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Abstract

We propose an integrated wavelet-based framework of the active contour model(snake)

for segmentation and motion tracking of deformable objects in video sequences.

The input image frame is represented by means of wavelet transform. First, the

moduli of wavelet transform coe�cients are used in a multi-resolution motion es-

timation process to �nd the initial snake contour in the current frame. The pre-

sented multi-resolution motion estimation methods allow a larger movement of the

tracked object than does traditional image-based motion estimation. Secondly, the

wavelet transform modulus at each scale is considered in the energy function of

the snake model. The snake computation is based on a coarse-to-�ne scale contin-

uation method. Application of the proposed methods to biological cell tracking is

demonstrated in experiments.
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1 Introduction

The problems of object segmentation and object tracking in video sequences have be-

come more important in recent years because of rapid development of advanced video

compression standards, such as MPEG-4[1] and MPEG-7[2]. These modern video com-

pression standards support image object description; therefore, object segmentation

and object tracking are required in the preprocessing steps. Many algorithms have

been proposed to solve these problems. Among them, we are especially interested in

the method which employs the active contour model(snake) [6]. Not only can it solve

object segmentation and tracking problems simultaneously [6][5][7], but it also can em-

ploy high-level visual knowledge as an aid by means of an interactive process. There are

two important issues in applying the snake model to video sequences: the generation

of an initial contour in each frame and the design of external forces. These two issues

correspond to the problems of object tracking and object segmentation, respectively. In

this paper, we propose an integrated wavelet-based snake framework for object tracking

and segmentation in video sequences.

Snake is basically an energy minimization model, which seeks to minimize the en-

ergy of a contour spline in an image. The energy of the contour includes the energy

caused by the external forces, internal forces, and other constraint forces. The design

of external forces determines the goal of energy minimization. In the application of

object segmentation, the design of external forces must produce low energy values at

the object boundaries or edges. Once a reasonably good initial contour is chosen in

an image frame, the energy minimization process will attract the contour spline to the

object boundary. In early work [8], the gradient of an image was used as the external

force to attract a snake to the object boundary. Later, a hierarchical �ltering method,

also known as the scale-space continuation method [7][8][9], was often used to �nd the

best solution of the snake. This continuation method is a process which tracks the

best solution from a coarse scale to �ner scales in a scale-space representation of an
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image; thus, it has the advantage of robustness with respect to image noises in the

snake computation process.

In this paper, we extends the idea of the gradient-based scale-space continuation

method to wavelet-based processing of the active contour model. The modulus of

wavelet transform coe�cients is taken as the external force. A few researches [3][4]

also applied wavelet transform to the active contour model, but they did so in di�erent

ways. The authors in [3] proposed a wavelet-frame based image force model in the

energy function, but they used the dynamic programming approach instead of the

continuation method in snake computation. The authors in [4] computed a multi-

scale edge representation using wavelet transform and �tted their de�ned wavelet snake

contour to the edge representation. They applied a gradient descent algorithm to

update the snake contour.

To deal with the problem of object tracking, a simple method is to use the snake

contour of the previous frame as an initial snake for object segmentation in the current

frame [7] However, when the object moves quickly, this method tends to result in a

bad initial contour, leading to a poorer snake in the current frame. Therefore, we

apply a modi�ed approach to multi-resolution motion estimation (MRME)[10][12] to

estimate the motion vector at each snake pixel, thus generating an estimated initial

contour for the current frame. Our method di�ers from MRME in that we use the

modulus of wavelet transform coe�cients rather than all the subband coe�cients of

the wavelet transform. Therefore, our method concentrates on edge information rather

than wavelet coe�cients at each subband for motion estimation. Finally, an empirical

method of cycle-spinning-like motion estimation is proposed to improve the proposed

algorithm.

Our integrated wavelet-based active contour framework for object segmentation and

tracking is shown in Fig. 1. This proposed framework can be embedded in the wavelet-

based video coding system [11] for the purpose of object segmentation and tracking.
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Thus, one-pass of wavelet transform can provide all necessary information for coding,

object segmentation, and object tracking in this integrated framework. The details

will be given in the following sections. In Section 2, we describe the application of

wavelet transform in the active contour model. In Section 3, we discuss issues related

to motion estimation in object tracking. In Section 4, application of biological cell

tracking is demonstrated in experiments. Conclusions are given in Section 5.

2 The wavelet-based active contour model

In this section, we will �rst review the snake model and the scale-space continuation

method. Then we will explain our proposed wavelet-based active contour model.

2.1 Snake and the scale-space continuation method

A snake describes a deformable curve v(s; t), where parameter s is the spatial index

and t is the time index. In an image plane, this deformable curve is a function of the

coordinate variables x and y:

v(s; t) = (x(s; t); y(s; t)) : s 2 
; t 2 T; (1)

where 
 and T are de�ned open intervals. The energy function of a snake is de�ned as

[6][7]

E(v) =
1

2

Z



[Eint(v) +Eext(v) +Econ(v)]ds; (2)

where Eint is the internal force of the snake, Eext is the external force of the snake caused

by the image, and Econ is the additional constraint forces. Details of the formulas and

designs of these forces can be found in [6][7]. The snake model undergoes an energy

minimization process when a curve v�(s) with minimal energy E(v�) is calculated. The

key requirement for the curve v�(s) to be the object contour will depend on proper

design of the image force Eext. For example, the most common method used to �nd an
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edge contour in an image is to set Eext = �jrI(x; y)j, where I(x; y) is the gray-level

intensity of the image. The snake will be attracted to places with large image gradients,

which correspond to possible image edges.

Because most images contain a lot of noise, directly applying the snake model to the

original images often produces unstable results. The idea of the scale-space continuation

method is to calculate the snake in a coarsely smoothed image; then, the result of the

snake at the coarse scale is used as an initial contour in a �nely smoothed image to

compute a �ne-tuned snake. This �ne-tuning process is repeated. Implementation of

the gradient-based scale-space continuation method presented in [7] is illustrated in

Fig. 2.

As shown in Fig. 2, the original image is �rst �ltered through a family of Gaussian

�lters with di�erent resolutions. Then, a di�erentiation �lter, such as the Sobel �lter,

is applied to these Gaussian �ltered images to produce approximations of the gradients

of the Gaussian smoothed images. The continuation method starts from the gradient

of the Gaussian smoothed image at the coarsest scale. After the snake at the coarsest

scale is found, it is taken as an initial contour for the following �ner scale. The process is

repeated until the �nest scale is reached. The scale-space continuation method provides

robustness with respect to image noise in real applications.

2.2 Proposed design of the wavelet-based snake

In this section, we will generalize the idea of the gradient-based scale-space contin-

uation method to �t the wavelet-based framework. The multi-scale structure of the

continuation method can be achieved by means of wavelet transform. In fact, it has

been shown [13] that the �rst derivatives of a well-de�ned family of Gaussian �lters are

equivalent to the corresponding wavelet transform coe�cients multiplied by a scaling

constant.

Let the family of Gaussian �lters be properly chosen so as to satisfy the 2-D dilation
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equation:

�s(x; y) =
1

s2
�(
x

s
;
y

s
): (3)

We de�ne the 2-D wavelet functions in the x- and y- directions as

 
1(x; y) =

@�(x; y)

@x
;  

2(x; y) =
@�(x; y)

@y
; (4)

then the wavelet transforms of image I(x; y) in the x- and y- directions at scale s are

W
1
s I(x; y) = I �  

1
s(x; y);W

2
s I(x; y) = I �  

2
s(x; y): (5)

It can be shown [13] that

0
@W 1

s I(x; y)

W
2
s I(x; y)

1
A = s

�!
r (I � �s)(x; y): (6)

Therefore, the above equation implies that applying wavelet transform is equivalent to

applying both smoothing and gradient operations.

In [14], it was shown that fast implementation of (6) can be achieved when s is

dyadic by �ltering alternatively through a low-pass �lter(L) and a high-pass �lter(H)

accordingly (see Fig. 3(a)). The fast implementation of (6) has a structure similar

to the analysis part of a �lter bank except that the down-sampling operation is not

applied.

Since �jrI(x; y)j is often used as the external energy, we can de�ne the external

energy Eext at scale s as the negative of the modulus of wavelet transform at scale s

E
s
ext(x; y) = �

p
jW 1

s I(x; y)j
2 + jW 2

s I(x; y)j
2: (7)

The above de�nition of external energy together with the continuation method in

the wavelet domain serves to generalize the gradient-based scale-space continuation

method. The architecture of our proposed wavelet-based snake model is shown in Fig.

3(a). Compared to the original gradient-based scale-space continuation method, our
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proposed model applies the theory of wavelet transform in analysis and is more exible

in terms of the choice of �lter.

Fig. 3(b) shows an alternative design to that shown in Fig. 3(a) based on decimation

of the wavelet coe�cients. Because the size of the snake pixels (snaxels) determines the

computational complexity of the snake model, it is possible to reduce the computational

complexity in the down-sampled wavelet domain. A simple implementation is proposed

as follows. First, the initial snaxels of the input frame are down-scaled and down-

sampled to obtain an initial snake in the coarsest scale. After the �nal snake in this

scale is obtained, we up-scale and up-sample(by interpolation) the snaxels of the snake

and propagate them to the next �ne scale. We repeat this process until the �nest scale

is reached. Although the computational complexity is reduced in this down-sampling

framework, we loss computational accuracy. The solution of the snake is not reliable at

coarse scales due to the low resolution of the snaxels and the modulus images. Thus,

we will present experiments in Section 4 conducted using the framework shown in

Fig. 3(a). However, the design shown in Fig. 3(b) still provides an interesting choice

for applications where computational complexity is more critical than computational

accuracy.

3 Motion estimation in contour tracking

Given a good initial contour, the snake will converge to the object boundary in an

image during the energy minimization process. In a sequence of images, a target object

can have both global movement and local deformations. If the object moves or deforms

slowly between consecutive frames, the resulting snake at frame (i� 1) can be used as

a reasonably good initial contour at frame i. Then, the object contour at frame i can

be found using the snake model with this initial contour. However, the constraints of

small motion and deformations are too restrictive to be applied to all kinds of image

sequences. Thus, motion estimation for the initial contour at each frame is necessary
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when an object moves rapidly or deforms drastically between frames.

We propose to match the snake contour pixels (snaxels) v[s; i� 1] at frame (i� 1)

to the estimated contour points v[s; i] at frame i by means of motion estimation. Many

motion estimation methods have been proposed in the literature [16]. Among them,

block-based methods are commonly used, including the full search, three-step search,

hierarchical motion estimation [17] and multi-resolution motion estimation(MRME)

methods[10]. The full search method is optimal but the least e�cient one, while the

others are sub-optimal but faster methods. These methods usually involve a trade-o�

between computational complexity and estimation accuracy. Since we use the wavelet

modulus in the active contour model, the computational cost can be reduced if we

employ a motion estimation method in the same framework. Thus, we propose an

MRME method based on using the wavelet modulus for object tracking. We will show

that by adopting a concept similar to cycle-spinning[15], we can improve the precision

of the proposed method. Before introducing our methods, we will review the MRME

method �rst.

3.1 The multi-resolution motion estimation method

We will de�ne the problem of block-based motion estimation formally. Let Ii(x; y) be

the pixel at coordinate (x; y) in frame i, and let V = (vx; vy) be the motion vector. The

block-based motion estimation problem is to match a block centered at (x; y) in frame

i�1 with the block centered at (x+vx; y+vy) in frame i with the minimum di�erence.

Using the minimum mean absolute di�erence(MAD) criterion, the block-based motion

estimation problem can be formulated as follows:

min
vx;vy

1

(K + 1)2

K=2X
i=�K=2

K=2X
j=�K=2

jIi�1(x+ i; y + j)� Ii(x+ vx + i; y + vy + j)j (8)

subject to �R � vx � R;�R � vy � R;
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where (K + 1) � (K + 1) is the block size, and (2R + 1) � (2R + 1) is the size of

the search region. Both the block size and the size of the search region determine the

computational complexity of motion estimation.

The full search method exhaustively searches all the pixels in the search region to

�nd a matching block with the minimumMAD. Thus, the full search method is optimal

but the least e�cient one. The idea of multi-resolution motion estimation(MRME) [10]

is to improve the performance in terms of computational complexity. Fig. 4(a) shows

the typical subband structure of wavelet transform. LL, LH, HL, and HH represent

the combination of low-pass and high-pass �ltering in the x- and y- directions respec-

tively, and their subscripts denote the indices in the scale space. Fig. 4(b) shows the

estimated motion vectors in the subbands. Note that the motion vectors in the same

subband orientation at di�erent scales are not related by simple scaling due to the

e�ects of down-sampling and the non-shift-invariant nature of wavelet transform. In

one implementation, MRME starts matching by the coarsest subbands within the base

search region p � p, and the estimated motion vectors are then propagated through

�ner subbands and re�ned within a proper(say, r � r) search region as follows:

Vi;j(x; y) = 2Vi;j+1(x; y) + �i;j(x; y); (9)

where �i;j is the re�nement term, i denotes the subband orientation, i = 1; 2; 3, and j

denotes the scale index, j = L; :::; 1 (from coarse to �ne, where L represents the total

decomposition levels). Comparing the full search method with MRME, the matched

block size is constant (K + 1)� (K + 1) in the full search method, while it is 2�j(K +

1) � 2�j(K + 1) at scale j in MRME; the size of the search region is (2R + 1)2 in the

full search method, while it is p2+3r2L in MRME if re�nement is done in all subbands

and orientations. Computational complexity is reduced in MRME due to the reduction

in the block size and search region size. Note that the base search region determines

the maximally detectable motion in the image, that is, p2L � p2L. To increase the

maximally detectable motion in the image, a smaller increase in the size of the search
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region is required for MRME than for the full search method. Thus, it is advantageous

to apply MRME to image sequences when there are large object movements.

3.2 Multi-resolution motion estimation using the wavelet modulus

In this section, we will propose a motion estimation method which uses the wavelet

modulus. Our method is similar in spirit to the MRME algorithm and to the hi-

erarchical block matching algorithm (HBM) [15]. This means that we use both the

down-sampled wavelet structure and block matching in our algorithm. However, our

algorithm is not the same as the MRME algorithm since we are matching a snake con-

tour on the wavelet modulus image at each scale instead of all the wavelet coe�cients

at each subband. MRME must produce respective motion vectors in all subbands for

the purpose of coding, while we need one motion vector for each snaxel. Our algorithm

is also di�erent from the HBM algorithm. In HBM algorithm, only the low-passed (or

smoothed) images are used for matching, while in our algorithm, we take advantage of

the wavelet modulus and concentrate on the motion of edges rather than other image

contents.

We start from estimating the snaxels in the coarsest smoothed image (say at scale

2L) of frame k based on the snaxels at the corresponding scale in frame k � 1. Let

S
k�1
0;i = (xk�1i ; y

k�1
i ) be the i-th snaxel at frame k� 1. Then, the corresponding snaxel

at scale 2L is Sk�1L;i =
Sk�1

0;i

2L
= (b

xk�1

i

2L
c; b

yk�1

i

2L
c), where bxc is the largest integer no less

than x.

Centered at each snaxel Sk�1L;i , we �nd the matching snaxel at scale 2L in frame

k by means of block-based motion estimation with an equation similar to that in (8)

except that we concentrate only on each snaxel (xs; ys). Let the most smoothed images

of frames k� 1 and k be, respectively, SLk�1 and S
L
k , where L is the scale index. Then,
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we �nd v�x and v�y to be

min
vx;vy

1

(K + 1)2

K

2X
m=�K

2

K

2X
n=�K

2

jS
L
k�1(xs +m; ys + n)� S

L
k (xs + vx +m; ys + vy + n)j;

where vx; vy are over a pre-de�ned search region at the coarsest scale. This region is

chosen so as to be large enough for object motion and deformations.

After the initial motion vectors are obtained, we then start to use wavelet modulus

images at �ner scales to re�ne the motion vectors. Motion vectors are migrated to the

next �ner scale by scaling each of them by 2, followed by a re�nement process. The

re�nement process matches based on the wavelet modulus images in the neighborhoods

of the snaxels at the same scale of these two consecutive frames. The scaling and

re�nement processes are repeated until the �nest scale is reached. Finally, the resultant

motion vectors are re�ned again between the original image frames. Our algorithm is

summarized as follows.

Algorithm. Multi-resolution motion estimation using the wavelet modulus

Step 1 Let the snaxels at frame k� 1 to be Sk�1
0;i , where i = 1; � � � ; J is the snaxel index.

Step 2 The snaxels at the coarsest scale 2L of frame k � 1 are Sk�1Lc;i =
Sk�1

0;i

2L
.

Step 3 Estimate the motion vectors fVLc;iji = 1; � � � ; Jg at snaxel positions Sk�1Lc;i between

the smoothed images at scale 2L of frames k � 1 and k.

Step 4 Re�ne the motion vectors fVLc;iji = 1; � � � ; Jg at snaxel positions Sk�1Lc;i between

the wavelet modulus images at scale 2L of frames k � 1 and k:

VL;i = VLc;i +�L;i:

Step 5 Go to the next �ner scale 2j . Estimate the re�nement term �j;i of the motion vec-

tor Vj+1;i at snaxel positions S
k�1
j;i =

Sk�1

0;i

2j
by matching wavelet modulus images

at the scale 2j of frame k � 1 and k. Then, the re�ned motion vector is

Vj;i = 2Vj+1;i +�j;i:
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Step 6 Repeat Step 5 until the �nest scale is reached.

Step 7 Re�ne the motion vectors fV1;iji = 1; � � � ; Jg at snaxel positions Sk�1
0;i using the

image frames k � 1 and k:

V0;i = 2V1;i +�0;i:

Step 8 The estimated initial snaxel positions at frame k are fSk0;iji = 1; � � � ; Jg, where

S
k
0;i = V0;i + S

k�1
0;i :

Our algorithm can be explained by using power series expansion of the motion

vectors (only up to pixel precision). For a motion vector V = (vx; vy) of a snaxel, we

can expand vx as follows:

vx = aN2
N + a

N�1
N�1 + � � �+ a12

1 + a0; ai 2 f0; 1g;

and we can expand vy similarly. Since we have down-sampling by 2 at each wavelet

decomposition, the motion vector vx at scale 2
L becomes vLx = aN2

N�L+aN�12
N�1�L+

� � � + aL: By choosing a su�ciently large searching region, we are able to estimate vLx ,

that is, to �nd the coe�cients a
0

is for i = N;N � 1; � � � ; L in step 3. By going to the

next �ner scale and multiplying the current motion vector by 2, we have 2� vLx , which

is equal to aN2
N�L+1+aN�12

N�L+ � � �+aL2
1. The re�nement process started in Step

4 searches for aL�1 to obtain v
L�1
x in a proper neighborhood region. By repeating Step

5 and modifying the motion vector at step 7, we obtain the estimated vx. A similar

approach can be applied to vy.

The computational complexity of the proposed multi-resolution motion estimation

method using the wavelet modulus is equal to that of the MRME method. An illustra-

tion of the proposed method is shown in Fig. 5, where 3 scales of wavelet decomposition

are applied. The ow chart of the proposed method is shown in Fig. 6.
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3.3 The cycle-spinning-like motion estimation method

The main problem of applying motion estimation in the wavelet domain is the lack of

translation invariance of the wavelet basis. A shift in the image domain cannot lead to

corresponding number of shifts in the wavelet domain at di�erent scales. One approach

to suppressing such artifacts is termed \cycle-spinning" [15], which averages out the

translation dependence. We propose a cycle-spinning-like motion estimation method to

improve the performance of motion estimation in the wavelet domain. Let Sh denote

the circulant shift by vector h, and let WMV denote the motion estimation in the

wavelet domain. Cycle-spinning-like motion estimation can be formulated as follows:

Average

h2H

S�h(WMV (Sh(I))); (10)

where H is the range of shifts and I denotes the original image. Although the proposed

motion estimation algorithm is more computationally expensive than that described

in the previous section, it provides improved performance in motion estimation in the

wavelet domain. This is the trade-o� between estimation performance and compu-

tational complexity. The improvement achieved with cycle-spinning-like motion esti-

mation over the multi-resolution motion estimation using the wavelet modulus will be

demonstrated through experiments in Section 4.3.1. Further studies on the performance

of the cycle-spinning-like method in motion estimation are currently underway.

4 Application to biological cell tracking

In the biological sciences, it is important to obtain information about the movements

of living cells, such as shape deformation, dynamics, and the path of motion [19].

Quantitative analysis of related data is required, but it is impractical for humans to do

this. Thus. an automatic approach to tracking and analyzing the cell motions in video

sequences is required. Several methods have been proposed in the literature [7][18].
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We will present the results for biological cell tracking obtained using our proposed

algorithms in the following subsections.

4.1 Experimental data

Two representative image sequences of biological cells obtained as in [20] were used in

the following experiments. In the �rst image sequence as shown in Fig. 8(a), several

Chinese Hamster Ovary, CHO, cells were visualized under a bright �eld microscope,

and detected and recorded by a CCD camera. Two aspects need to be considered

when analyzing this kind of image sequence. First, the gray-level values of most of

the di�erent parts of these cells are very similar to that of the background, making

it very di�cult to identify the cell margin using conventional methodologies, such as

thresholding. Secondly, in our study the observed Brownian motion was very fast, and

could be resolved only using programs that have high temporal resolution.

The second movie, shown in Fig. 8(b), was taken when a CHO cell (B) was trapped

and then moved (arrow) using the laser tweezers so that it made contact with an-

other CHO cell (A). This sequence was observed using typical di�erential interference

contrast (DIC) microscopy. The "half dark" (arrowhead) and "half light" (double ar-

rowhead) shadow of the cell margin posed another di�culty for tracking these cells

using conventional algorithms. The motion analyzed here represented a typical guided

non-random motion. Note that the bar in the lower-left corner of Fig. 8(b) equaled 20

micrometers.

4.2 Cell segmentation

First, we applied our proposed wavelet-based active contour model to the biological cell

image. The wavelet basis that we used in the following experiments was a quadratic

spline of compact support as de�ned in [13]. We used 4-scale decomposition, and used

wavelet modulus images at scale 24, 23 and 22 for snake computation. The scale 21

14



(�nest scale) wavelet modulus was discarded because it contained much noise.

Fig. 9(a) shows an image of the leftmost cell in Fig. 8(a), and Fig. 9(b)-(d)

shows its wavelet transform modulus at di�erent scales. The image was smoother at

the coarser scale; thus, the noise was smoothed and the object boundary can be seen

more clearly in the modulus image. Our algorithm segmented a rough cell boundary

at the coarsest scale using the wavelet-based snake and then re�ned the contour at

�ner scales continuously. Fig. 10 shows a 3-D plot of Fig. 9(c), where the height is

the negative value of the gray-level intensity, which corresponds to the external force.

The energy minimization process forced the snake contour to move to the valley, which

corresponded to the boundary of the cell.

Calculation of energy minimization was based on the discretized version of (2),

and the �nite di�erence method was applied in our implementation. The solution

was derived using an iterative process in which linear equations were solved through

inversion of a pentadiagonal banded matrix [6][7]. The terminating condition for snake

convergence was based on the steady-support criterion [7] , which sought to minimize

the averaged energy

Elength(v) =

R


Eext(v)dsR


jvsjds

(11)

along the snake. Fig. 11(a) shows the snake contour found at scale 4, where 'o' denotes

the initial snaxels and '+' denotes the converged snaxels. Fig. 11(b) shows the plot of

Elength(v) as a function of the number of iterations. Note that the necessary number

of iterations decreased at �ner scales.

4.3 Cell tracking

4.3.1 Comparison of the proposed motion estimation methods

We conducted experiments with our proposed multi-resolutionmotion estimation method

using the wavelet modulus and with the cycle-spinning-like motion estimation method.

15



Fig. 12(a) shows a 256 � 256 image cut from the leftmost cell shown in Fig. 8(a).

We manually created a 10-pixel shift both upward and to the left of Fig. 12(a). The

original image was divided into 8 � 8 blocks, and we applied our motion estimation

methods to calculate the motion vectors. An estimated image was reconstructed from

the shifted image and the motion vectors. The mean square error(MSE) between the

estimated image and the original image was calculated to compare the performance of

the methods. Figs. 12(b) and (c) showed the di�erences between the estimated images

obtained using the two methods and the original image. Fig. 12(c) seems to show

more noise than Fig. 12(b), and this phenomenon reveals the e�ects of averaging. The

MSE of the multi-resolution motion estimation obtained using the wavelet modulus

was 13:78, while the MSE of the cycle-spinning-like motion estimation was 5:35. It is

clear that the cycle-spinning-like motion estimation method performed better than the

multi-resolution motion estimation method using the wavelet modulus, at the cost of

increased computational time.

4.3.2 Results of cell tracking

From the image sequence shown in Fig. 8(a), we took a 256 � 256 window centered

around the leftmost cell. This cell exhibited small movement in this windowed image

sequence. We intentionally added a random shift ranging from �8 to +8 to each frame

in this image sequence and applied our object segmentation and tracking algorithm.

Figs. 13(a) and (b) show the intermediate tracking results, where the neighboring image

frames are overlapped and the extracted contours are plotted. In Fig. 13(c), the added

random movement and the average of the estimated motion vectors of snaxles are shown

together. The average estimated motion vector was obtained by averaging the motion

vectors estimated at each snake pixel. We observed that the estimated motion vector

matched the added random motion reasonably well, and that the di�erence between

them could be compensated for in the snake computation process. In this example, the

average error of motion vector estimation was (�0:2; 0:1526). Note that we employed
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the multi-resolution motion estimation method using the wavelet modulus in all the

experiments described in this section.

Fig. 14 shows the results of tracking a cell with a large amount of movement in the

image sequence with 20 frames. The motion analyzed here represents a typical guided

non-random motion. As shown in Fig. 14(d), we were able to track the motion of the

lower cell very well.

5 Conclusions

We have proposed an integrated framework for a wavelet-based active contour model.

This framework has two main parts: object segmentation and object tracking. In object

segmentation part, we generalize the scale-space continuation method of the gradient-

based active contour model to obtain the wavelet-based active contour model. The

moduli of wavelet transform coe�cients have been introduced into the energy function

of the active contour model, and the scale-space continuation process has been applied

from coarse to �ne scales in the wavelet transform. For the object tracking part, a

multi-resolution motion estimation method using the wavelet modulus method and

another cycle-spinning-like motion estimation method have been proposed for motion

estimation of a snake contour in consecutive frames. The proposed methods improve the

ability to track objects with large amounts of motion or deformation. Our framework

can be embedded in the wavelet-based video coding system for advanced application.
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Figure 1: Framework of the proposed wavelet-based active contour model for object

segmentation and tracking.
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(a) (b) (c)

(d) (e)

Figure 7: Example of motion estimation.(a) The snake contour of the previous frame

is shown at scale 22(low frequency) in the current frame. (b)-(e) Motion estimation

results are shown at scale 22(low frequency), scale 22(high frequency modulus), scale

21(high frequency modulus), and the scale of the original image.
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Figure 8: First frame in the test image sequences. (a) Image sequence 1, (b) image

sequence 2.
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(a) Original image (b) Scale 22

(c) Scale 23 (d) Scale 24

Figure 9: (a) Original image. (b)-(d) Wavelet transform modulus at scales 22; 23, and

24.
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Estimation error of modified MRME

average error energy = 13.78217
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Estimation error of cycle−spinning(1 layers)

average error energy = 5.35439

(c)

Figure 12: Experiment in motion estimation. The original image in (a) was shifted up

and to the left 10 pixels to create a shifted image. (b) and (c) show the di�erences

between the original image and the estimated images which were reconstructed using

the motion vectors and the original image. (b) Results using multi-resolution motion

estimation using the wavelet modulus, where MSE = 13:78. (c) Results using cycle-

spinning-like motion estimation with a 3� 3 shift range, where MSE = 5:35.
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Figure 13: Results of random cell motion. (a) Overlapping of frames 3 and 4 and the

extracted contours. (b) Overlapping of frames 12 and 13 and the extracted contours.

(c) Solid line: the added random movement. Dashed line: the estimated motion vector

obtained using our method.
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Figure 14: (a)-(c) Extracted frames. (d) The trace of the cell contour.
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