
Generic Validation of Structural Content
with Parametric Modules �

Tyng-Ruey Chuang
Institute of Information Science

Academia Sinica
Taipei 115, Taiwan

trc@iis.sinica.edu.tw

ABSTRACT
In this paper� we demonstrate a natural mapping from ele�
ment types of XML to module expressions of ML�like pro�
gramming languages� The mapping is inductive� and the
de�nitions of common XML operations can be derived as the
module expressions are constructed� We show how to derive�
in a generic way� the validation function� which checks an
XML document for conformance to the content model speci�
�ed by its DTD �Document Type De�nition�� One can view
the validation function as giving types to XML elements�
and the validation procedure a pre�requirement for typeful
XML programming in ML�

Our mapping of XML element types to ML module expres�
sions uses the parametric module facility of ML in some con�
trived way� For example� in validating WML �WAP Markup
Language� documents� we need to use �	�ary type construc�
tors� as well as higher�order modules that take in as many
as
� modules as input� That one can systematically model
XML DTD at the module level suggests ML�like languages
are suitable for type�safe prototyping of DTD�aware XML
applications�

1. INTRODUCTION & MOTIVATION
XML �eXtensible Markup Language� is language for tagging
documents for their structural content ��� A XML docu�
ment is tagged into a tree of nested elements� XML is exten�
sible because each XML document can include a DTD �Doc�
ument Type De�nition� which lists the tags of the elements
and speci�es the tagging constraints� A central concept in
XML document processing is validation� A XML document
is valid if its content is tagged with the constraints speci�ed

�Submitted to International Conference on Functional Pro�
gramming� ����� and available as Technical Report TR�IIS�
��
����� Institute of Information Science� Academia Sinica�
Taipei� Taiwan �http���www�iis�sinica�edu�tw�� Comments
and suggestions are most welcome�

by its DTD� A XML document is well�formed if each of its
element is enclosed with matching start�tag and end�tag� A
well�formed XML document is not necessarily valid�

The following XML document contains a DTD that de�nes
two element types folder and record� The document con�
tains as a root a folder element� which has an empty record
element as its only child� It is a valid XML document�

��xml version�������	

�
DOCTYPE folder �
�
ELEMENT folder ��record�folder�record����

�folder�folder�record����	
�
ELEMENT record EMPTY	
�	
�folder	�record	��record	��folder	

The DTD in the above XML document models the structure
where a record must contain no other element� and no folder
is empty or contains just another folder� One may think of
it modeling a tidy bookmark �le� Of the following three
elements� f� is valid� but items f� and f� are not�

f� �folder	��folder	

f� �folder	�folder	�record	��record	��folder	��folder	

f� �folder	�folder	�record�	��folder	�record�	��folder	

Note that �record�	 is a shorthand for �record	��record	�
The tag sequence �record	�folder	��record	��folder	 is
an example of not�well�formedness�

To simplify discussion� we may say that each element type
in the DTD is speci�ed by its element content model �i�e��
its tagging constraint� which is an unambiguous regular ex�
pression with element type names as symbols� The content
model of an element type speci�es what element sequences
are allowed as the children of the element� Naturally� when
coding XML programs� one need to map the element types
in a DTD to the corresponding data types in the source pro�
gramming language� A further requirement of the mapping
is that content validation is translated into type correctness
in the programming language� so that well�typed programs
will always produce valid XML elements� Note that this
goes beyond what is required of the so�called �validating

XML processor�� which need only report violations of ele�
ment content models in the input XML document but need
not impose restrictions on the output�

There have been several directions in programming language
support for writing XML applications� We can classify them
into the following three categories�

ADT for well�formed elements� Abstract data types and
the accompanying library routines are designed to tra�
verse and transform well�formed XML elements� The
XML data is assumed to be validated in a separate
phase� or its validation is a separate issue and may not
even be required� Examples in this category include
standard XML API in C��� Java� or other languages
�e�g�� Document Object Model� DOM �
�� and a combi�
nator approach to writing XML processing functional
programs ���
���

Type translation of DTD� A strongly typed language is
used for XML programming� and the type system of
the language is used to embed DTDs� The embed�
ding is complete �every element type has a correspond�
ing data type in the embedding language� and sound
�an expression of the embedding language evaluates to
a valid XML element if the expression is well�typed
in the language�� Examples in this category include
HaXml ���
�� and XMLambda �
��� If the strongly
typed language is statically typed� then the sound�
ness proof is done by the type checker at compile�
time� Hence no type�correct program will produce
invalid XML elements� One can also use constraint�
based languages or logic programming languages to en�
code XML content models in a similar way �
��� The
type translation approach is not completely satisfac�
tory for two reasons� One is that the type transla�
tion may not be systematic and can be tedious if done
manually� The other inconvenience is that code for
generic XML processing operations need to be rewrit�
ten for every DTD because they are translated into
di�erent types� XML content validation� which check
well�formed XML documents for conformance to their
DTDs� is such a generic operation�

Native language support of DTD� New languages are
being designed with builtin XML support to help build
XML�related applications� XDuce is a functional lan�
guage with regular expression types� so as to allow
direct representations of DTDs and processing of valid
elements �
��

�� Expressions in the language are eval�
uated to valid XML elements� but variables must be
annotated with their element types� The concept of
validation is built into the language as type correct�
ness� and programs are type�checked at compile�time�
XDuce also provides regular expression patterns which
further help write concise XML programs� XDuce�
however� is currently a �rst�order and monomorphic
language� and lacks some language features �e�g�� a
module system��

In this paper� we show how to use parametric modules in
ML�like languages to write XML�supporting program mod�
ules that are both expressive and generic� It is expressive

because all XML DTDs can be constructed from the pro�
vided parametric modules� It is generic because common
operations� including the validation function� are automati�
cally generated� As such� our approach has the advantages
of both the type translation approach and the native DTD
support approach� but without their disadvantages� There is
no need to recode generic operations� and no need to design
new language�

2. AN ILLUSTRATING EXAMPLE
For the tidy bookmark example described in Section
� the
following is the actual code we write in Objective Caml to
specify the DTD� and to produce the validation functions
for the two element types in the DTD�

module BookmarkTag �
struct

type ��x� �x�� t � Folder of �x� � Record of �x�
let map �f� f�� t � ���

end

module TidySys �
struct

module F� � Alt�Seq�P���Star�Alt�P���P�����
�Seq�P���Plus�Alt�P���P�����

module F� � Empty

module Tag � BookmarkTag
end

module TidyDtd � Mu�TidySys�

In the above� module TidySys contains two modules F�
and F�� which are translations� word by word� in Objective
Caml module language the XML element type declarations
of folder and record� The higher�order module Alt is for
���� Seq for ��� Star for ���� and Plus for ���� Ideally�
we would like to de�ne the two XML element types as two
mutually recursive ML modules T� and T� as the following�

module T� � Alt�Seq�T���Star�Alt�T���T�����
�Seq�T���Plus�Alt�T���T�����

and T� � Empty

But Objective Caml� as most ML�like languages� does not
support recursive modules� Instead we use two �place holder�
modules P� and P� as the two parameters to higher�order
modules �Alt� Seq� etc��� and use another higher�order mod�
ule Mu �pronounced as �� to derive the two simultaneous
�xed points�

Module TidyDtd contains

� module U� which de�nes the type for well�formed ele�
ments�

� module V� which contains modules T� and T� that each
de�nes the type for valid folder and record elements�
respectively�

� functions validate and forget� which provide map�
pings between well�formed elements and valid elements�

It also de�nes exception Invalid� which may be raised
by function validate� Note that the following equa�
tions always hold

forget � validate � id� �may raise exception�

validate � forget � id

The sample element f� as shown in Section
 can now be
de�ned and validated by the following Objective Caml code
�f� u is well�formed and f� v is valid���

let f��u � folder �folder �record ���� record ���
let f��v � TidyDtd�validate f��u

In addition� the valid element returned by the validation
function is parsed and typed in the sense that all of its sub�
structures are given speci�c types and can be extracted by
using ML pattern�matching�

In this paper� we will use the above example to explain the
idea and describe the construction� However� the idea and
the construction can be systematically applied to DTDs with
n element types� One need just to de�ne a n�ary �xed point
module Mun that will take a system of n n�ary higher�order
modules F�� F�� � � � � Fn��� and produce the simultaneous
�xed points� The de�nition of Mun is symmetric and is sim�
ilar to Mu� We will later use WML �a markup language for
wireless applications whose DTD de�nes �� element types�
as a benchmarking example to show the e�ectiveness of our
approach�

3. GENERICPROGRAMMINGWITHPARA-
METRIC MODULES

The XML element types in the folder example can be trans�
lated into Objective Caml using a series of type de�nitions
as shown below�

type ��a �b� alt � L of �a � R of �b

type ��a �b� seq � �a � �b
type �a star � �a list
type �a plus � One of �a � More of �a � �a plus

type folder � Folder of
��record �folder record� alt star� seq

�folder �folder record� alt plus� seq� alt
and record � Record

One can abstract the right�hand�sides of the type equations
for folder and record into two binary type constructors
f� and f�� and view folder and record as the least �xed
points of f� and f��

�Functions folder and record are syntactic sugars� and
can be de�ned by

let folder ulist � BookmarkTag�Folder
�TidyDtd�U�up ulist�

let record ulist � BookmarkTag�Record
�TidyDtd�U�up ulist�

type ��a �b� f� � ���b ��a �b� alt star� seq

��a ��a �b� alt plus� seq� alt
type ��a �b� f� � unit

type folder � Folder of �folder record� f�
and record � Record of �folder record� f�

One can further rewrite f� and f� using the two projection
functions p� and p�� and the empty type constructor�

type ��a �b� p� � �a
type ��a �b� p� � �b
type ��a �b� empty � unit

type ��a�b� f� �
����a�b�p� ���a�b�p� ��a�b�p�� alt star� seq

���a�b�p� ���a�b�p� ��a�b�p�� alt plus� seq� alt
type ��a�b� f� � ��a�b� empty

At this point� it is clear that one can program in the module
level� and de�ne f� and f� as two module expressions using
a prede�ned set of constant modules �for p�� p�� and empty��
unary parametric modules �for star and plus�� and binary
parametric modules �for alt and seq�� This is shown in
Figure
 where we also de�ne the map function� inductively�
All XML element types can be de�ned using a �xed set of
parametric modules�

We may say that modules F� and F� are objects in a functor
category where each object has a type constructor t to map
types to types� and a function map to map typed functions to
typed functions� Parametric modules like Plus are arrows in
the functor category� i�e�� natural transformations� We view
this de�nition of the map function a generic one� as each
map instance is inductively indexed by its governing type
expression� We will later show de�nitions of other generic
values that are used in the de�nition of the validation func�
tion �which itself is generic as well��

4. PARAMETRICCONTENTMODELSAND
SIMULTANEOUS FIXED POINTS

In Figure
� modules F� and F� each de�nes a binary type
constructor t� and the the two type constructors are used
together to mutually de�ne types folder and record� The
code is reproduced below�

module F�� FUN � Alt�Seq�P���Star�Alt�P���P�����
�Seq�P���Plus�Alt�P���P�����

module F�� FUN � Empty

type folder � Folder of �folder record� F��t

and record � Record of �folder record� F��t

The type constructors F��t and F��t are parametric con�
tent models in the sense that each maps a tuple of type
instances to a content model� For example� given type in�
stances folder and record� the type expression �folder
record� F��t expands to

��record �folder record� alt star� seq

�

module type FUN �
sig

type ��a �b� t
val map� ��a �	 �x� � ��b �	 �y� �	

��a �b� t �	 ��x �y� t
end

module type F�F � functor �F� FUN� �	 FUN
module type F�F�F � functor �F�� FUN� �	

functor �F�� FUN� �	 FUN

module Empty� FUN �

struct
type ��a �b� t � ��
let map �f g� t � ��

end

module P�� FUN �

struct
type ��a �b� t � �a
let map �f g� t � f t

end

module Plus� F�F � functor �F� FUN� �	
struct

type ��a �b� t �
One of ��a �b� F�t

� More of ��a �b� F�t � ��a �b� t
let rec map �f g� t �

match t with
One s �	 One �F�map �f g� s�

� More �v w� �	
More �F�map �f g� v map �f g� w�

end

module Seq� F�F�F � functor �F�� FUN� �	
functor �F�� FUN� �	

struct
type ��a �b� t � ��a �b� F��t � ��a �b� F��t
let map �f g� �u v� � �F��map �f g� u

F��map �f g� v�

end

module P�� FUN � ���
module Star� F�F �
module Alt� F�F�F � ���

module F�� FUN � Alt�Seq�P���Star�Alt�P���P�����
�Seq�P���Plus�Alt�P���P�����

module F�� FUN � Empty

type folder � Folder of �folder record� F��t

and record � Record of �folder record� F��t

Figure �� Inductive de�nitions of XML element

types using parametric modules�

Note� Module type annotations can be� and often are� omit�
ted� W can take out the �� F�F� part in �module Plus�
F�F � � � � �� and at the same time expose the implementa�
tion of module Plus� The annotations are added for clarity
and type�checking purposes�

�folder �folder record� alt plus� seq� alt

which is exactly the XML content model for element type
folder�

The main idea is to use type constructors as parametric con�
tent models� and view XML element types as simultaneous
�xed points of a set of parametric content models� This
viewpoint helps us develop primitive functions that are ab�
stract and applicable to di�erent content models �that is� the
primitives are polymorphic�� One of these primitives is the
simultaneous induction operator � the fold function� We
will later show that the validation procedure can be de�ned
by using the fold function�

We then model two recursively de�ned XML element types
by two interdependent ML modules T� and T�� Their signa�
tures are the following�

module T��
sig

type ��x� �x�� cm
type t

val up� �T��t T��t� cm �	 T��t
val down T��t �	 �T��t T��t� cm

end

and

module T��
sig

type ��x� �x�� cm
type t

val up� �T��t T��t� cm �	 T��t

val down T��t �	 �T��t T��t� cm
end

In the above� type constructor ��x� �x�� cm is for the
parametric content model� and type t is for the element
type� Functions up and down map between an element and
its content model� and together de�ne their equivalence�

down � up � id

up � down � id

Note that the above mutually de�ned signatures are not al�
lowed in Objective Caml �as in most ML�like languages��
However� one can use both auxiliary type names and ad�
ditional type sharing constraints to overcome the problem�
We can de�ne a higher�order module MuValid that derives
modules T� and T�� when given a module that speci�es the
corresponding parametric content models and the tag set�
see Figure � In Figure � modules F� and F� of the in�
put module S specify the parametric content models� and
module Tag speci�es the tag set�

Note that� in the module returned by MuValid� the type for
all valid elements is simply de�ned as the disjoint sum of
type T��t and type T��t�

�

type t � �t� t�� Tag�t

Also note that the simultaneous fold function has type

val fold� ���a �b� T��cm �	 �a� �
���a �b� T��cm �	 �b� �	
�T��t �	 �a� � �T��t �	 �b�

Function fold returns with two reduction functions �whose
types are T��t �	 �a and T��t �	 �b� if given two properly
typed induction functions as bases �whose types are ��a
�b� T��cm �	 �a and ��a �b� T��cm �	 �b��

Similarly� a higher�order module MuWF can be de�ned to de�
rive a module for all well�formed elements� see Figure �� In
module MuWF� type constructor ��x� �x�� cm � the para�
metric content model for well�formed elements � is de�ned
as a list of tagged values�

type ��x� �x�� cm � ��x� �x�� Tag�t list

and type u � the type for well�formed elements � is de�ned
as the �xed point of the parametric content model cm�

type u � U of �u u� cm

Note as well that type of all well�formed elements� type t� is
de�ned as the disjoint sum of u and u� representing elements
with two distinct tags� The de�nition of the simultaneous
fold function is the same as that in module MuValid�

In Figure �� there are several functions in module U�V and
V�U that are given their types but are left unde�ned� They
are used to specify functions validate and forget� Func�
tion validate maps a well�formed element to a valid ele�
ment� while forget is the inverse function� Let us look at
functions cm� and cm� in module U�V �rst� Their types are
the following

val cm�� �V�T��t V�T��t� U�cm �	
�V�T��t V�T��t� V�T��cm

val cm�� �V�T��t V�T��t� U�cm �	
�V�T��t V�T��t� V�T��cm

Function cm� maps a well�formed content� whose constitut�
ing parts are valid elements already� into a valid content� If
function cm� is composed with function V�T��up� one gets
a function that returns a valid element of type V�T��t as
result �we use � as the function composition operator��

V�T��up � cm�� �V�T��t V�T��t� U�cm �	 V�T��t

V�T��up � cm�� �V�T��t V�T��t� U�cm �	 V�T��t

Given these two functions as the inductive bases to the si�
multaneous fold function� one derives the validation func�
tions for elements of types V�T��t and V�T��t�

module type TAG �
sig

type ��x� �x�� t
val map� ��x� �	�y�� � ��x� �	 �y�� �	

��x� �x�� t �	 ��y� �y�� t
end

module type SYS �
sig

module F�� FUN
module F�� FUN
module Tag� TAG

end

module MuValid � functor �S� SYS� �	
struct

module Tag � S�Tag

type t� � V� of �t� t�� S�F��t
and t� � V� of �t� t�� S�F��t
type t � �t� t�� Tag�t

module T� �
struct

type ��x� �x�� cm � ��x� �x�� S�F��t
let map � S�F��map

type t � t�
let up cm � V� cm

let down �V� cm� � cm
end

module T� �
struct
type ��x� �x�� cm � ��x� �x�� S�F��t

let map � S�F��map

type t � t�
let up cm � V� cm
let down �V� cm� � cm

end

let fold �f� f�� �
let rec fold� x � f� �T��map �fold� fold��

�T��down x��
and fold� x � f� �T��map �fold� fold��

�T��down x��

in
�fold� fold��

end

Figure �� Module MuValid derives element types as

simultaneous �xed points of a set of parametric con�

tent models�

�

module MuWF � functor �T� TAG� �	
struct

module Tag � T

type ��x� �x�� cm � ��x� �x�� Tag�t list
let map fg � List�map �Tag�map fg�

type u � U of �u u� cm

type t � �u u� Tag�t

let up t � U t
let down �U t� � t

let fold �f� f�� �

let rec fold� x � f� �map �fold� fold��
�down x��

and fold� x � f� �map �fold� fold��
�down x��

in
�fold� fold��

end

module Mu � functor �S� SYS� �	
struct

module Sys � S

module U � MuWF�Sys�Tag�
module V � MuValid�Sys�

exception Invalid
module U�V �
struct

let cm�� �V�T��t V�T��t� U�cm �	
�V�T��t V�T��t� V�T��cm � ���

let cm�� �V�T��t V�T��t� U�cm �	
�V�T��t V�T��t� V�T��cm � ���

let �t� t��� �U�u �	 V�T��t� � �U�u �	 V�T��t� �
U�fold �V�T��up � cm� V�T��up � cm��

let t� U�t �	 V�t � Sys�Tag�map �t� t��
end

module V�U �
struct
let cm�� �U�u U�u� V�T��cm �	

�U�u U�u� U�cm � ���

let cm�� �U�u U�u� V�T��cm �	
�U�u U�u� U�cm � ���

let �t� t��� �V�T��t �	 U�u� � �V�T��t �	 U�u� �
V�fold �U�up � cm� U�up � cm��

let t� V�t �	 U�t � Sys�Tag�map �t� t��
end

let validate � U�V�t
let forget � V�U�t

end

Figure �� Module MuWF derives the type for well�

formed elements� Module Mu uses simultaneous fold

to de�ne the validation function�

Note� Type annotations for functions are added for clarity
purpose�

U�fold �V�T��up � cm� V�T��up � cm���

�U�u �	 V�T��t� � �U�u �	 V�T��t�

Recall that the types for all well�formed elements and all
valid elements are de�ned by

let U�t � �U�u U�u� Tag�t
let V�t � �V�T��t V�T��t� Tag�t

It follows that the validation function is de�ned by

let validate � Tag�map �
U�fold �V�T��up � cm� V�T��up � cm��

As shown in Figure �� one can de�ne function forget in a
similar way� It remains to be shown how functions like cm�

and cm� are de�ned for all content models� This is shown
next�

5. GENERIC VALIDATION OF CONTENT
MODELS

Recall that� in Figure
� a map function is de�ned in a
generic way for any module with signature FUN� as long as
the module is generated with the prede�ned set of paramet�
ric modules �Empty� P�� P�� Star� etc��� The vaildation and
forgetting functions can be de�ned in a generic way as well�
First we de�ne the validation functions for the inductive
bases� The validation function for any other content model
can then be derived� automatically� as module expressions
for the content are built�

There are two remaining details� The �rst is that at the
time of building the content model� one does not have ac�
cess to the tag module� This tag module is of signature TAG�
and de�nes the variant data type for tagging elements �e�g��
module BookmarkTag in Section �� Therefore the valida�
tion and forgetting functions must reside in a higher�order
module that takes in a TAG module as input�

One need also to maintain a nullable condition and a first
set of element tags� A content model is nullable if it accepts
the empty element sequence� The first set contains all tags
that can appear at the �rst position of a valid sequence�
It can be used to check if a content model is ambiguous�
e�g�� when the �rst sets of the two input modules to Alt

overlap� When combined with a lookahead tag� it is used to
implement a non�backtracking validation procedure as well�
�More on this in Section ��� Both nullable and first are
generic values� The module signature FUN for parametric
content model now consists of the following components�

module type FUN �

sig
type ��x� �x�� t
val map� ��x� �	 �y�� � ��x� �	 �y�� �	

��x� �y�� t �	 ��y� �y�� t

val nullable� bool

val first� Natset�t

	

module Content� functor �T� TAG� �	
sig

val validate� ��x� �x�� T�t list �	
���x� �x�� t � ��x� �x�� T�t list� Option�t

val forget� ��x� �x�� t �	 ��x� �x�� T�t list

end
end

Function validate takes a list of tagged values and turns
it into a value of content model followed with the remain�
ing list� Note that the type for the input� ��x� �x�� T�t

list� is the same as the content model of well�formed ele�
ment if the two share the same tag set� Figure � illustrates
the construction by showing the implementations of modules
P� and Star�

The validation and forgetting functions are wrapped in mod�
ule Content� The de�nition of Content is inductive� It de�
pends on the Content module in the input module F �see�
e�g�� the module expression CM � F�Content�T� in module
Star�� We can view this as constituting a generic de�nition
of the validation function� as each instance is systematically
generated by its module expression� As evident in module
Star� we adapt the longest pre�x matching rule in validating
the input element sequence against the ��� content model�
This longest pre�x matching rule is indeed required by XML�
Validation functions for other modules� i�e�� Empty� P�� P��
Plus� Seq� and Alt� can be similarly de�ned and are omitted
here�

Now we return to Figure � to complete the de�ntions of
functions cm� and cm� in modules U�V and V�U� They are
de�ned as the following�

module U�V �

struct
module CM� � Sys�F��Content�Sys�Tag�
let cm� ulist �

match CM��validate ulist with
Some �v ��� �	 v

� � �	 raise Invalid
���

end

module V�U �
struct

module CM� � Sys�F��Content�Sys�Tag�
let cm� � CM��forget
���

end

Function cm� in module U�V need to validate the input se�
quence of tagged value with the content model of element
type V�T��t� using the current tag set� This can be accom�
plished by using the validation function in module
Sys�F��Content�Sys�Tag�� The only di�erence is that� if
there remains a non�empty sequence after a validated �longest�
pre�x� the entire sequence is not valid with respect to the
content model V�T��t�

module P�� FUN �
struct

type ��x� �x�� t � �x�

let nullable � false
let first � Natset�of�list ���

module Content � functor �T� TAG� �	

struct
let validate ulist �

match ulist with
�� �	 None

� h��t �	 T�fold ��fun x �	 Some �x t��
�fun x �	 None�� h

�� if success return the untagged
value along with the remaing
list� otherwise returns None� ��

let forget a � �T�x� a� �� Tag with the first
variant of type T�t ��

end
end

module Star� F�F � functor �F� FUN� �	
struct

type ��x� �x�� t � ��x� �x�� F�t List�t

let nullable � true
let first � F�first

module Content � functor �T� TAG� �	

struct
module CM � F�Content�T�

let rec validate ulist �
match ulist with
�� �	 Some ��� ulist�

� h��� �	
if ��� h in first ���
then match CM�validate ulist with

Some �u t� �	

�match validate t with

Some �us s� �	 Some �u��us s�
� None �	 Some ��u� t��

� None �	 None
else Some ��� ulist�

let rec forget t �
match t with

�� �	 ��
� h��t �	 �CM�forget h���forget t�

end

end

Figure 	� Generic de�nition of the content valida�

tion functions�

�

6. TYPEFULXMLPROGRAMMINGINML
One of the purposes of validation is to assign a type to an
XML element� Programming with validated XML elements
is now programming with typed values� Using a statically
typed langauge for such programming allows one to detect
type errors� hence expressions for invalid elements� at com�
pile time�

Our generic validation procedure gives types to valid ele�
ments� and allows one to construct XML processors in a
typeful way� In the following illustrating diagram� let U be
the ML type for well�formed elements� and V and V � be the
ML types that correspond to speci�c XML element types�

U
g � U

V

validate

�

f
� V

�

forget

�

We may say that functions in U � U are untyped as they
may produce invalid elements� However� functions in V �

V � are typed as they always output valid elements� When�
ever one is programming a function g � U � U � and expects
the output also to be valid� one can do so by programming
a function f � V � V � so that

g � forget � f � validate

In Figure �� we show some ML code fragment to illustrate
the approach� The code maps a well�formed tidy bookmark
to a well�formed �at bookmark �function tidy�flat u�� Be�
cause the the mapping is composed from a typed conversion
routine �function tidy�flat v�� it will always output a valid
element if the input element is valid� Note that the types
for the functions below will be inferred by ML� The func�
tions are annotated with their types in Figure � for clarity
purpose only�

7. COMBING GENERICITY WITH POLY-
MORPHISM

The generic modeling of XML DTDs can be combined with
ML type polymorphism for a better result� Indeed� we use
both genericity and polymorphism to model XML element
type declarations that are accompanied with attribute�list
declarations� We can extend the previous folder example
by requiring an optional subject attribute for each folder
element� and a pair of title and url attributes for each
record element� The following is a valid XML document
with the newly extended DTD�

��xml version�������	
�
DOCTYPE folder �

�
ELEMENT folder ��record�folder�record����
�folder�folder�record����	

�
ELEMENT record EMPTY	
�
ATTLIST folder

subject CDATA �IMPLIED	
�
ATTLIST record

title CDATA �REQUIRED

module TidySys � ��� �� See code in Section � ��

module FlatSys �

struct
module F� � Plus�P��
module F� � Empty
module Tag � Tag

end

module TidyDtd � Mu�TidySys�
module FlatDtd � Mu�FlatSys�

module TidyFolder � TidyDtd�V�T�
module TidyRecord � TidyDtd�V�T�
module FlatFolder � FlatDtd�V�T�

module FlatRecord � FlatDtd�V�T�

let t�f�folder�
�FlatFolder�t FlatRecord�t� TidyFolder�cm �	
�FlatFolder�t FlatRecord�t� FlatFolder�cm �

fun fd �	 match fd with
L �r t� �	 ��� �� the case of a flat

record r followed by a sequence
t of flat records or folders ��

� R �f t� �	 ��� �� the case of a flat folder
f followed by a non�empty sequence

t of flat records or folders ��

let t�f�record�
�FlatFolder�t FlatRecord�t� TidyRecord�cm �	
�FlatFolder�t FlatRecord�t� FlatRecord�cm �
fun �� �	 ��

let flatten�v� �TidyFolder�t TidyRecord�t� Tag�t �	
�FlatFolder�t FlatRecord�t� Tag�t �

Tag�map �TidyDtd�V�fold �FlatFolder�up � t�f�folder
FlatRecord�up � t�f�record��

let flatten�u� TidyDtd�U�t �	 FlatDtd�U�t �
FlatDtd�forget � flatten�v � TidyDtd�validate

Figure
� An example of typeful XML program�

ming�

Note� Type annotations for functions are added for clarity
purpose�

�

url CDATA �REQUIRED	

�	
�folder subject��Research Institutes�	

�record title��Academia Sinica�
url��http���www�sinica�edu�tw��	

��folder	

The original de�nitions of folder and record �Figure
� last
two lines��

type folder � Folder of �folder record� F��t
and record � Record of �folder record� F��t

can now be replaced by the following

type ��u �v� folder � Folder of
�u � ���u �v�folder ��u �v�record� F��t

and ��u �v� record � Record of

�v � ���u �v�folder ��u �v�record� F��t

type att� � � subject� string option
type att� � � title� string� url� string

type folder�with�att � �att� att�� folder

type record�with�att � �att� att�� record

In the above� attribute declarations are modeled at the type
level� It can be lifted to the model level if needed� Further�
more� the generic de�nition of the validation function can
be modi�ed accordingly to accommodate validation check
for attribute formats and values�

8. MORE XML CONTENT VALIDATION
XML requires content models in element type declarations
be deterministic� Br uggemann�Klein and Wood further clar�
i�ed the requirement as meaning
�unambiguity ��� ��� A
regular expression is
�unambiguous if its sequence of sym�
bols can be recognized deterministically� with one�symbol
lookahead� by the corresponding nondeterministic �nite�state
machine� For example� the content model ��b c���b d��
is not
�unambiguous� because given an initial b� one cannot
know which b in the model is being matched without looking
further ahead to see what follows b� However� the equivalent
content model �b�c�d�� is
�unambiguous ��� We can use
the nullable predicate and the first set to check whether
the content model as speci�ed by a module expression is

�unambiguous� The check is performed at module elabora�
tion time so that an ambiguous content model is detected
and an exception is raised as soon as possible� A content
model may also contain epsilon ambiguity which is allowed
by XML but demands additional work during validation� An
example of epsilon ambiguity is �a��b��� when the empty
sequence is derivable from both a� and b��

Besides element content models �i�e�� regular expressions on
element type names�� an XML element type may use other
content speci�cations� For example� the element type may
have EMPTY or ANY speci�cation� or mixed content speci��
cation� These speci�cations impose no additional di!culty

in the de�nition of the generic validation function� The
ANY speci�cation means that the sequence of child elements
may contain elements of any declared element types� includ�
ing text� in any order� The mixed content speci�cation al�
lows text data to be interspersed with elements of some pre�
scribed types� One may think of ANY as a special case of
mixed content�

One can view text data� which is denoted as �PCDATA ��Parsed
Character Data�� in a mixed content speci�cation� as ele�
ments enclosed within an pair of implicit �text	 start�tag
and ��text	 end�tag� A Pcdata module� similar to the
Empty module we already have� can be de�ned to help in�
ductive de�nitions of mixed content speci�cations� For ex�
ample� for DTDs with element types� one can de�ne an
Any module as following by using a ��ary alternative module
Alt��

module Any� FUN � Star�Alt��P���P���Pcdata��

9. EXPERIENCE WITH LARGER DTDS
WML is a markup language for WAP applications� Its DTD
consists of �� element type de�nitions� We have applied the
generic approach to validate WML documents� In order to
do so� we need to produce ML modules that include and
operate upon �	�ary type constructors ��� element types
plus
 for "PCDATA�� We also need to construct higher�
order modules that take in as many as
� modules as input
�one of the element type de�nitions needs a
��ary Alt mod�
ule�� Our experience has been quite satisfactory� Our code
is compiled without problem with Objective Caml� but the
compilation time is not negligible �about
 min� at a desktop
Sparc workstation�� The validation time is negligible how�
ever� at least for the smallish examples we have tried �around

�� elements�� We are working on both larger DTDs and
documents� and are collecting more performance data�

The size of the ML source code is quite large� however� Take
the following ML module expression as an example�

module F�� � Seq���P���P���P���P���P!�
�P"��P#��P$��P%��P&�

One need a
��ary module Seq�� to construct the required
content model� which speci�es a sequence of
� elements�
each of a di�erent element type� Code for module Seq��
looks like the following�

module Seq�� � functor �F�� FUN� �	
functor �F�� FUN� �	 ��� �	
functor �F&� FUN� �	

struct
type ��x� �x� ��� �x�"� t

� ��x� �x� ��� �x�"� F��t
� ��x� �x� ��� �x�"� F��t
� ���
� ��x� �x� ��� �x�"� F&�t

���

end

�

It is clear from the above that� for a DTD with n ele�
ment types� the source for module Seq

m
will have code size

O�mn�� At the worst case� for a DTD of length n� our code
will need O�n� unique type variables� will contain type shar�
ing constraints of length O�n��� and will have a overall code
size of O�n��� The source code of all the necessary ML mod�
ules for the ���element WML DTD has a size of about ���
MB� When compiled� it produces a binary of size
�� KB
���cmo �le in Objective Caml�� and an interface of size ��
MB ���cmi �le in Objective Caml�� ML code for the WAP
examples is accessible at the following URL�

http���www�iis�sinica�edu�tw�'trc�x�dot�ml�html

One can do a connected component analysis on the DTD
so that the set of element types are partitioned into disjoint
subsets where there is no type�dependency between the sub�
sets� A subset with k element types need only use k�ary type
constructors� and the overall code size for the modules used
for the subset can be reduced�

10. RELATED WORK AND CONCLUSION
In Section
� we have introduced previous work that uses
existing or new functional languages to model and program
with XML DTDs� There is a wealth of research and sys�
tem work that is related to XML content modeling but is
not necessarily from the perspective of �functional� program�
ming languages� We list just a few here�

Br uggemann�Klein and Wood addressed the problem of am�
biguous XML �and SGML� content models� based on theory
of regular languages and �nite automata ��� ��� In particu�
lar� they showed that linear time su!ces to decide whether
a content model is ambiguous� It is showed that regular
expressions in both �star normal form� and �epsilon nor�
mal form� are always unambiguous ���� The Glushkov au�
tomaton that corresponds to a regular expression is used
for checking ambiguity and� if not unambiguous� for valida�
tion as well� Murata has proposed a data model for XML
document transformation that is based on forest�regular lan�
guage theory �
��
	�� His model is a lightweight alternative
to XML Schema and provides a framework for schema trans�
formation� There is also work on type modeling for docu�
ment transformation in a structured editing systems using
data types ���� However� none of the above work has used
speci�c programming language as a modeling language�

XML Schema is a maturing speci�cation language for XML
content that is being developed at World Wide Web Con�
sortium ���� XML Schema is more expressive than DTD
and the speci�cation language itself uses XML syntax� The
key di�erence between XML Schema and DTD seems to
be XML Schema#s ability to derive new types by extending
or restricting the content models of existing types� XML
Schema also provides a �substitution groups� mechanism to
allow elements to be substituted for other elements� We are
investigating whether ML�like module languages are expres�
sive enough to model these mechanisms�

Backhouse� Jansson� and Jeuring� and Meertens have writ�
ten a detailed introduction to generic programming �	�� See
also the introduction to fold�unfold by Meijer� Fokkinga�

and Paterson �
��� as well as work on using fold�unfold for
structuring and reasoning about program semantics by Hut�
ton �
�� Our extension of simple fold to simultaneous fold
seems new� Most work about generic programming in the
functional programming research community seems to rely
on the mechanism of type class to derive type�speci�c in�
stances of generic functions� The language of choice is often
Haskell� We have shown in this paper that the paramet�
ric module mechanism in ML�like languages is suitable for
generic programming as well� In fact� we think that para�
metric modules allow one to take �ner control on the in�
ductive derivations of generic values� More powerful mod�
ule systems have been developed to allow mutually recursive
modules� as well as modules that depend on values and types
�see� e�g�� Russo �
���� However� we showed here that the
lack of recursive modules need not be a problem as long as
the mutual dependency between the modules is only about
interdependent type de�nitions�

Viewed in the above context� our work can be thought to
use the ML module facility to generate a deterministic au�
tomata that is specialized for the validation of elements for
a speci�c DTD� Validation automata also gives types to the
elements �and its parts�� In additional� the construction of
the validation automata is entirely generic and can be au�
tomated� Our work also serves as a usage case of ML para�
metric modules� and can be used to stress test current ML
implementations� It is a delight to see our contrived code of
�	�ary type constructors and
��ary higher�order modules
is compiled and executed with no problem under Objective
Caml�

11. REFERENCES
�
� Document Object Model �DOM� Level
 Speci�cation

�Second Edition��
�http���www�w��org�TR������WD�DOM�Level��������&�&�	�
W�C Working Draft� � September� ����

�� Extensible Markup Language �XML�
�� �Second
Edition��
�http���www�w��org�TR������REC�xml��������#	�
W�C Recommendation� 	 October ����

��� HaXml� �http���www�cs�york�ac�uk�fp�HaXml�	�

��� XML Schema Part �� Primer�
�http���www�w��org�TR������WD�xmlschema��������&���	�
W�C Working Draft� September ����

��� E� Akpotsui� V� Quint� and C� Roisin� Type modelling
for document transformation in structured editing
systems� Mathematical and Computer Modelling�
�����
�
��
����

�	� Roland Backhouse� Patrick Jansson� Johan Jeuring�
and Lambert Meertens� Generic programming� An
introduction� In Pedro R� Henriques and Jose N�
Oliveira� editors� Advanced Functional Programming�
pages ��

��
���� Lecture Notes in Computer
Science� Volume
	��� Springer�Verlag�

��� A� Br ugemann�Klein and D� Wood� The validation of
SGML content models� Mathematical and Computer

Modelling� �����������
����

�

��� Anne Br ugemann�Klein and Derick Wood�
One�unambiguous regular languages� Information and
Computation�
�����
���	�
����

��� Anne Br uggemann�Klein� Regular expressions into
�nite automata� Theoretical Computer Science�

����
���
��
����

�
�� Haruo Hosoya and Benjamin C� Pierce� XDuce� A
typed XML processing language� In Proceedings of
Third In�
ternational Workshop on the Web and Databases� ����
�http���www�cis�upenn�edu�'hahosoya�papers�xduce�prelim�ps	�

�

� Haruo Hosoya� J$er%ome Vouillon� and Benjamin C�
Pierce� Regular expression types for XML� In
Proceedings of the International Conference on
Functional Programming� September ����
�http���www�cis�upenn�edu�'hahosoya�papers�regsub�ps	�

�
� Graham Hutton� Fold and unfold for program
semantics� In Proceedings of the International

Conference on Functional Programming� pages
������ September
���� ACM Press�

�
�� Erik Meijer� Maarten Fokkinga� and Ross Paterson�
Functional programming with bananas� lenses�
envelopes and bared wire� In John Hughes� editor�
Functional Programming Languages and Computer
Architecture� pages
��
��� August
��
� Lecture
Notes in Computer Science� Volume ���
Springer�Verlag�

�
�� Erik Meijer and Mark Shields� XM�� A functional
language for constructing and manipulating XML
documents� Draft�
����

�
�� Makoto Murata� Transformation of documents and
schemas by patterns and contextual conditions� In
Third International Workshop on Principles of
Document Processing� September
��	�

�
	� Makoto Murata� Data models for document
transformation and assembly� In Workshop on
Principles of Digital Document Processing� March

����

�
�� Claudio V� Russo� First�class structures for standard
ml�
�http���www�dcs�ed�ac�uk�home�cvr�icfp&&�html	�

����

�
�� Malcolm Wallace and Colin Runciman� Haskell and
XML� Generic combinators or type�based translation&
In Proceedings of the International Conference on
Functional Programming� pages
���
��� September

����

�
�� Ching�Long Yeh� A logic programming approach to
supporting the entries of XML documents in an object
database� In Enrico Pontelli and V$'tor Santos Costa�
editors� �nd International Workshop on Practical
Aspects of Declarative Languages� pages �����
Boston� Massachusetts� USA� Springer�Verlag�
January ���� Lecture Notes in Computer Science�
vol�
����

