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Abstract

Watermarking with both oblivious detection and high robustness capabilities is still a challenging

problem. The existing methods are either robust or oblivious, but it is di�cult to achieve both

goals simultaneously. In this paper, we tackle the above-mentioned problem. Our basic design

methodology is to exploit prior knowledge available at the detector side and then use it to design a

\non-blind" embedder. We prove that the proposed scheme can resist two famous denoising-based

attacks, which have successfully cracked many existing watermarking schemes. False negative and

false positive analyses are conducted to verify the performance of our scheme. The experimental

results show that the new method is indeed powerful.
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1 Introduction

Watermarking [8, 18, 21] is a technique which conceals one or more watermarks in a medium. Em-

bedded watermarks can be used to declare rightful ownership (robust watermarking), to authenticate

credibility (fragile watermarking) or to carry useful information (captioning watermarking). Usually,

a watermark itself can be a random signal, a meaningful message, or a company's logo. An e�ective

watermarking scheme should satisfy a set of typical requirements, including transparency, robustness,

oblivious (blind) detection, and so on. The main purpose of robust watermarking is to prevent hidden

watermark(s) from being removed or destroyed so that ownership can be guaranteed. Watermarks can

be detected with the help of the host media (called non-oblivious detection) or without access to the

original media (called oblivious detection). Oblivious detection is practical but is still a challenge if

high robustness is the major concern. Since the original source cannot be used in oblivious detection,

the embedded watermark should be predicted from an attacked media. Under these circumstances,

the predicted watermark values more or less deviate from their original ones. In other words, the

degree of robustness will be a�ected. Therefore, robustness and oblivious detection are, in e�ect, in

conict with each other. However, if one can �nd a good watermark prediction scheme and then use

it as part of the design methodology, then the degree of robustness degradation can be minimized. In

this paper, we aim to tackle the above-mentioned problem using image watermarking as our domain.

Watermarking with oblivious (blind) detection [1, 10, 11, 22] has been extensively explored in

recent years. Most of the existing methods detect watermarks by means of prediction, and this

kind of strategy usually is not directly related to its hiding strategy. Therefore, robustness cannot

be guaranteed. In [23], Voloshynovskiy et al. proposed a stochastic model to seriously address the

watermark prediction problem. Since an oblivious approach usually detects watermarks by means of

prediction, it is also possible that a pirate may successfully remove an embedded watermark by means

of prediction. Voloshynovskiy et al. [24] called this kind of attack a \denoising and remodulation

attack." In some situations, a predicted watermark may be maliciously added to another cover image

that belongs to other people. This kind of attack aims to create the false positive problem. Kutter

et al. [12] called this kind of attack a \copy attack." Since the aforementioned two attacks are very

di�cult to resist, any watermarking approach that claims to be robust may be cracked when either of

the two attacks is encountered. Since a predicted watermark (for oblivious detection) may sacri�ce

robustness to some extent, we propose to design a watermarking system by taking both the embedding

strategy and the detection strategy together into consideration. In other words, the characteristics of a

predetermined detection model can be used as part of the criteria for designing a better watermarking
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system. In [4], Cox et al. proposed a new concept which views watermarking as communications

with side information. This concept makes it possible to design a new watermarking method with

better e�ciency. In [17], Miller et al. adopted a similar concept [4] to design four di�erent informed

embedding strategies.

In this paper, we present a novel watermarking scheme which exploits the available information

at the watermark detection (prediction) side. Based on the information obtained from the prediction

side, we are able to use these prior information as part of the criteria for designing a better embedder.

We shall take the shrinkage-based denoising model as our watermark prediction module [16] because

it naturally leads to blind detection. Since the shrinkage-based denoising approach [6, 9] adopts a

soft-thresholding strategy to \gradually" decrease the magnitude of selected coe�cients, it is more

linear and easy to control the behaviors of denoising. Since the knowledge at the detector side is used

to design an embedder, we call it a \non-blind" embedder. In sum, the proposed system is composed

of a non-blind embedder and a blind detector. We shall analyze the performance of our scheme when

denoising-based attacks [12, 24] are encountered.

The remainder of this paper is organized as follows. In Sec. 2, oblivious watermark detection

formulated as a denoising problem is described. In Sec. 3, the proposed scheme is described, and some

performance analyses are discussed. Finally, experimental results are given in Sec. 4 and concluding

remarks made in Sec. 5.

2 Formulating Oblivious Detection as Watermark Prediction by

means of Shrinkage-based Denoising

In this paper, oblivious watermark detection is formulated as a watermark prediction problem. Under

the assumption that a watermark hiding/attacking process is modeled as a noise adding process, we

can separate an embedded watermark from an attacked image by using the shrinkage-based denoising

technique. Under the circumstances, the separated noise can be regarded as an extracted watermark,

which more or less deviates from its original shape due to the execution of denoising and the e�ects

of attacks. Based on observation that the shrinkage operation tends to gradually decrease the mag-

nitude of transformed coe�cients, we propose to use shrinkage-based denoising to predict this noise

(watermark). In the following, we will use the sparse code shrinkage (SCS) [9] strategy to model the

watermark prediction process since it is a generalization of shrinkage-based image denoising methods.

In Secs. 2.1 and 2.2, we shall describe in detail how to model the above-mentioned processes by
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means of Gaussian modeling. Next, we will discuss how to use the SCS strategy to solve the denoising

problem in Sec. 2.3.

2.1 Gaussian Modeling of Coe�cient Magnitude Update in the Hiding Process

Let X be an image, let A be a modulation operation in the hiding process, and let  be a wavelet

function. Let the wavelet transformed image be X in the space-frequency domain. For wavelet-based

watermarking, the result of modulating X by means of A is a watermarked image, X �A, where �

is a convolution operation. X �A can be converted into another form:

X � A = ( �X) � A =  � (X�As) =  � (XAs); (1)

according to the associativity of convolution, where XAs is a modulated image in the spatial domain

and As is the spatial version of A. The above equation indicates that the wavelet transform (using

 ) of the watermarked image XAs is equivalent to the modulation (using A) of a wavelet transformed

image X .

Now, suppose a watermark has been embedded into a host image in the wavelet domain. This

means that the original image X is �rst wavelet transformed using  and then modulated using A.

Under these circumstances, the modulated wavelet coe�cients can be modeled as the original wavelet

coe�cients plus Gaussian noise added in the wavelet domain. That is,

wms;o(x; y) = ws;o(x; y) + n(i); (2)

where ws;o(x; y) is the original wavelet coe�cient, wms;o(x; y) is the modulated wavelet coe�cient and

n(i) is the i'th element of the hidden Gaussian noise-like watermark n. The relationship between

(x; y) and i will be de�ned in Sec. 3. By means of Eq. (1), the Gaussian modeling can be similarly

de�ned for XAs in the spatial domain. Let x(j) be the pixel intensity of an original image X with

size N �M at a position j (1 � j � N �M), and, let N(j) be the noise value (which results from

the hidden Gaussian-noise watermarks). The intensity of a noisy pixel ~x(j) can be calculated by

~x(j) = x(j) +N(j). Therefore, the watermarked image can be modeled as

~X = X+N; (3)

where N is the noise sequence. ~X is equivalent to XAs in Eq. (1).
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2.2 Gaussian Modeling of Coe�cient Magnitude Update in the Attacking Process

After watermark hiding, the watermarked image can be transmitted over the Internet and may be

attacked by any process. At this time, the model of an attack is assumed to be the same as that of a

modulation operation except that (i) the original image X in Eq. (1) is replaced by the watermarked

image Xm; (ii) A in Eq. (1) is now regarded as an attack rather than a modulation operation; (iii) ~X

in Eq. (3) is an attacked image instead of a watermarked image; (iv) N in Eq. (3) is resultant noise

which is contributed by the Gaussian noise-like watermark n and attacks. To simplify the analysis,

we assume that N is still a Gaussian distribution with variance �. The value of � will be small/large

when the imposed attack is weak/strong.

2.3 Sparse Code Shrinkage (SCS) Technique

After conducting Gaussian modeling of coe�cient magnitude change with respect to an attacked

image, the next step is to separate the host image X from the attacked image ~X by denoising N.

Using the denoising operation, the estimated host image �X can correctly approximate the original

image, i.e., �X � X. In order to achieve the above mentioned goal, the ICA-based (Independent

Component Analysis) sparse code shrinkage (SCS) technique [9] is employed to model the denoising

problem. An SCS-based denoising algorithm includes the following steps: (i) model the noisy image

~X as a set of independent components; (ii) perform sparse code shrinkage on these components; (iii)

invert the ICA representation.

The step by step procedure for an ICA-based SCS denoising algorithm is given in the following.

First, one has to model the host image X using the independent component analysis process [3]. This

process decides on the major components of the host image. On the other hand, we need to consider

the noise part (N) consisting of minor components, which can be shrunk (soft-thresholded) using

an adaptive soft threshold during the ICA process. In an explicit format, the host image can be

modeled as X = As, where A is a basis matrix and s is the vector of independent components (ICs).

Analogous to traditional transformations, such as discrete Fourier transform or wavelet transform, s

is composed of a set of selected transformed coe�cients, and A is a synthesis �lter. Therefore, ICA

has the property that di�erent independent components (ICs) are unlikely to be activated at the same

time due to its sparse distributed nature (i.e., energy compaction). Therefore, the noisy image ~X can

be denoted as

~X = X+N = As+N: (4)

5



Suppose only the observed data ~X is given; the basis matrix (A) and the ICs (s) can be obtained

by �rst �nding a separating matrix W (with W�1 = A) via sparse coding [9]. Then, s can be

determined by s = WX, where each component si = WiX. After sparse coding, the noisy image ~X

can be transformed by means ofW, and a noisy independent component, s+ ~N, can �nally be derived

as follows:

W~X =WX+WN =WAs+WN = s+ ~N: (5)

In the second step, each noisy component, si+ ~Ni, is shrunk by the denoising operation. When we use

sparse code shrinkage to denoise s + ~N, we need to model the distribution of each component, si, to

see whether it satis�es the non-Gaussian requirement. One antecedent condition that image denoising

by means of shrinkage can achieve is that each component si must be non-Gaussian so that it can

be distinguished from normal Gaussian noise. Due to the energy compact representation of an ICA

model, every independent component si is expected to exhibit sparse density. The second condition

required for image denoising by shrinkage to function is that the variance of N must be assumed in

advance [6]. After the sparse density of each si is modeled, their corresponding parameters can be

generated to determine a suitable shrinkage function, gi [9]. Then, one can shrink si + ~Ni by means

of gi and then get the cleaned version of s, which is represented as �s, where

�s = gi(si +
~Ni): (6)

Generally speaking, the value of �s should be very close to s. In the third step, the approximated host

image �X can be derived by an inverse ICA transformation: �X = A�s. After the estimated host image

is determined, it can be used for blind detection.

Wavelet shrinkage [6] is a good alternative to SCS-based denoising [9] due to its capability of

fast computation. In wavelet shrinkage, W and A form a pair of wavelet analysis and synthesis

�lters. In addition, the shrinkage function used in wavelet shrinkage is �xed and is independent of

the distribution of independent components. Although the denoising results obtained by applying

wavelet shrinkage-based denoising are worse than those obtained by applying SCS-based denoising,

their function in watermark prediction is almost the same.

3 The Proposed Denoising-based Oblivious Watermarking Method

In this section, we will describe the proposed method and analyze its performance. In Sec. 3.1, we shall

describe in detail how a robust embedder can be designed by exploiting the knowledge of shrinkage-

based watermark prediction. The processes of watermark embedding and watermark detection will
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be described as well. In Sec. 3.2, performance analysis of the proposed scheme will be presented. In

Sec. 3.3, the relationship between our scheme and Cox et al.'s new watermarking concept [4] will be

examined.

3.1 The Proposed Approach: A Non-Blind Embedder

In this section, we shall describe in detail the proposed watermarking system. Let k(i) be an element

of a watermark K, and let k(i) be used to modulate a wavelet coe�cient ws;o(x; y) as follows:

wms;o(x; y) = ws;o(x; y) + k(i): (7)

After simple reorganization, we have

sign(k(i)) = sign(wms;o(x; y)� ws;o(x; y)); (8)

where sign is an operator de�ned as

sign(t) =

8><
>:

+1; t � 0;

�1; t < 0.
(9)

In order to maintain transparency, the sign of wms;o(x; y) has to be the same as that of ws;o(x; y). That

is, sign(wms;o(x; y)) = sign(ws;o(x; y)). On the other hand, the sign of an extracted watermark ~k(i)

can be derived by

sign(~k(i)) = sign(was;o(x; y)� ~ws;o(x; y)) = sign(was;o(x; y)); (10)

which is, in essence, a denoising-based watermark detection process. As we have mentioned previously

[15], the basic requirement for obtaining a higher correlation value between k(i) and ~k(i) is to get

them to have the same sign. In order to achieve the above goal, sign(was;o(x; y)) = sign(wms;o(x; y) �

ws;o(x; y)) must hold. However, both was;o(x; y) and wms;o(x; y) � ws;o(x; y) can be either positive or

negative, which makes the correlation between k(i) and ~k(i) hard to predict. This situation indicates

that a watermarking scheme which adopts a typical spread-spectrum hiding strategy together with a

shrinkage-based prediction rule cannot guarantee robustness.

From Eq. (10), we realize that the sign of an extracted watermark is dependent on the attacked

wavelet coe�cient due to the nature of shrinkage-based denoising. Therefore, if we can use the

knowledge derived from the denoising-based prediction side, then we can design a suitable hiding

strategy. In what follows, we shall discuss how to design a good hiding strategy. It is known that a
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pirate will not perceptually damage an image. Therefore, it is reasonable to assume that the signs of

wms;o(x; y) and w
a
s;o(x; y) are the same, i.e.,

sign(wms;o(x; y)) = sign(was;o(x; y)): (11)

By combining Eqs. (8), (10), and (11), we can design the watermark embedding strategy so as to

satisfy sign(wms;o(x; y)�ws;o(x; y)) = sign(wms;o(x; y)). That is, the watermark should be embedded in

order to increase the magnitudes of the chosen coe�cients such that

jwms;o(x; y)j > jws;o(x; y)j (12)

holds. This derived result is exactly the same as the e�ect of positive modulation of cocktail water-

marking [15]. Therefore, in this paper, only one watermark will be embedded in an image using positive

modulation. In order to satisfy the requirement of transparency and robustness, the highest-frequency

bands and the lowest-frequency band in the wavelet domain will not be used to hide watermarks. The

proposed watermarking method is described as follows.

In the watermark hiding process, suppose that X is an image of size N �M , and that an S-scale

wavelet transform is performed on X. Let the wavelet coe�cient to be modulated be ws;o(x; y), where

0 < s � S. Since the highest-frequency subbands will not be watermarked, s must be larger than

1 (the �nest scale). In addition, the lowest-frequency subband located at the S-scale is usually very

small in size and is non-watermarked to preserve transparency. Therefore, it is not di�cult to �gure

out that the length of a hidden watermark (K) is about one-quarter of the original image size. Using

positive modulation to hide a watermark K, we obtain the modulated wavelet coe�cient:

wms;o(x; y) =

8
><
>:
ws;o(x; y) + Js;o(x; y)� ~k(bottom(i)) � �; ws;o(x; y) > Js;o(x; y);

ws;o(x; y) + Js;o(x; y)� ~k(top(i)) � �; ws;o(x; y) < �Js;o(x; y);
(13)

where Js;o(:; :) (> 0) represents the JND values obtained from the visual model [25] and � (0 < � � 1)

is an image-dependent weight used to control the maximum possible modi�cation that will lead to

the least image quality degradation. Basically, � may be selected to satisfy perceptual transparency

subjectively or to make the PNSR of a watermarked image larger than a certain value objectively.

We shall see later in this section that � (no matter what value it is) will not a�ect the detection of

watermarks. ~k(top(i))=~k(bottom(i)) refers to a watermark value, which is retrieved from the �rst/last i

position (usually a negative/positive value) of the watermark sequence ~K sorted from K in decreasing

order. Under these circumstances, jwms;o(x; y)j > jws;o(x; y)j is always guaranteed. The above sorted

results will be recorded as

p(x; y) = j; (14)
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where j, denoting top(i) or bottom(i) of Eq. (13), is the index of the sorted watermark sequence

~K. In the watermark detection process, an attacked image is �rst denoised by means of a shrinkage-

based denoising process. After this process is �nished, the original image can be estimated. Then,

the estimated original image can be used to conduct blind watermark detection by retrieving the

watermark elements ke(i) of Ke, where

ke(i) =
was;o(x; y)� �ws;o(x; y)

Js;o(x; y)� �
: (15)

Finally, the normalized correlation value is calculated to measure the similarity between K and Ke

by means of

�(K;Ke) =

PjjKjj
i=1 sign(k(i)) � sign(ke(i))

jjKjj
; (16)

where jjKjj denotes the length of the watermark. In Eq. (16), it can be easily checked from sign(�)

function and normalized correlation that � being image-dependent does not a�ect the watermark

detection.

It is clear that the time bottleneck in the proposed system is in the sparse code calculation. Since

e�ciency is a major concern in watermark detection, we shall use wavelet transform to perform the

shrinkage-based denoising task [6]. Since a secret key is required to generate a hidden watermark

and this hidden watermark must be sorted in the embedding process, a sorted watermark instead of

a secret key needs to be provided in the watermark detection process. This implies that the secret

key (in fact, a secret sequence) is longer than those in conventional methods. In addition, we have to

enforce each image to be associated with a secret sequence.

3.2 Performance Analysis

Some issues regarding performance evaluation of the proposed method are discussed in the following.

3.2.1 False Negative and False Positive Analysis

In our scheme, we use a threshold T to indicate the presence/absence of a watermark if a correlation

value is larger/smaller than T . The error probabilities, composed of a false negative (miss detection)

and a false positive (false alarm), will be used to evaluate our system. In our analysis, the distributions

of the detection results with respect to attacked images (including watermarked images) and non-

watermarked images are, respectively, approximated using Gaussian probability density functions

(PDFs). In fact, the detection results of attacked images are represented using a normal Gaussian

distribution while those of non-watermarked images are represented using a generalized Gaussian. The
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statistics of the above mentioned distributions can be estimated by means of experiments. Suppose

the mean and the variance of the distribution of non-watermarked images and those of the attacked

images are �n, �
2

n and �a, �
2

a, respectively, with �n < �a. The intersection area of the two distributions

is de�ned as the error probability, and the intersection point of the above two distributions is de�ned

as the threshold T (�1 � T � 1). Then, the false negative probability can be derived as follows:

pfn =

R T
�1 e

(x��a)
2

2�2
a dt

R
1

�1 e
(x��a)2

2�2
a dt

=
erf(

(1+�a)p
2�a

) + erf(�a�Tp
2�a

)

erf(
(1+�a)p

2�a
) + erf( 1��ap

2�a
)
: (17)

Similarly, the false positive probability can be derived as

pfp =

R
1

T e
(x��n)2

2�2
n dt

R
1

�1 e
(x��n)2

2�2
n dt

=
erf(

(1��n)p
2�n

)� erf(T��np
2�n

)

erf(
(1+�n)p

2�n
) + erf( 1��np

2�n
)
: (18)

False negative and false positive numerical results for di�erent threshold values were obtained in our

experiments.

3.2.2 Analysis of Denoising-based Prediction with Di�erent Noise Variance

For sparse code shrinkage [9] or wavelet shrinkage [6], the variance of a noise distribution, � (relevant

to the denoising capability), should be determined in advance in order to separate the original image,

X, from its embedded noise, N. It should be noted that the value of � is hard to predict but de�nitely

a�ects the �nal reconstruction result. Fortunately, the major concern here is not the original image.

What we are concerned about is the detected correlation values. Therefore, it is su�cient if the

watermark extracted from the estimated host image is highly correlated with the hidden watermark.

In the following, we shall evaluate the performance of the proposed system when noises with

di�erent variance (�) values are used. Recall that ws;o(x; y)=w
m
s;o(x; y) is the original/modulated

wavelet coe�cient of X=Xm at scale s, orientation o, and position (x; y). The attacked wavelet

coe�cient is denoted as was;o(x; y) with respect to ~X. After conducting sparse code shrinkage-based

denoising on ~X, the estimated original wavelet coe�cient �ws;o(x; y) satis�es j �ws;o(x; y)j < jwas;o(x; y)j

because shrinkage (i.e., soft thresholding) is an operation which gradually reduces the magnitude of a
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coe�cient. Now, we quantitatively analyze the relationship between the SCS-based denoising process

and the positive modulation process (Eq. (13)) as follows. According to the function of positive

modulation, we know that jwms;o(x; y)j > jws;o(x; y)j. When attacks are encountered, we may have

three possible situations: (P1) jws;o(x; y)j < jwms;o(x; y)j < jwas;o(x; y)j; (P2) jws;o(x; y)j < jwas;o(x; y)j <

jwms;o(x; y)j; and (P3) jwas;o(x; y)j < jws;o(x; y)j < jwms;o(x; y)j. To simplify the analysis, we assume

that Eq. (11) holds. If Eq. (11) does not hold, then either (i) wms;o(x; y) is small or (ii) the behavior

caused by attacks is extremely di�erent from that caused by the embedding process and is, thus,

di�cult to predict. With this basic assumption, the extracted watermark value ~k(i) derived from

was;o(x; y)� �ws;o(x; y) satis�es

sign(~k(i)) = sign(was;o(x; y)� ~ws;o(x; y)) = sign(was;o(x; y)): (19)

Similarly, the hidden watermark value k(i) satis�es

sign(k(i)) = sign(wms;o(x; y)� ws;o(x; y)): (20)

Under situation (P1) and after applying sparse code shrinkage with di�erent values of �, we can get

j �ws;o(x; y)j < jwms;o(x; y)j < jwas;o(x; y)j (21)

when � is large or

jwms;o(x; y)j < j �ws;o(x; y)j < jwas;o(x; y)j (22)

when � is small. From Eq. (21) and Eq. (22), we know that the extracted watermark will have

the same sign as the hidden watermark. It is intuitive that preservation of the same sign between

the value of a hidden watermark and that of an extracted watermark will be bene�cial for deriving a

higher correlation value. Under the conditions that (P2) is valid and that sparse code shrinkage has

been executed, we can get

j �ws;o(x; y)j < jwas;o(x; y)j < jwms;o(x; y)j (23)

whether � is small or large. Again, Eq. (23) tends to help increase the correlation value, which is

the same as in the case of (P1). Similarly, if the situation is (P3) and sparse code shrinkage has been

executed, then we have

j �ws;o(x; y)j < jwas;o(x; y)j < jwms;o(x; y)j (24)

whether � is small or large. Once again, Eq. (24) will help increase the correlation value, which is the

same as in the cases of (P1) and (P2). From the above analysis, we �nd that di�erent � values will not

a�ect the correlation value signi�cantly because the polarity of the value of an extracted watermark

can always be kept the same as that of the original watermark.
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3.2.3 Resistance to Denoising Attacks [12, 24]

From the above analysis, we know that the predicted watermark is indeed very similar to the hidden

one. Recently, Voloshynovskiy et al. [24] have presented a \denoising and perceptual remodulation

attack" which is created by �rst predicting the hidden watermark using some denoising techniques

and then removing the predicted watermark from a watermarked image by means of perceptual re-

modulation. Kutter et al. [12] also used denoising techniques to estimate a watermark. In contrast

to Voloshynovskiy et al.'s work [24], Kutter et al. [12] added the estimated watermark into a non-

watermarked image to create a false alarm situation. This kind of attack is a so-called \copy attack"

and can be used to challenge the concept of watermarking. From the above two works, we know that

a watermark can be predicted by means of denoising and then used to create either a miss detection

[24] or false alarm [12] situation. One may ask: \Does successful prediction of a watermark also imply

that watermark removal can be done successfully?" Our answer is NO . We will explain why such an

attack cannot successfully destroy a watermark embedded using our method.

Resistance to the Denoising and Perceptual Remodulation Attack

First, we will examine \denoising and remodulation attacks" [24]. Let Xa be an attacked im-

age which is obtained by applying a denoising operation to a watermarked image Xm. Suppose

the denoising operation is a technique such as low-pass �ltering, median �ltering, Wiener �ltering,

or shrinkage-based denoising [6, 9]. After applying the denoising operation, we will have either

jwas;o(x; y)j < jwms;o(x; y)j or jw
a
s;o(x; y)j � jwms;o(x; y)j. In fact, most coe�cients will be gradually

reduced in magnitude during denoising except when some non-shrinkage-based denoising techniques

(like low-pass �ltering) are used. Therefore, jwas;o(x; y)j < jwms;o(x; y)j holds for most coe�cients. In

our scheme, a hidden watermark is detected in an attacked image Xa by means of a shrinkage-based

denoising operation. Therefore, the coe�cients of the estimated original image ~X and those of the

attacked image Xa should satisfy the following inequality:

j ~ws;o(x; y)j < jwas;o(x; y)j: (25)

From the above analysis, we have

j ~ws;o(x; y)j < jwas;o(x; y)j < jwms;o(x; y)j: (26)

In the proposed scheme, positive modulation is applied to the original image. Therefore, we can obtain

that sign(wms;o(x; y)� ws;o(x; y)) is equal to sign(w
a
s;o(x; y)� ~ws;o(x; y)). This means that the overall
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correlation value will increase. From the above analysis, we conclude that a watermark embedded by

our scheme is hard to remove using a shrinkage-based denoising algorithm.

Resistance to the Copy Attack

Next, we will examine the e�ect caused by the \copy attack" [12] on our scheme. Let w1

s;o(x; y) be

the wavelet coe�cient of an image X1 belonging to us, and let w2

s;o(x; y) be the wavelet coe�cient

of an image X2 belonging to someone else. Let the modulated, attacked, and denoised versions of

w1

s;o(x; y) be denoted as w1m
s;o (x; y), w

1a
s;o(x; y), and ~w1

s;o(x; y), respectively. Furthermore, let the hidden

watermark be denoted as n1. Suppose a denoising technique such as Wiener �ltering [13] or sparse

code shrinkage [9] is applied to X1; the predicted watermark ~n1 will have the following value:

~k1(i) = w1m
s;o (x; y)� ~w1

s;o(x; y); (27)

where 1 � i � jjKjj. The predicted watermark value ~k1(i) is then added to the non-watermarked

image X2 as

w2a
s;o(x; y) = w2

s;o(x; y) +
~k1(i) (28)

to create a counterfeit image X2a with the wavelet coe�cients w2a
s;o(x; y). Under these circumstances,

we can check to see if a watermark retrieved from the counterfeit image is similar to the hidden

one, i.e., n1. Using the proposed method, the watermark-free counterfeit image can be estimated by

~w2

s;o(x; y), where j ~w
2

s;o(x; y)j < jw2a
s;o(x; y)j. As a consequence, the value of the predicted watermark

~n2 which can be calculated from X2a is

~k2(i) = w2a
s;o(x; y)� ~w2

s;o(x; y) = w2

s;o(x; y) +
~k1(i)� ~w2

s;o(x; y): (29)

Due to the gradual change caused by shrinkage-based denoising, we can guarantee that

sign(~k2(i)) = sign(w2a
s;o(x; y)):

Because ~k1(i) cannot signi�cantly a�ect w2

s;o(x; y) from the viewpoint of transparency, we are assured

that

sign(~k2(i)) = sign(w2

s;o(x; y)): (30)

On the other hand, since the hidden watermark is designed to have the same sign as its corresponding

wavelet coe�cient w1

s;o(x; y), we have

sign(k1(i)) = sign(w1

s;o(x; y)): (31)
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From Eqs. (30) and (31), we �nd, in summary, that sign(k1(i)� ~k2(i)) = sign(w1

s;o(x; y)�w
2

s;o(x; y)).

The above conclusion indicates that the correlation value between k1(i) and ~k2(i) is directly related by

the signs of their corresponding wavelet coe�cients. Because the property of a non-watermarked image

is random in nature, it can be expected that the correlation value between the retrieved watermark ~n2

and the hidden one n1 will be close to zero. This means that the proposed denoising-based oblivious

watermarking method (positive modulation incorporated with shrinkage-based watermark prediction)

is able to resist a \copy attack" [12].

3.3 Relationship with the Concept of Watermarking as Communications with

Side Information

In [4], Cox et al. proposed a new concept which views watermarking as communications with side

information. In their scheme, the embedded signal S, which is composed of an extracted signal V

and a watermark K, is perceptually similar to the extracted signal to achieve �delity and is highly

correlated with the hidden watermark K to achieve robustness. In general, S can be obtained as a

combination of V and K by a mixing function f , i.e.,

S = f(V;K): (32)

A sub-optimal way of computing S is de�ned as

S = V + ! �K; (33)

where ! is a weight. Recently, four di�erent embedding strategies (including the above one) have

been proposed as \informed embedders" [17]. Their performance was compared with that of blind

embedding and it was found that informed embedding is better. If our watermarking scheme is

interpreted as communications with side information, then we can derive the following result:

sign(S) = sign(V) = sign(K): (34)

This is because our scheme attempts to keep the signs of watermark values unchanged. In this paper,

robustness can be guaranteed if the signs of watermark values remain unchanged after attacks, i.e.,

sign(S) = sign(K) holds. Under the assumption that an attacked image will not be perceptually

di�erent from the original one (Eq. (11)), sign(S) = sign(V) should hold. Based on the above, Eq.

(34) can be derived. Therefore, the hiding strategy should be designed so as to satisfy sign(V) =

sign(K). This design has been realized by means of positive modulation, as expressed in Eq. (13).
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4 Experimental Results

Five standard images of size 256 � 256 were used as the host images in our experiments. Using our

watermarking scheme, we set the length of a hidden watermark as 16128. After watermarking was

applied, the PSNR values of the �ve watermarked image were between 41 and 42 dB, and no perceptual

distortion could be observed. 21 commonly used attacks were used to test the robustness of our

method. These attacks included (1) blurring; (2) median �ltering; (3) Wiener �ltering; (4) rescaling;

(5) histogram equalization; (6) sharpening; (7) and (8) Gaussian noise addition with di�erent variance

values; (9) and (10) uniform noise addition with di�erent variance values; (11) mosaic e�ects; (12)

texturizing; (13) shading; (14) and (15) JPEG compression with quality factors of 10% and 5%; (16)

and (17) SPIHT compression with ratios of 16 : 1 and 32 : 1; (18) StirMark [20]; (19) dithering; (20)

wavelet shrinkage-based denoising [6]; (21) sparse code shrinkage-based denoising [9]. Therefore, there

were in total 110 attacked images (including �ve watermarked images). Among them, the original

and the watermarked Barbara images are, respectively, shown in Fig. 1(a) and Fig. 1(b). The two

Barbara images which were attacked, respectively, by means of Gaussian noise adding and shading

are shown in Figs. 1(c) and (d). Three watermark prediction techniques, wavelet shrinkage-based

denoising [6], sparse code shrinkage-based denoising [9], and Wiener �ltering [13], were compared in

terms of robustness. The comparison results based on the Barbara image are shown in Fig. 1(e). From

Fig. 1(e), it can be found that the results obtained by applying Wiener �ltering was the worst since

prediction (denoising) in this case is not consistent with our modulation operation. We also found that

none of the three denoising techniques could correctly predict the hidden watermark from an attacked

image with the shading e�ect (13-th attack). The reason why the shading e�ect attack could succeed

was that the signs of most of the chosen coe�cients changed. As a result, the predicted watermark

values had signs which were di�erent from their original ones. As we have noted with respect to Eq.

(11), these sign changes violate our basic assumption and, thus, degrade the correlation value. Fig.

1(f) shows the result of the uniqueness test when the famous StirMark attack was applied.

In the second group of experiments, we applied SPIHT compression with di�erent compression

ratios to see how the correlation value was a�ected. Fig. 2 shows a curve which reects the change

of the detector response under di�erent compression ratios. It is apparent that when the ratio was

small, its corresponding detector response was large. When the compression ratio reached 128 : 1, the

corresponding detector response dropped to 0:2.

In the third group of experiments, we obtain false positive and false negative numerical results. In

Fig. 3(a), we compare the detection results obtained by applying 21 attacks to the �ve host images.
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We �nd that the �ve curves are very consistent. A Gaussian distribution was used to approximate

these 110 detection results, as shown in Fig. 3(b). In addition, the detection results obtained from

90 non-watermarked images were also approximated by means of another Gaussian distribution, as

shown on the left hand side of Fig. 3(c). The distribution shown on the right hand side of Fig.

3(c) was a redrawn version of Fig. 3(b). It is clear that the distribution formed by the 90 non-

watermarked images was a sharp peak clustered around a detection value close to zero. On the other

hand, the distribution formed by the 5 watermarked images and 105 attacked images was an obtuse

curve centered at a detection value close to 0:5. According to the results of our experiments, the

mean and standard deviation of the distribution formed by the 90 watermarked but non-attacked

images were 0:94 and 0:04, respectively. On the other hand, the mean and standard deviation of the

distribution formed by the 90 non-watermarked images were 0:00 and 0:01, respectively. Based on

Eqs. (17) and (18), a threshold could be easily determined to obtain that both the false negative and

the false positive were negligibly small under a non-attack situation. However, when attacks were

imposed, the mean and standard deviation of the distribution formed by the 110 attacked images were

0:54 and 0:24, respectively. Under these circumstances, both false negative and false positive were

expected to increase no matter what the threshold T was. In Table 1, we show the false negative and

the false positive probabilities corresponding to di�erent threshold values.

Finally, we conducted experiments to see how a \denoising and remodulation attack" [24] and

a \copy attack" [12] would a�ect the proposed scheme. First, the hidden watermark was predicted

from the watermarked image shown in Fig. 1(b) using Wiener �ltering [13]. The predicted watermark

was shown in Fig. 4(a). As for the \denoising and remodulation attack," the predicted watermark

was subtracted from the watermarked image to which it belonged (Fig. 1(b)). Since our objective

was to demonstrate how to remove the predicted watermark, the transparency issue was not a major

concern. Therefore, the predicted watermark was directly subtracted from Fig. 1(b), and the de-

watermarked image is shown in Fig. 4(b). In addition, the predicted watermark was also triplicated

and then subtracted to yield a de-watermarked image, as shown in Fig. 4(c). As expected, Fig. 4(c)

is less transparent than Fig. 4(b). However, the detection results obtained from Figs. 4(b) and (c)

show that the hidden watermark still survived with a high correlation value (� 0:79). This implies

that the proposed scheme is insensitive to the weight added to the predicted watermark which is to

be removed. This phenomenon clearly indicates that our scheme is able to preserve the signs of the

watermark values. In addition, the predicted watermarks with di�erent weights were added to the

non-watermarked \Lenna" image, as shown in Figs. 4(d) and (e), to examine the e�ect caused by
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a \copy attack." Similarly, the detection results reveal that no watermark was detected when our

scheme was applied (the detection values were close to zero). That is, the false positive problem did

not occur.

5 Conclusion

In this paper, a novel watermarking approach, called the \non-blind" embedder, has been applied by

exploiting the available information of denoising-based watermark prediction. We have found that the

information obtained using shrinkage-based denoising (soft-thresholding) techniques is easy to control,

and, that denoising itself is, in fact, a solution for oblivious watermark detection. The knowledge at

the detector side can then be utilized to design a \non-blind" embedder, which is extremely di�erent

from the common blind embedder. On the other hand, the predicted watermark can be purposely used

to remove a hidden watermark or to confuse judgement about legal ownership. Therefore, we have

conducted analysis to con�rm that our method indeed can resist the \denoising and remodulation

attack" and the \copy attack." The performance of our scheme, composed of a non-blind embedder

and a blind detector, has also been analyzed regarding false negative and false positive probabilities.

At the present, it still is not possible for a watermarking scheme to resist all attacks because

attackers are always smarter and one step ahead. Therefore, our �rst future work will focus on the

problem of geometric attack resistance [14, 19], which has not been treated in this paper. In addition,

we simply use the watermark with a 1-bit payload to indicate its presence or absence. Longer payload

[2] should be implemented in order to provide richer information about the owner's a�liation. Finally,

the public-key detection [7] and ownership deadlock problems [5] should also be studied in order to

obtain a complete, practical watermarking system.
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Figure 1: Robustness test of the proposed scheme (a non-blinder embedder and a blind detector):

(a) host image; (b) watermarked image; (c) Gaussian noise added image; (d) attacked image with the

shading e�ect; (e) comparison of detected watermarks, respectively, predicted using wavelet shrinkage,

SCS, and Wiener �ltering. The �rst response was obtained without applying any attack, and the

remaining results were obtained by applying the 21 attacks described above (0-th attack denotes

attack-free); (f) unique watermark test for the StirMark attack.
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Figure 2: The proposed scheme under the SPIHT compression attack: (a) the SPIHT compressed

image with a ratio of 16 : 1; (b) the SPIHT compressed image with a ratio of 64 : 1; (c) the detection

results obtained under SPIHT compression at di�erent ratios ranging from 22 : 1 � 27 : 1.
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Table 1: Probabilities of false negative (pfn) and false positive (pfp) corresponding to

di�erent thresholds (T ).

Threshold (T) pfn pfp

0:0200 1:73 � 10�2 2:25 � 10�2

0:0225 1:77 � 10�2 1:20 � 10�2

0:0250 2:09 � 10�2 6:10 � 10�3
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Figure 3: Analysis of false positive and false negative: (a) comparisons of the detection results for �ve

images under 21 attacks; (b) the distribution of 110 watermarked/attacked images; (c) the distribution

on the right is the rescaled version of (b) but the one on the left is the distribution formed by 90 non-

watermarked images.
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Figure 4: The e�ects of the \denoising and remodulation attack" [24] and the \copy attack" [12]: (a)

the predicted watermark of Fig. 1(b) using the adaptive Wiener �lter [13]; (b)�(c) the watermarked

images with the predicted watermark (a) removed using di�erent weights; (d)�(e) the predicted

watermark (a) added into a non-watermarked image using di�erent weights.

24


