.

A state predicate with only
P
ai�i � c type literals is called static.

De�nition 1 (Statically parametric plant): A statically parametric plant (SPP) is a tuple

(Q; q0;X;H; �;E; �; �) with the following restrictions.

� Q is a �nite set of modes (operation modes, or control locations).

� q0 2 Q is the initial mode.

� X is a set of clocks with readings in R+, i.e., the set of nonnegative reals.

� H is a set of parameter variables with values in N , i.e., the set of nonnegative integers.

� � is a mapping from Q such that for each q 2 Q, �(q) 2 B(;;X;H) is the invariance condition true

in q.

� E � Q�Q is the set of transitions.

4

� � : E 7! B(f�g; X;H) is a mapping which de�nes the transition-triggering conditions. Here � is a

control signal symbol representing the enabling/disabling signal from the controller. Conceptually,

� is an uninterpreted Boolean function of states whose presence on edge e suggests such an edge to

be `controllable'.

� � : E 7! 2X de�nes the set of clocks to be reset during each transition. k

Figure 1 displays a simple example of an SPP in which Q = fq0; q1g, X = fxg, H = fcostg, and � is the

control signal symbol associated with the only transition of the plant. Notice that in this example, the

invariance conditions (de�ned by �) associated with q0 and q1 are x � 1 and true, respectively, although

in general, parameter variables are allowed to take part in the invariance conditions. An SPP starts its

execution at its initial mode q0. We shall assume that initially, all clocks read zero. In between mode

transitions, all clocks increment their readings at a uniform rate. A transition of an SPP may be �red

when the triggering condition of the transition is satis�ed. During a transition from modes q0 to q1, for

each x 2 �(q0; q1), the reading of x is reset. It is worthy of pointing out that in our setting, it is legal

to let time elapse even in the presence of an enabled transition. (The reader is encouraged to contrast

our model with that of [5] in which transition �rings are assumed to be `urgent.') For instance, in state

q0 with x = 0:5 for the SPP depicted in Figure 1, the computation may either stay in q0 while letting

the clock run, or exercise the transition from q0 to q1, provided that cost > 10 and the controller assigns

true to �. The behavior of an SPP depends not only on the interpretation of the parameter variables,

but also on the control policy enforced by the environment during the course of its computation. The

interested reader should notice that although the triggering condition hinders on the control signal symbol

� as well as on the static parameter cost, they play entirely di�erent roles as far as how they enable or

disable the transition is concerned. The values of static parameters are given prior to the execution of

the SPP, whereas the control signals are disabled/enabled on a step-by-step basis by the controller as the

computation proceeds.

Note that we allow control signals � to participate in the construction of triggering conditions. This is

di�erent from the controller de�nition in [13] in which at any moment at most one controllable transition

can be enabled.

De�nition 2 (State): A state of SPP A = (Q; q0; X;H; �;E; �; �) is a pair (q; �) such that q 2 Q and

� is a mapping from X to R+ (i.e., � represents the current clock readings). Let UA be the state set of A. k

De�nition 3 (Controller): Given an SPP A, a controller � is a Boolean function UA 7! ftrue; falseg

which intuitively denotes the action on the control signal (i.e., �) to enable or disable transitions according

to the current states. Since the controller does not depend on the history, it is also a simple controller. k

We write ��(s) to denote the truth value of � at state s under controller �. (If � is clear from the context,

�(s) is used as a shorthand.) Apparently, it is useless to enable a transition in a mode other than the

source mode of the transition. Thus, at a given state (q; �), it is reasonable to only consider controller �

such that � disables all the transitions whose source nodes are not in mode q. It should be noted that

the same SPP may generate di�erent computations under di�erent controllers and interpretations of its

parameter variables.

De�nition 4 (Interpretation): An interpretation I for H is a mapping from N [H to N such that for

all c 2 N , I(c) = c. k

5

De�nition 5 (Satisfaction of state predicate): A state (q; �) satis�es state predicate � under controller

� and interpretation I, written as (q; �) j=
�

I
�, i�

� (q; �) 6j=�

I
false;

� (q; �) j=
�

I
� i� �((q; �)) (in words, the control signal � is enabled by � at (q; �));

� (q; �) j=
�

I
x� y � c i� �(x)� �(y) � c;

� (q; �) j=
�

I
x � c i� �(x) � c;

� (q; �) j=
�

I

P
ai�i � c i�

P
aiI(�i) � c;

� (q; �) j=
�

I
�1 _ �2 i� (q; �) j=

�

I
�1 or (q; �) j=

�

I
�2; and

� (q; �) j=
�

I
:�1 i� (q; �) 6j=

�

I
�1.

If for all �, we have (q; �) j=
�

I
�, then we may write (q; �) j=I �. If for all I, we have (q; �) j=I �, then we

may write (q; �) j= �. k

De�nition 6 (Transitions): Given two states (q; �); (q0; � 0), there is a mode transition from � to � 0 in A

under controller � and interpretation I, in symbols (q; �)!�

I
(q0; � 0), i� (q; q0) 2 E, (q; �) j=�

I
�(q)^�(q; q0),

(q0; � 0) j=�

I
�(q0), 8x 2 �(q; q0)(� 0(x) = 0), and 8x 62 �(q; q0)(� 0(x) = �(x)). In words, for the transition

(q; �)! (q0; � 0) along the edge (q; q0) to take place under controller � and interpretation I, it must be the

case that the starting and ending invariance conditions (i.e., �(q) and �(q0), respectively) hold in modes

q and q
0, respectively, and the associated triggering condition �(q; q0) is met as well. Meanwhile, all the

clocks speci�ed in �(q; q0) are reset to zero, while the remaining clock readings remain unchanged. (That

is, transition �ring is assumed to take place instantaneously.) k

For ease of expression, given a state � and a � 2 R+, we let (q; �) + � = (q; � + �) be the state that

agrees with (q; �) in every aspect except for all x 2 X, �(x) + � = (� + �)(x).

De�nition 7 ((q; �)-run of controlled and interpreted SPP): An in�nite computation of

A = (Q; q0;X;H; �;E; �; �) starting at state (q; �) under controller � and interpretation I is called a

(q; �)-run and is a sequence ((q1; �1; t1); (q2; �2; t2); : : :) such that

� q = q1 and � = �1;

� for each t 2 R+, there is an i 2 N such that ti � t (meaning that the run is diverging);

� for each integer i � 1 and for each real 0 � � � ti+1 � ti, (qi; �i) + � j=�

I
�(qi) (meaning that the

invariance condition �(qi) continuously holds throughout the time interval [ti; ti+1]); and

� for each i � 1, A goes from (qi; �i) to (qi+1; �i+1) because of

- a mode transition, i.e., ti = ti+1 ^ (qi; �i)!
�

I
(qi+1; �i+1); or

- time passage, i.e., ti < ti+1 ^ (qi; �i) + ti+1 � ti = (qi+1; �i+1). k

2.2 Parametric computation-tree logic

Parametric Computation Tree Logic (PCTL) is used for specifying the design requirements and is de�ned

with respect to a given SPP. Suppose we are given an SPP A = (Q; q0;X;H; �;E; �; �). A PCTL formula

� for A has the following syntax rules.

� ::= � j �1 _ �2 j :�1 j 9�1U���2 j 8�1U���2

Here � 2 B(Q;X;H), �1 and �2 are PCTL formulas, and � 2 N [H. Note that mode names are used as

basic propositions for the speci�cation of timely mode changes. 9 means \there exists a computation." 8

means \for all computations." �1U���2 means that along a computation, �1 is true until �2 becomes true

6

and �2 happens with time � �. For example, in a requirement like cost = deadline+5 ^ 8q0U�deadlineq1,

parameters \cost" and \deadline" are related and we require that for all computations, q0 is true until q1
becomes true in \deadline" time units.

The parameter variable subscripts of modal formulas can also be used as parameter variables in SPP.

Also we adopt the following standard shorthands : true for :false, �1 ^ �2 for :((:�1) _ (:�2)), �1 ! �2

for (:�1) _ �2, 93���1 for 9true U���1, 82���1 for :93��:�1, 83���1 for 8true U���1, 92���1 for

:83��:�1.

With di�erent controllers and interpretations, a PCTL formula may impose di�erent requirements.

De�nition 8 (Satisfaction of PCTL formulas): We write in notations (q; �) j=
�

I
� to mean that � is

satis�ed at state (q; �) in A under controller � and interpretation I. The satisfaction relation is de�ned

inductively as follows.

� The base case of � 2 B(Q;X;H) was previously de�ned except that (q; �) j=
�

I
q
0 i� q = q

0;

� (q; �) j=�

I
�1 _ �2 i� either (q; �) j=�

I
�1 or (q; �) j=

�

I
�2

� (q; �) j=�

I
:�1 i� (q; �) 6j=�

I
�1

� (q; �) j=�

I
(9�1U���2) i� there exist a (q; �)-run = ((q1; �1; t1); (q2; �2; t2); : : :) in A, an i � 1, and a

� 2 [0; ti+1 � ti], s.t.

- ti + � � t1 + I(�),

- (qi; �i) + � j=�

I
�2,

- for all j; �0 s.t. either (0 � j < i)^ (�0 2 [0; tj+1� tj]) or (j = i)^ (�0 2 [0; �)), (qj; �j)+�
0 j=�

I
�1.

(In words, there exists a (q; �)-run along which �2 eventually holds at some point in time (� t1+I(�))

in the time interval [ti; ti+1], for some i, and before reaching that point �1 always holds.)

� (q; �) j=�

I
(8�1U���2) i� for every (q; �)-run = ((q1; �1; t1); (q2; �2; t2); : : :) in A, for some i � 1 and

� 2 [0; ti+1 � ti],

- ti + � � t1 + I(�),

- (qi; �i) + � j=
�

I
�2,

- for all j; �0 s.t. either (0 � j < i)^ (�0 2 [0; tj+1� tj]) or (j = i)^ (�0 2 [0; �)), (qj; �j)+�
0 j=�

I
�1.

Given an SPP A, a PCTL formula �, a controller �, and an interpretation I for H, we say A is a model of

� under � and I, written as A j=�

I
�, i� (q0;0) j=

�

I
� where 0 is the mapping that maps all clocks to zeros. k

2.3 Formal de�nition of problem

A performance measure is just a linear expression like
P
ai�i where the ai's are integers (negative or

nonnegative) and the �i's are parameters in H. It represents a metric that the users want to maximize in

their system design.

De�nition 9 (Parametric optimization problem): Given an SPP A, a PCTL formula �, and a per-

formance measure � (=
P
ai�i), the parametric optimization problem instance for A;�, and �, denoted as

PO(A;�; �), is formally de�ned as the problem of deriving the value maxf
P
aiI(�i) j 9�(A j=

�

I
�)g if it

exists. k

3 Algorithm

Our algorithm consists of two steps. First, we extend the parametric analysis algorithm for computer

systems [17, 18] with controller-choice information. The modi�ed algorithm can then generate a constraint

7

describing the su�cient and necessary condition of a controller (with parameters) for a given PO(A;�; �).

The second step then uses various techniques in linear algebra to derive the maximum of � under the

constraint.

For the �rst step, we shall de�ne controlled region graphs (CR-graphs) and controlled path characteriza-

tion (CP-characterization) for parametric analysis of controllable timed automata. CR-graphs are like the

parametric region graphs introduced in [17, 18]. They are also similar to the region graphs de�ned in [1]

but contain parametric information. A region is a subset of the state space in which all states exhibit the

same behavior with respect to the given SPP and PCTL formula.

CP-characterization is derived for each pair of regions in a CR-graph. For each t 2 N , it gives a

su�cient and necessary condition for the existence of a �nite run of t time units from the source region

to the destination region. CP-characterization will be useful for the construction of constraints associated

with existential path quanti�ers (9).

We need the following three types of integer set manipulations. Given T1; T2 � N ,

� T1 [T2 means fa j a 2 T1 or a 2 T2g.

� T1 + T2 means fa1 + a2 j a1 2 T1; a2 2 T2g.

� T1� means f0g [
S
i2N

P
1�j�i T1, where

P
1�j�i T1 means the addition of i consecutive T1.

As we shall see later, the notion of semilinear sets
1 is crucial in our algorithm of constructing the CP-

characterizations. In fact, it will be shown that all integer sets resulting from the above manipulations

in our algorithm are semilinear. Semilinear expressions are convenient notations for expressing in�nite

integer sets constructed regularly. They are also closed under the three manipulations. There are also

algorithms to compute the manipulation results. Speci�cally, we know that all semilinear expressions can

be represented as the union of a �nite number of sets like a+ c� (a shorthand for fa+ c �h j h � 0g). Such

a special form is called periodical normal form (PNF). It is not di�cult to prove that given operands in

PNF, the results of the three manipulations can all be transformed back into PNF[15]. Due to page-limit,

we shall skip the details here.

3.1 CR-graphs

The classic concept of region graphs was originally discussed and used in [1] for verifying dense-time

systems. Our CR-graphs are extended from region graphs with constraints on parameter variables. Beside

parameter variables, our CR-graphs have an auxiliary clock � which gets reset to zero once its reading

reaches one. The reading of � is always between 0 and 1, that is, for every state (q; �), 0 � �(�) � 1.

� is not used in the user-given SPP and is added when we construct the regions for the convenience of

parametric timing analysis. It functions as a ticking indicator for evaluating timed modal formulas of

PCTL. >From now on, we shall assume that � 2 X.

The timing constants in an SPP A are the integer constants c that appear in conditions such as x�y � c

and x � c in A. The timing constants in a PCTL formula � are the integer constants c that appear in

subformulas like x� y � c; x � c;9�1U�c�2, and 8�1U�c�2. Let CA:� be the largest timing constant used

in both A and � for the given PO(A;�; �).

Given a state (q; �), (q; �) j= (fract(�) = 0) i� �(�) is an integer.

De�nition 10 (Regions): A region of a state (q; �) for PO(A;�; �) is a pair (q; [�]) such that [�], called

clock region of �, is the notation for the set of timing inequalities characterizing �, that is,

[�] =

(
x � c

����� x 2 X; �(x) � c

0 � c � CA:�;

)
[

(
x� y � c

����� x; y 2 X; 0 � c � CA:�;

�(x)� �(y) � c

)
[ffract(�) = 0g

1A semilinear integer set is expressible as the union of a �nite number of integer sets like fa+b1j1+: : :+bnjn j j1; : : : ; jn 2 Ng
for some a; b1; : : : ; bn 2 N .

8

where c is a non-negative integer. Given a (q; �), we shall say (q; �) 2 (q; [�]). Speci�cally, [0] is the clock

region of mapping 0. k

Our region de�nition resembles the one in [13]. Interested readers are referred to [1] for an alternative

de�nition of regions based on the notion of region equivalence.

De�nition 11 (Controlled region graph, CR-graph): The CR-graph for a PO(A;�; �) with A =

(Q; q0;X;H; �;E; �; �) is a directed labelled graph GA:� = (V; F) such that the vertex set V is the set of

all regions and the arc set F � V �V consists of the following two types of arcs (v; v0) with v = (q;�) and

v
0 = (q0;�0).

� [mode transitions] (v; v0) 2 F i� for all (q; �) 2 v, there are some �, I, and (q0; � 0) 2 v
0 such that

(q; �)!
�

I
(q0; � 0).

� [time passage] q = q
0 and for every state (q; �) 2 v, there is a state (q; � 0) 2 v

0 such that

- (q; �) + � = (q; � 0) for some � 2 R+; and

- there is no _� 2 R+, 0 < _� < �, s.t. (q; �) + _� is not in v or v0 k

According to [6, 7, 13], in the controller synthesis problem of timed automata, there is a controller

which is a function of states i� there is a controller which is a function of regions. So we shall follow

their approach and treat � simply as a function of regions. We want to derive arc constraints on static

parameters and controller choices in CR-graphs so as to construct CP-characterizations. For convenience,

given a region v = (q;�) and a state predicate �, we write v(�) for the static state predicate and synthesis

decision extracted from � according to the following rules.

� v(false) is false

� v(�) = �(v)

� v(x� y � c) is true if x� y � c 2 �; or false otherwise.

� v(x � c) is true if x � c 2 �; or false otherwise.

� v(
P
ai�i � c) is

P
ai�i � c.

� v(�1 _ �2) = v(�1) _ v(�2).

� v(:�1) = :(�1).

A mode transition arc (v; v0) 2 F with v = (q;�); v0 = (q0;�0) i� (1) �(q) ^ �(q; q0) is satis�ed at all

states in v; (2) after the transition, �(q0)^
V
p2�(q;q0)(�) p is satis�ed at all states in v

0, where �(q; q0) (�) is

the new clock region identical to � except all clocks in �(q; q0) are reset to zeros. The two conditions can

be formulated as follows.

xtion(v; v0) �
�
v

�V
p2� p ^ �(q) ^ �(q; q0)

�
^ v

0

�V
p02�0 p

0 ^ �(q0) ^
V
p2�(q;q0)(�) p

��
Note that formulas like

V
p2� p ^ �(q) ^ �(q; q0) extract the truly active part in �(q) ^ �(q; q0) in region

(q;�). Then the applications of v() and v
0() extract the constraints on static parameters as well as on the

control symbol �, should they exist.

The constraints on time passage arcs hinge on the basic constraints on relations between � and �0 which

are free of static parameters. Such constraints can be determined with standard techniques like symbolic

weakest preconditon calculation [12]. Thus we shall assume the availability of such a procedure timed(�;�0)

which is true i� �;�0 are related in the region time passage relation. Thus a time passage arc (v; v0) 2 F

with v = (q;�); v0 = (q0;�0) i� (1) q = q
0; (2) timed(�;�0); (3) �(q) is satis�ed at all states in v; v

0. For

convenience, we let

timed(v; v0) � (q = q
0) ^ timed(�;�0) ^ v

�
�(q) ^

V
p2� p

�
^ v

0

�
�(q0) ^

V
p02�0 p

0

�

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..
..
..
.
..
..
..
..
..
..
..
...
...
....
......

.....................................
...
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
..
..
..
.....
.......................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..
..
..
.
..
..
..
..
..
..
..
...
...
....
......

.....................................
...
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
..
..
..
.....
.......................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..
..
..
.
..
..
..
..
..
..
..
...
...
....
......

.....................................
...
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
..
..
..
.....
.......................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

....
...
....
...
....
.....
...
....
...
....
.

....
...
....
...
....
.....
...
....
...
....
.

..
..
..
..
..
..
.
..
...
..
..
..
...
..
..
...
.
..
..
..
..
..
..
.
..
.
.
..
..
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
...
.
..
..
...
..
..
..
..
..
...
..
..
...
..
..
...
..
...
....
...
....
...
.......
..

..........
..
..
..
..
..
...
..
..
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
..
.
.
..
.
.
...
.
..
.
...
.
.
.
.
.
...
..
..
.
...
.
..
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
.

...
.................

..............
...........

............
...........
..........
...........
.........
.........
........
.........
........
.......
........
.......
......
.......
.......
......
.....
......
....
.....
....
.....
....
....
...
....
...
....
..
....
...
...
...
....
..
...
...
...
...
...
..
...
...
...
...
..
....
....
..
....
...
....
...
...
...
....
...
...
..
....
...
....
...
..
....
..
...

..
..
..
..
..
..
..
..
..
....................

u v w

CP[�1](u; v) CP[�1](v; w)

CP[�1](v; v)

CP[�1](u; w)

Figure 2: Central operation in our Kleene's closure algorithm.

3.2 CP-characterization

Given a PCTL formula �1 and a path � = hv1v2 : : : vmi with vi = (qi;�i), � is called a �1-path i� for some

controller � and some interpretation I, we can embed a valid computation in the path such that along

the path, all regions except the last one satis�es �1. Likewise, a cycle � = hv1v2 : : : v1i is a �1-cycle if all

regions along the cycle satisfy �1. The �1-path (cycle) is of t time units long i� along the path (cycle),

exactly t arcs have the reading of � increments from a noninteger to an integer.

To represent CP-characterizations, we shall use pairs like (�; T), where � is a state predicate and T

is an integer set. Suppose, for each v 2 V , the constraint for subformula �1 satis�ed by states in v is

notationally L[�1](v). For v; v0 2 V and a subformula �1, the notation for CP-characterization for v; v0

is CP[�1](v; v
0). Conceptually, there is a �nite �1-path v1; : : : ; vm, with vi = (qi;�i), of t time units long

i� there is a (�; T) 2 CP [�1](v1; vm) such that t 2 T , the path is a valid computation with respect to �

which speci�es the satis�able constraints on parameters and controller-choice, and the controller choice is

consistent at the replicated regions in the path.

Now we shall give a procedure for the derivation of the CP-characterization for each pair of regions. The

kernel of the procedure is a Kleene's closure computation with an intuitive scheme of vertex-bypassing.

Suppose we have three regions u; v and w whose connections in the CR-graph are shown in Figure 2. By

bypassing region v, we realize that CP [�1](u;w) should be a minimal superset of

H[�1](u; v; w) =

8><
>:(�1 ^ �2 ^

V
(�3;T3)2D

�3; T1 + T2 +
P

(�3;T3)2D
T3�)

�������
(�1; T1) 2 CP[�1](u; v);

(�2; T2) 2 CP[�1](v; w);

D � CP[�1](v; v)

9>=
>;

considering all intermediate nodes v. Note that in the calculation of CP[�1](u;w), the time set component

T always remains semilinear.

The procedure for computing CP[�1]() is presented in the following.

KClosure[�1](V; �F) /* �F � F . It is also assumed that for all regions v 2 V , we know constraint L[�1](v)

which makes �1 satis�ed at every state in v. */

f

For each (u;w) 62 �F , CP[�1](u;w) := ;;

10

For each (u;w) 2 �F with u = (qu;�u) and w = (qw;�w), do f

let � := L[�1](u) ^ (xtion(u;w) _ timed(u;w)).

if fract(�) 6= 0 2 �u and fract(�) = 0 2 �w, CP[�1](u;w) := f(�; 1)g;

else CP[�1](u;w) := f(�; 0)g.

g

For i := 0 to jV j, do

Iteratively for each v 2 V , do

for each u;w 2 V , let CP[�1](u;w) := CP[�1](u;w) [H[�1](u; v; w);

g

The �rst two for-loops are for the purpose of setting up the initial values for paths of length one (i.e.,

directly connected edges). Notice that one unit of time is charged to an edge should � change from

nonzero to zero. One important thing in the design of KClosure[]() is to ensure that the controller always

makes consistent decision in each region. This is enforced by the individual controller-choice constraints

for each arc along the path. More precisely, if, for example, � is set to `true' at some point in time for

a region u, and set to 'false' later in the computation for the same region, then both �(u) and :�(u)

appear (conjunctively) in the predicate characterizing the path, guaranteeing that all satis�able paths be

controller-choice consistent. Lemma 1 establishes the correctness of KClosure[�1]().

LEMMA 1 : Suppose we are given the labeling function L[�1]() for a PCTL formula �1 on (V; F) and

a natural number t 2 N . After running algorithm KClosure[�1](V; F), the following two statements are

equivalent.

1. there is a (�; T) 2 CP[�1](v; v
0) such that � is satis�able and t 2 T ;

2. there is a computation from a state (q; �) 2 v to a state in (q0; � 0) 2 v
0
under some controller �

and some interpretation I of t time units such that �1 is satis�ed in all but the last state during the

computation.

Proof sketch: The forward direction from item 1 to item 2 is easy to prove. The backward direction

relies on a proof to show that the choice-consistency constraint (logically i.e., (�(q) ^
V
p2� p) ^ �(q; q0)) is

su�cient. In the jargon of [13], we need to show that the existence of CA:�-polyhedral solution controller

is a necessary condition for the existence of any solution controller. The proof idea is to transform a

non-CA:�-polyhedral solution controller to a CA:�-polyhedral one. Then we can prove the new controller

also satis�es the same set of modal formulas, as the old one, by structural induction on formulas. k

3.3 Nonzenoness

Zenoness is an undesirable anomaly in real-time computations such that clock readings converge to �nite

values. Certainly, we do not want such an anomaly sneaks in the constraints derived for the existence of

interpretations and controllers. To avoid zenoness, we shall adopt the same approach used in [16]. A state

is nonzeno i� from that state on, there is always a computation along which � gets reset in�nitely often. In

PCTL, that is 92�0�j for some �j 6= false. This can be expressed as the following constraints on regions.

L[92�0�j](v) �
W
u2V

��W
(�;T)2CP[�j](h�iv;u)

�

�
^
�W

(�;T)2CP[�j](u;u)
(� ^ T > 0)

��
where h�iv is the region in a CR-graph that agrees with v in every aspect except that if h�iv = (q;�), then

fract(�) = 0 2 �. The constraint essentially says that from h�iv, we can reach a cycle of nonzero time.

11

3.4 Labeling Algorithm

Once the CP-characterizations for �1 have been constructed successfully, we can then turn to the labeling

algorithm to calculate the parametric conditions for the modal formulas properly containing �1. However,

there is still one thing which we should de�ne clearly before presenting our labeling algorithm, that is :

\How should we derive parameter constraints from things like (�; T) in CP-characterizations?" Suppose,

we want to examine if from v to v0, there is a run with time � �. To do this, we de�ne semilinear conditions

in the form of T � � with semilinear expressions T in PNF, and the (numerical or variable) parameter �

is calculated according to the following rewriting rules.

� a+ c� � � =) a+ cj � � where j is a new integer variable never used before.

� T1 [T2 � � =) (T1 � �) _ (T2 � �).

Note that since we assume that the operands are in PNF, we do not have to pay attention to the case

of + and �. Then, the condition that there is a run with time � � from v to v
0 can be calculated asW

(�;T)2CP[�1](v;v0)
� ^ T � �.

In the following, we present the labeling algorithm for L[�](v) in the traditional inductive case analysis

of formula �.

Label(A;�) f

(1) construct the CR-graph GA:� = (V; F);

(2) return L[�]((q0; [0]));

g

L[�i](v) /* v = (q;�) */ f

switch(�i)f

case (false), L[false](v) := false;

case (�i = q
0) where q0 2 Q, L[q0](v) := true if q = q

0, else L[q0](v) := false;

case (x� y � c or x � c), L[�i](v) := true i� �i 2 �;

case (
P
ai�i � d), L[

P
ai�i � d](v) :=

P
ai�i � d;

case (�j _ �k), L[�j _ �k](v) := L[�j](v) _ L[�k](v);

case (:�), L[:�](v) := :L[�](v);

case (92�0�j), f

(1) KClosure[�j](V; F);

(2)L[92�0�j](v) :=
W
u2V

��W
(�;T)2CP[�j](h�iv;u)

�

�
^
�W

(�;T)2CP[�j](u;u)
(� ^ T > 0)

��
g

case (9�jU<��k) f

(1) KClosure[�j](V; F);

(2)L[9�jU���k](v) :=
W
u2V

�
L[�k](u) ^ L[92�0true](u) ^

W
(�;T)2CP[�j](h�iv;u)

(� ^ T < �)
�

g

case (9�jU���k, 9�jU>��k, 9�jU<��k, 9�jU=��k) can be treated similarly as the last case.

case (8�jU���k), f

(1) KClosure[�j](V; F);

12

..

..

.

..
..
..
..
....
...
..
...
...

..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
..
..
..
..
...
....
.......................

...
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
....
..

..

..

.

..
..
..
..
....
...
..
...
...

..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
..
..
...
....
..........................

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..
...
...

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
.
..
..
.

..

..

..
..
..
.
..
..
..
..
..
...
....
.....
..................................

...
..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........
......

..
..
..
....
...................................

....
...
...
..
..
..
..
..
..
..
.
..
..

...
...
..
...
..
..
..
..
..
..
.
..
..

....
...
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...........................

...
...
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
.
..
.

...
...
..
...
..
..
..
..
..
..
.
..
..

....
...
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...........................

...
...
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
.
..
.

..
..
.
..
..
..
..
....
...
..
...
...

..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
..
..
..
..
...
....
.......................

...
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
....
..

..

..

.

..
..
..
..
....
...
..
...
...

..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
..
..
..
..
...
....
.......................

...
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
....
..

..

..

.

..
..
..
..
....
...
..
...
...

..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
..
..
..
..
...
....
.......................

...
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
....
..

...
....
...
.....
....
....
...
..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
....
....
....
....
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............................

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.

v1#

q0 ^ :q1 ^ 0 < x < 1 ^ fract(�) 6= 0

:q0 ^ q1 ^ x > 1 ^ fract(�) 6= 0
#

"

v3

v5

q0 ^ :q1 ^ x = 1 ^ fract(�) 6= 0

"

v0

v6

:q0 ^ q1 ^ 0 < x < 1 ^ fract(�) 6= 0

:q0 ^ q1 ^ x = 1 ^ fract(�) = 0

"

v4

v2

#

q0 ^ :q1 ^ x = 0 ^ fract(�) = 0

:q0 ^ q1 ^ x > 1 ^ fract(�) = 0

�(v1) ^ cost > 10

�(v3) ^ cost > 10

Figure 3: A simple region graph to illustrate the algorithm.

(2)L[8�jU���k](v) := :

0
BBB@

L[9(:�k)U��:(�j _ �k)](h�iv)

_
W
u1=(q1;�1);u2=(q2;�2)2V

0
B@ fract(�) = 0 2 �1 ^ fract(�) 6= 0 2 �2

^L[:�k](u1) ^ L[92�0true](u2)

^
W

(�;T)2CP [:�k](h�iv;u1)
(� ^ T = �)

1
CA
1
CCCA

g

case (8�jU>��k, 8�jU���k, 8�jU<��k, 8�jU=��k) can be treated similarly as the last case.

g

There are two things worthy of mention in the algorithm. First, nonzenoness is properly handled because

we require in the algorithm that all computations have a su�x computation satisfying 92�0(: : :). Second,

the case 8�jU���k is handled as the negation of the existence of two types of counter examples. The �rst

counter example type 9(:�k)U��:(�j _ �k) says that �k is not ful�lled before �j becomes false in time

� �. The rest is for the second counter example type which says that along some computation, �k is never

true in time � �. Note that to characterize the interval which stop right at integer �, we need constraint

fract(�) = 0 2 �1 ^ fract(�) 6= 0 2 �2.

Example 2 A simple CR-graph. For the automaton in Figure 1, the associated region graph is shown

in Figure 3. To succinctly represent a region, we shall only put down the (true and false) mode names

and those indispensable inequalities as a conjunction. All those inequalities which can be deduced from

others are omitted. Also for ease of explanation, some of the edges of the region graph are annotated with

", #, or constraints (over � and parameters) under which the associated transitions become enabled. An

arc (v; v0) is annotated with \"" if v 6j= fract(�) = 0 and v
0 j= fract(�) = 0; \#" if v j= fract(�) = 0 and

v
0 6j= fract(�) = 0.

Note that to make a valid characterization, � � 1 ^ 82<�q0 must be satis�ed. This means that the

transition from region v1 to v2 must be disabled while the one from v3 to v4 must be enabled. In turn, this

means that � must be false at q ^ 0 < x < 1 and true at q ^ x = 1. With the region graph, we can derive

relations xtion() and timed().

13

(timed(v0; v1); 0) 2 CP[true](v0; v1) (xtion(v1; v2); 0) 2 CP[true](v1; v2)

(timed(v1; v3); 1) 2 CP[true](v1; v3) (timed(v2; v4); 1) 2 CP[true](v2; v4) (1)

(xtion(v3; v4); 0) 2 CP[true](v3; v4) (timed(v4; v5); 0) 2 CP[true](v4; v5)

(timed(v5; v6); 1) 2 CP[true](v5; v6) (timed(v6; v5); 0) 2 CP[true](v6; v5)

(true; 0) 2 CP[true](v0; v1) (�(v1) ^ cost > 10; 0) 2 CP[true](v1; v2)

(true; 1) 2 CP[true](v1; v3) (true; 1) 2 CP[true](v2; v4) (2)

(�(v3) ^ cost > 10; 0) 2 CP[true](v3; v4) (true; 0) 2 CP[true](v4; v5)

(true; 1) 2 CP[true](v5; v6) (true; 0) 2 CP[true](v6; v5)

(�(v1) ^ cost > 10; 0) 2 CP[true](v0; v2) (true; 1) 2 CP[true](v0; v3)

(�(v1) ^ cost > 10; 1) 2 CP[true](v1; v4) (�(v3) ^ cost > 10; 1) 2 CP[true](v1; v4)

(true; 1) 2 CP[true](v2; v5) (�(v3) ^ cost > 10; 0) 2 CP[true](v3; v5) (3)

(true; 1) 2 CP[true](v4; v6) (true; 1�) 2 CP[true](v5; v5)

(true; 1�) 2 CP[true](v6; v6)

(�(v1) ^ cost > 10; 1) 2 CP[true](v0; v4) (�(v3) ^ cost > 10; 1) 2 CP[true](v0; v4)

(�(v1) ^ cost > 10; 1 + 1�) 2 CP[true](v1; v5) (�(v3) ^ cost > 10; 1 + 1�) 2 CP[true](v1; v5) (4)

(�(v3) ^ cost > 10; 1 + 1 �+1�) 2 CP[true](v3; v6) (true; 2 + 1 �+1�) 2 CP[true](v2; v6)

: : : : : : : : :

Table 1: Computation of KClosure[]()

timed(v0; v1) � true; xtion(v0; v1) � false; timed(v1; v2) � false;

xtion(v1; v2) �

v1(q0 ^ :q1 ^ 0 < x < 1 ^ fract(�) 6= 0 ^ � ^ cost > 10)

^v2(:q0 ^ q1 ^ 0 < x < 1 ^ fract(�) 6= 0)

!
� �(v1) ^ cost > 10

timed(v1; v3) � true; xtion(v1; v3) � false; timed(v2; v4) � true; xtion(v2; v4) � false;

timed(v3; v4) � false;

xtion(v3; v4) �

v3(:q0 ^ q1 ^ x = 1 ^ fract(�) = 0 ^ � ^ cost > 10)

^v4(:q0 ^ q1 ^ x = 1 ^ fract(�) = 0)

!
� �(v3) ^ cost > 10

timed(v4; v5) � true; xtion(v4; v5) � false; timed(v5; v6) � true; xtion(v5; v6) � false;

timed(v6; v5) � true; xtion(v6; v5) � false

After running algorithm KClosure[q]() on the region graph, we �nd that the computation of membership

relations is that shown in Table 1. In the table, we group the formulas into rows with horizontal lines

to make it more readable. The �rst two rows are set up for length one paths, while the remaining rows

are obtained with the transitivity (by-passing) law. In the third row, because of the time 1 self-loops on

regions v5; v6, we can deduce that (true; 1�) 2 CP[true](v5; v5), which means that we can cycle through

region v5 for an arbitrary number of times. k

In the following discussion, our labeling algorithm is run on a small example to present the idea.

Example 3 A test run of the labelling algorithm. We illustrate our algorithm on the automaton

shown in Figure 1 and PCTL speci�cation cost < 100 ^ � � 1 ^ 82<�q0. The region graph is shown in

Figure 3. We �rst have the following derivation.

cost < 100 ^ � � 1 ^ 82<�q0
� cost < 100 ^ � � 1 ^ :93<�((:q0) ^ 92�0true)

According to our labelling algorithm, the characterization formula is

L[cost < 100](h�iv0) ^ L[� � 1](h�iv0)

^:
W
u2V

�
L[:q0](u) ^ L[92�0true](u) ^

W
(�;T)2CP[true](h�iv0;u)

(� ^ T < �)
�

14

:q0 is true only at v2; v4; v5; v6 and 92�0true is true at all these four regions. Thus we have

cost < 100 ^ � � 1 ^ :

0
BBBB@

W
(�;T)2CP[true](v0;v2)

(� ^ � > T)

_
W

(�;T)2CP[true](v0;v4)
(� ^ � > T)

_
W

(�;T)2CP[true](v0;v5)
(� ^ � > T)

_
W

(�;T)2CP[true](v0;v6)
(� ^ � > T)

1
CCCCA

� cost < 100 ^ � � 1 ^ :

0
BBBBBBBBBB@

�(v1) ^ cost > 10 ^ � > 0

_ �(v1) ^ cost > 10 ^ � > 1

_ �(v3) ^ cost > 10 ^ � > 1

_ �(v1) ^ cost > 10 ^ � > 1 + 1�

_ �(v3) ^ cost > 10 ^ � > 1 + 1�

_ �(v1) ^ cost > 10 ^ � > 2 + 1 �+1�

_ �(v3) ^ cost > 10 ^ � > 2 + 1 �+1�

1
CCCCCCCCCCA

� cost < 100 ^ � � 1 ^ : ((�(v1) ^ cost > 10 ^ � > 0) _ (�(v3) ^ cost > 10 ^ � > 1))

� cost < 100 ^ � � 1 ^ (:�(v1) _ cost � 10 _ � � 0) ^ (:�(v3) _ cost � 10 _ � � 1)

� cost < 100 ^ � � 1 ^ (:�(v1) _ cost � 10) ^ (:�(v3) _ cost � 10 _ � � 1)

This formula says that to make the solution existent, the discrete transition must be disabled with either

�(v1) = false or cost � 10 at mode q0 when 0 < x < 1 is true. Furthermore, according to the last disjunc-

tion, if there is going to be a nonzeno computation, then it is necessary that �(v3) = true, cost > 10, and

� = 1. k

The following theorem establishes the correctness of our labeling algorithm. The proof parallels that of

a similar algorithm presented in [17].

THEOREM 2 : Given a PO(A;�; �), a subformula �1, and v = (q;�), after executing L[�1](v) in our

labeling algorithm, L[�1](v) is satis�able i� for some I and for some �, for any (q; �) 2 v, (q; �) j=�

I
�1. k

3.5 Parametric optimization step

Given an SPP A = (Q; q0; X;H; �;E; �; �) and a PCTL formula �, our labeling algorithm Label(A;�)

returns predicate L[�]((q0; [0])) (a constraint on parameters and controller choices) in such a way that

L[�]((q0; [0])) is satis�able i� for some interpretation I and some controller �, (q;0) j=�

I
�. Then the

constraint on parameters and controller choices is fully characterized by L[�]((q0; [0])). In the following we

shall demonstrate how to process L[�]((q0; [0])) to solve our parametric optimization problem.

Step 1: L[�]((q0; [0])) can be rearranged into the disjunctive normal form �1_�2_ : : :_�m, for some m.

Each of the conjunctions can be further rearranged to two types of atoms: (type 1)
P
ai�i � c and (type 2)

�(v). Type 2 is for consistency of controller choices. A conjunction is satis�able i� the subconjunction of its

type 1 atoms is satis�able and the subconjunction of its type 2 atoms is also satis�able. The satis�ability

of conjunctions of type 2 atoms can be solved in the standard BDD or DBM technologies. L[�]((q0; [0]))

remains the same if those conjunctions with unsatis�able subconjunctions of type 2 atoms are eliminated.

Step 2: Assume that L[�]((q0; [0])) has no conjunctions with unsatis�able subconjunctions of type 2

atoms. The constraint on parameters for the existence of any controllers is thus

�� =
W

1�i�m; ��i is the subconjunction of type 1 atoms of �i

��i

Then the parametric optimization problem can be broken down to m subproblems which ask for the maxi-

mum of the objective function on linear inequality systems ��i. Thus, the parametric optimization problem

15

of controllable timed automata is reduced to that of integer linear programming, which is reasonably well-

studied in the literature, although the size of the linear programming instance is likely to be exponential

in the worst case. The answer to our optimization problem is the maximum of the answers to the m

subproblems.

Example 4 : For the automaton, speci�cation, and optimization metric (cost � �) to maximize in

example 1, the optimization metric is max(cost� �) = 10� 0 = 10 when only zeno computations exist; or

max(cost� �) = 99� 1 = 98 when at least one nonzeno computation exists. Thus the optimization metric

is 98 with respect speci�cation phi and metric cost� �.

After running our algorithm for the second set of speci�cation �
0 and metric ��, we �nd that the opti-

mization metric value �� is �1, indicating that 1 is the minimum deadline from a q0 state to a q1 state

subject to the restriction of �0. Due to page-limit, we leave the details to the readers. k

4 Conclusion

We have investigated the parametric optimization issue of real-time systems modeled by controllable timed

automata augmented with static parameters. An algorithm has been proposed for deriving constraints over

the static parameters as well as the synthesized controller that would provide an environment in which

the system functions correctly. To the best of our knowledge, our work is the �rst in an attempt to

investigate parametric analysis, controller synthesis and parametric optimization in a uni�ed setting. By

giving a complete characterization of the controller as well as the parameter valuations (satisfying a given

speci�cation) in terms of a set of linear inequalities, parametric optimization is then carried out in the

framework of integer linear programming, which is relatively well-studied. The e�ciency issue is one thing

that has not been addressed much in this work. As region graphs of timed automata, in general, are

exponential in size, we expect our algorithm to take exponential time in the worst case. One way to

circumvent this ine�ciency is to look into the possibility of incorporating the so-called symbolic techniques,

which have been proven to be useful for controller synthesis (see, e.g., [6]). Analyzing the computational

complexity of our algorithm (as well as the problem) and subsequently improving the algorithm (perhaps,

based on symbolic approaches) are among our future research of parametric optimization.

References

[1] Alur, R., Courcoubetis, C., and Dill, D.L. (1993), Model-Checking in Dense Real-Time, Information

and Computation 104, Nr. 1, pp. 2{34.

[2] Alur, R. and Dill, D. (1990), Automata for Modeling Real-Time Systems, in \Automata, Lan-

guages and Programming: Proceedings of the 17th ICALP," LNCS 443, pp. 332{335, Springer-Verlag,

Berlin/New York.

[3] Alur, R., Etessami, K., La Torre, S. and Peled, D. (1999), Parametric Temporal Logic for \Model

Measuring," in \Automata, Languages and Programming: Proceedings of the 26th ICALP," Springer

Verlag.

[4] Alur, R., Henzinger, T.A., and Vardi, M.Y. (1993), Parametric Real-Time Reasoning, in \Proceedings,

25th ACM STOC," pp. 592{601.

16

[5] Asarin, E. and Maler, O. (1999), As Soon as Possible: Time Optimal Control for Timed Automata, in

F. Vaandrage and J. van Schuppen (Eds.), Hybrid Systems: Computation and Control, LNCS 1569,

pp. 19-30.

[6] Asarin, E., Maler, O., and Pnueli, A. (1995), Symbolic Controller Synthesis for Discrete and

Timed Systems, in Antsaklis, P., Kohn, W., Nerode, A., Sastry, S.(eds): Hybrid Systems II. LNCS

999,Springer 1995, pp. 1-20

[7] Asarin, E., Maler, O., Pnueli, A. and Sifakis, J. (1998), Controller Synthesis for Timed Automata,

Proc. IFAC Symposium on System Structure and Control, Elsevier, pp. 469-474.

[8] Clarke, E. and Emerson, E.A. (1981), Design and Synthesis of Synchronization Skeletons using

Branching-Time Temporal Logic, in \Proceedings, Workshop on Logic of Programs," LNCS 131,

Springer-Verlag.

[9] Clarke, E., Emerson, E.A., and Sistla, A.P. (1986), Automatic Veri�cation of Finite-State Concurrent

Systems using Temporal-Logic Speci�cations, ACM Trans. Programming, Languages, and Systems, 8,

Nr. 2, pp. 244{263.

[10] Courcoubetis, C. and Yannakakis, M. (1992), Minimum and Maximum Delay Problems in Real-

Time Systems. Formal Methods in System Design 1: 385-415, Kluwer Academic Publishers; also in

\Proceedings, 3rd CAV," 1991, Springer-Verlag, LNCS 575.

[11] Emerson, E. A., and Treer, R. (1999), Parametric Quantitative Temporal Reasoning, Proceedings of

IEEE-CS Conference on Logic in Computer Science (LICS), pp. 336{343.

[12] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for Real-Time Systems,

IEEE LICS 1992.

[13] Maler, O. Pnueli, A. and Sifakis, J. (1995), On the Synthesis of Discrete Controllers for Timed Systems.

STACS'95, LNCS 900, Springer-Verlag.

[14] Ramadge, P. and Wonham, W. (1987), Supervisory Control of a Class of Discrete Event Processes,

SIAM J. of Control and Optimization 25: 206-230.

[15] Wang, F. (1996), Scalable Compositional Reachability Analysis of Real-Time Concurrent Systems. In

Proceedings of the 2nd IEEE RTAS (Real-Time Technology and Applications Symposium), Boston,

June, 1996.

[16] Wang, F. (1996), Parametric Timing Analysis for Real-Time Systems, Information and Computation,

Vol. 130, Nr 2, Nov. 1996, Academic Press, ISSN 0890-5401; pp 131-150. Also in \Proceedings, 10th

IEEE Symposium on Logic in Computer Science," 1995.

[17] Wang, F., Parametric Analysis of Computer Systems, Formal Methods in System Design, pp.39-60,

17, 39-60, 2000.

[18] Wang, F. and Hsiung, P.-A. (1997), Parametric Analysis of Computer Systems, AMAST'97, LNCS

1349.

17

