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Abstract

We prove that the wavelet modulus maxima with a complex-valued wavelet
can detect and characterize singularities. This can be regarded as an extension
of the previous wavelet modulus work in [13] with a real wavelet. The ridges
of wavelet transforms are the places in the time-frequency plane where the local
energies of a signal are mostly concentrated. We show that based on the ridges
of the wavelet transforms, the osciallating singularities are better located and
their oscillating components are better characterized than they are based on the
general maxima of real-valued wavelet transforms. We demonstrate potential
applications of these techniques.
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1 Introduction

Wavelet analysis has emerged in recent years as a methodology for solving
problems in many different areas. Among these applications, it is believed that
the wavelet approach can achieve tremendous success in the detection and char-
acterization of the irregular structures of a signal. These are usually isolated
singularities and, thus, can be characterized by their Lipschitz exponents, or as
a distribution of singularities and measured based on their spectrum [2]. Sin-
gularities also carry important information in images. They correspond to the
locations of intensity discontinuities in an image and are usually referred to as
“edges” in the image [14]. In planar objects, the curvature discontinuities of the
contour boundaries are primitive with respect to description and recognition of
the shapes [4].

Irregular behavior of a signal can be characterized by wavelet transforms.
Some pioneer works were reported in [10][15]. We rephrase one of the results in
Appendix A. A wavelet can be either real-valued or complex-valued. We use the
term real-valued wavelet transform (modulus maxima) or complex-valued wavelet
transform (modulus maxima) to denote the wavelet transform (modulus maxima)
of a real function obtained with a real-valued wavelet or a complex-valued wavelet,
respectively. It was shown in [13] that the real-valued wavelet modulus maxima
can detect all the singularities and characterize the singularities. Also, the real-
valued wavelet modulus maxima carry as just much information about a signal
since a close approximation of a signal can be numerically constructed only from
the information contained in the real-valued wavelet modulus maxima [12]. How-
ever, there are no similar results for singularity detection and characterization
based on complex-valued wavelet modulus maxima.

On the other hand, the complex-valued wavelet transform of a signal has
applications in many fields. A popular complex-valued progressive wavelet can
be obtained by taking the imaginary part of the wavelet such that it is the Hilbert
transform of the real part of the wavelet. This wavelet responds only to the non-

negative frequencies of a given signal and, thus, produces a transform whose



modulus are less oscillatory than is the case for one obtained based on a real-
valued wavelet. Complex-valued wavelet transforms have been widely used to
detect and characterize the instantaneous frequencies of a signal and to analyze
a textured image [11][7][8]. A concise but not complete representation of it is the
ridges of the complex-valued wavelet transform. The ridges mark the places in the
time-frequency plane where most of the local energies of a signal are concentrated.
One can detect ridges from either the phase or the magnitude of a complex-valued
wavelet transform [6]. A signal’s instantaneous frequencies can be approximately
identified from the real-valued wavelet modulus based on the notion of the general
maxima, which are the places that have the largest modulus along maxima lines
(see Definition in later section) [13]. However, compared to the ridges, the general
maxima does not provide as elegant a method for detecting and characterizing
instantaneous frequencies.

The major contribution of this paper is to show that one is able to use complex-
valued wavelet modulus maxima, like real-valued wavelet modulus maxima, to
detect and characterize singularities. We will present some mathematical re-
sults similar to those given by Mallat and Hwang [13] with a complex-valued
wavelet. Once the singularity can be detected and characterized from complex-
valued wavelets, one can envision the possible effectiveness of processing instan-
taneous frequencies as well as singularities simultaneously based on the modulus
of a complex-valued wavelet transform.

The paper is organized as follows. Section 2 contains some background mate-
rial on complex-valued wavelet transform. In section 3, we will review the results
of singularity processing using real-valued wavelet modulus maxima and then will
present, our results from the complex-valued wavelet modulus maxima. In section
4, we will introduce potential applications of our results. In pattern recogni-
tion, invariant features are important in indexing objects. We characterize the
curvature singularity created by spiral-like curves. We propose a segmentation
method which can partition the contour of a planar shape into subcomponents
by means of either curvature singularities or ridges. There are other potential
applications which are not discussed in this article. Finally, the last section will

give conclusions.



2 Complex-Valued Wavelets

We will review the continuous wavelet transform with a complex-valued wavelet.
The continuous wavelet transform was first introduced by Morlet and Grossmann
[9]. Let ¥(x) be a complex-valued function. The function ¥(z) is said to be a
complex-valued wavelet if its Fourier transform ¥(w) satisfies

/0+00de:/0 dezc\p<+oo. (1)
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The wavelet transform of a function f(z) € £?(R) is defined by
Wf(S,:L‘) :f*\IJs(x)a (2)

where W, (z) = 1¥(2). A wavelet ¥(z) is said to have n vanishing moments if

and only if for all positive integer k£ < n, it satisfies

/_ " ()i = 0. (3)

o0

If we use a complex-progressive wavelet of the type ¥(z) = (1+iH)v(x), where
Y(z) is a real wavelet and #H denotes the Hilbert transform, then we restrict the

wavelet analysis in the real Hardy space:
HA(R) = {W/f(s,z) € L2(R); Wf(s,w) =0 for w<0 andforall s>0}.

The wavelet transform is invertible, and f(x) is recovered with

1 freo [t — ds
fa) =relg [ [ Wit o), ()
O\Il 0t —00 S
where \I;s(x) denotes the complex conjugate of W(x).

There are several interesting complex-valued progressive wavelets, and they
have been used in a wide variety of applications. For example, the so-called
Cauchy wavelet[1] ¥(x) = %m has been used in quantum mechanics. The

I2 .
Morlet wavelet W(z) = e 2-2€"°% has been used extensively in detecting instan-

taneous frequencies and in analyzing textured images [7][11][8]. Strictly speaking,
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the Morlet wavelet is not a wavelet because it is not of integral zero. However, for
large enough wy (larger than 5 in practice), the integral of ¥(z) is small enough
to ensure that for all practical purposes, it can be used numerically as if it were
a wavelet. A very popular type of wavelet in computer vision is the derivative of

the Gaussian with the following formula:

Yale) = —L % (5)

dz™

These wavelets can be easily turned into progressive wavelets by canceling their
negative frequencies by means of Hilbert transform #, i.e., by considering ¥,,(x) =

(14 iH)¢n(x). Then, the frequency response will be

\ijn (g) = Kngneig X (0,00) (5) )

where X(0,00)(§) denotes the Heaviside step function, which is equal to 1 when
& > 0 and to 0 otherwise, and K,, denotes a normalization constant. The param-
eter n gives different numbers of vanishing moments of wavelets. When studying
singularity analysis with wavelets, the number of vanishing moments is very im-
portant. A real-valued wavelet becomes more oscillatory as the number of van-
ishing moments increases. Fig. 1 shows examples of this wavelet with n = 1 and
n = 2 with the real part given in (a), the imaginary part in (b), the amplitude in

(c) and the phase in (d), respectively.

3 Singularity Detection and Characterization with

Modulus Maxima of a Complex-Valued Wavelet

Much information about a signal can be extracted from its singularities. We
usually use the Holder exponent as a measurement of the strength of a singularity.
It has been shown that the Holder exponent of a local singularity can be charac-
terized by the wavelet transforms. One can find related results in [10][15][16] for
further reference. Nevertheless, Mallat and Hwang [13] showed that the Hdlder

exponent can also be computed with the restriction of the wavelet transforms,
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Wf(s,x), placed on their local modulus maxima at each scale s. However, their
results are valid only for the case where the wavelet is real.

In this section, we will first review some results of Mallat and Hwang regarding
the modulus maxima of a real wavelet. Then, we will extend part of their results
from the modulus maxima of a complex-valued wavelet. We will show that the
modulus maxima of a complex-valued wavelet can also detect and characterize
singularities. However, before we proceed to our results, we will first introduce

some related definitions.

Definition

e If a function f(z) satisfies |f(z) — f(y)| < c|z — y|* with ¢ > 0, « € (0,1] and
z,y € (a,b), then we say that the function f(z) is uniformly Lipschitz o over the
interval. A function is singular at zq if it is not Lipschitz 1 at z;.

e A modulus maximum is the point (sg,xy) where [Wf(so,z)| < [Wf(s0,z0)]
when x belongs to either the right or the left neighborhood of xy, and |[Wf (s, x)| <
IW/(so,z0)| when x belongs to the other side of the neighborhood of z.

e A maxima line is a connected curve of modulus maxima in the scale space (s, z).

3.1 Isolated Singularity
The following theorem was presented in [13] with a real wavelet.

Theorem 1 Let n be a strictly positive integer. Let () be a compact support

real wavelet that has n vanishing moments and is n times continuously differen-
tiable. Let f(x) € L([a,]).

o If there exists a scale sy > 0 such that for all scales s < sq and = € (a,b),
and |Wf(s,z)| has no local mazima, then for any e > 0 and o < n, f(x) is

uniformly Lipschitz o in (a + €,b — €).

e Ifi(x) is the nth derivative of a smoothing function, then f(x) is uniformly

Lipschitz n on any such interval (a + €,b — €).

o Letxy € (a,b). We say that f(x) is uniformly Lipschitz n at x when x # xy,

and that f(x) is Lipschitz o at xy, where o < n is a non-integer, if and only
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if there ezist a scale sy > 0 and constants C' and A, such that for x € (a,b)

and s < sy, all the modulus mazima of Wf(s,x) belong to a cone defined
by

|z — x| = Cs, (6)
and such that at each modulus mazima (s,x) in the cone defined by (6),

IWf(s,z)] £ As®.

The above theorem indicates that the wavelet modulus maxima of a real
wavelet can detect all the singular points in a given interval. The maxima lines
converge as the scale s decreases to all (though not limited to) the singular points
in the interval, and from the values of the lines, one can characterize their Lips-
chitz exponents.

In order to extend the abovementioned results from a real wavelet to a complex-
valued wavelet, one should place constraints on the real-part wavelet transforms
and the imaginary-part wavelet transforms. For convenience, we introduce here
the following definition: We say that two functions a(z) and b(z) are finite-
deviations within a given interval I if for any subinterval (of length €) of I, they
can be divided into at most M (€) intervals vy, v, ..., vy, where in each interval
v;, either a(x) = b(x) for all z in v; or a(x) = b(x) at the two ends of the interval
but a(z) # b(x) for any z in between them. An example of functions which are
not finite-deviations for any interval including x = 0 are COS(%) and 0. The two
functions have an unbound number of intersections for any subinterval around
xz = 0.

We will show in the following theorem that given an interval, if there is no
complex-valued wavelet modulus maxima on all sufficiently small scales, and if
the real and the imaginary parts of the wavelet transform in all these scales are
finite-deviations, then the function is uniformly Lipschitz «, for any a@ < n, in

this interval.

Theorem 2 Let n be a strictly positive integer. Let VU(x) be a complex-valued
wavelet which has compact support, has n vanishing moments and is n times
continuously differentiable. Let f(x) € L'([a,b]).
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o [f there exists a scale sy > 0 such that for all scales s < sy and x € (a,b),
\W/(s, )| has no local mazima, and if the nth(n > 0) derivatives of Re(Wf (s, x))
and Im(Wf(s,z)) are finite-deviation for each scale s, then for any ¢ > 0 and
a <n, f(x) is uniformly Lipschitz o in (a + €,b — €).

o[f U(x) is the nth derivative of a smoothing function, then f(x) is uniformly

Lipschitz n on any such interval (a + €,b — €).

The proof of this theorem is given in Appendix C. This theorem indicates that
in order to have wavelet modulus maxima of a complex-valued wavelet ¥(z) =
Yr(x)+iyr(x) for detecting all the singular points of a function f(z) as is the case
with the real wavelet ¢r(x), we must choose the imaginary part of the wavelet
Y (x) such that the real and the imaginary parts of the wavelet transform for the
given function f(z) are finite-deviations for all sufficiently small scales. Thus, we
have the constraint between the real part and the imaginary part of a complex-
valued wavelet for detection of the singularities of a given function.

The following theorem states that the wavelet modulus maxima of a complex-

valued wavelet can characterize singularities.

Theorem 3 Let f(x) be a function, let xy € (a,b) and let the nth(n > 0) deriva-
tive of ReOWf(s,x)) and Im(Wf(s,x)) be finite-deviation for each scale s. We
say that f(x) is uniformly Lipschitz n at x when x # o, and that f(x) is Lip-
schitz o at xy, where a < n is a non-integer, if there exist a scale s¢ > 0 and
constants C and A, such that for x € (a,b) and s < sg, all the modulus mazima

of Wf(s,x) belong to a cone defined by
|z — 0] = Cs, (7)
and such that at each modulus mazima (s,x) in the cone defined by (7),
(Wf(s,2)| = As®. (8)

The proof of this theorem is similar to that in Appendix B in [13]. We
sketch it in Appendix D. In order to obtain the Lipschitz exponent numerically,

Equation(8) is usually rewritten as
log|Wf(s, )| < log(A) + alog(s). (9)
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In [13], A and « are computed by
. _ _ 2
min( E log|Wf(s,x)| —log(A) — alog(s)]*).

However, it is known that estimating o by means of least squared fitting is not
reliable in practice. A more robust least median of squares regression [18] is used

to find A and « so as to minimize
med(|logWf(s,z)| — log(A) — alog(s)[).

Fig. 2 shows the wavelet transforms and the wavelet modulus maxima of a
function obtained by using the wavelet (1 + i#H)y(z), where v (z) is the second
derivatives of a Gaussian function. Our function is constructed with isolated
singularities shown in (a). From left to right: In the left neighborhood of the first
singularity, the signal behaves like O(|z|%?), whereas in its right neighborhood, the
signal behaves like O(|z|°®). The second singularity is a Dirac, whose Lipschitz
exponent is —1. The Lipschitz exponent of the third singularity is 1.5, and the
fourth is a step singularity. The complex-valued wavelet transform is shown in
(b). In (c) are shown the maxima lines detected from (b). There are four lines:
the first line is not a vertical line since the two sides of the corresponding singular
point behave differently while the rest of the maxima lines are vertical. The real
part of (b) is given in (d). In (e) are shown the maxima lines detected from (d).
We observe that there are more maxima lines converging to each singular point in
(e) than there are in (¢) due to the oscillation of the real wavelet transform. There
are three maxima lines in the first singularity. The left maxima line corresponds
to the behavior of the left neighborhood of the singularity, which is O(|x|%?),
the right maxima line corresponds to the behavior of the right neighborhood of
the singularity, which is O(|z|*%), and the middle maxima line corresponds to
the behavior of the singularity which is the compromise of the behaviors of the
left and right neighborhoods at the singular point, with a behavior like O(|x[%3).
In (f), we plot the decay of log(|Wf(s,z)|) as a function of log(s) along the
maxima line of |Wf(s,z)| of the first singularity. The maxima line of (c) is

plotted with a solid line. The Lipschitz exponent of the line is 0.3, which is the



compromise the behaviors of the left and right neighborhoods of the singularity.
There are three maxima lines corresponding to the first singularity in (d). The
three maxima lines from left to right are plotted with "=, ’-.”, and ., respectively.

Their corresponding slopes are indicated on the lines.

3.2 Oscillating Singularities

In the previous section, we considered non-oscillating singularities; i.e., satisfying
Vz, f'(z) is Holder o — 1 iff f(x) is Holder a.. Here, we will consider functions
having singularities created by fast oscillations. For these functions, we will
not have finite-deviations of their real and imaginary wavelet transforms of any
interval containing the oscillating singularities. These singularities, therefore, can
not be fully characterized by the theorems given in the previous section and their
Holder exponents. We give in the following a typical chirp function creating such

singularities [3]

f(x) = |z — x| sin( ), h,B>0. (10)

|z — zo°

This function is singular at © = 1z, and its Holder exponent is h(zy) = h.
However, the oscillating exponent (3 plays a very important role in the regularity
of the primitive of f(z). Indeed, one can show that the primitive of f(x) is
singular at x = xy with the Holder exponent being h + 1 4+ 5. Fig. 3(a) shows
the chirp function with h = 0.0 and § = 1, where f(z) = sin(-;), and shows
that it is oscillating at x = 0. Fig. 3(b) shows the magnitude of the wavelet
transform of (a) using the progressive wavelet W (z) = (1 4+ iH)y(x), where ¢(z)
is a real-valued wavelet.

Let W[ (s, x)| be the complex-valued wavelet modulus. The ridges at =y can
be approximately obtained from the local maxima of [Wf(s, x¢)| along s, with a
fixed position at xy. The following theorem states that the ridges of |Wf (s, z)]

form a continuous parabolic curve in the scale space (s, ).

Theorem 4 If f(z) = sin(Z5), and if Wf(s,z) is the wavelet transform of f(x)
using the wavelet V() = (1 +iH)y(x), where ¢ (x) is a real-valued wavelet, then
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in the scale space of |Wf(s,x)|, there is continuous ridge that converges to (0,0),

and along this ridge s = Kz'™8, where K is a constant.

Proof -

W(s,w) = T (5w + — v

i a:ﬁ“) - 6((") - xﬁ_H))\iJ(S("))a

and since W(z) is a progressive wavelet, the negative frequency part vanishes.

Therefore,

Wi(s,2)] = 7 ¥(s— )]

Let K be the argument of |¥(K)| such that |¥(K)|is a maximum. Then, the
ridges lie on a continuous curve in the scale space with s% =K. O

One can compare this result to that obtained by processing the same function
by means of a real-valued spline wavelet in [13]. A general maxima is in the place
along a maxima line where the maximal amplitude occurs. In [13], the parabolic
function s% = K was obtained by fitting the general maxima sampled from all
the maxima lines. The general maxima of a real-valued wavelet transform form a
discrete sampling of the parabolic function (see Fig. 3(d)) while in the complex-
valued wavelet transform, the ridges form a continuous parabolic function (see
Fig. 3(c)). The advantage of using the complex-valued wavelet transform in
locating the oscillating singularity and in characterizing the oscillating exponent

B is obvious.

4 Potential Applications

We will next present some potential applications of our methods. Our wavelet
is a complex-valued progressive wavelet of the type W (z) = (1 +iH )y (x), where

Y(z) is the Gaussian n-th derivative. In our experiments, we take n = 2.
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4.1 Curvature Singularities Created by Spiral-Like Curves

Spiral curves have been investigated by many researchers since they exhibit beau-

tiful symmetry in nature [19]. Let 6(¢) be the argument, let r(¢) be the radius,

and let k() be the curvature. We create spiral-like curves by controlling the

relation between r(t) and 6(t) such that r(t) = G(t)fﬁ, where 3 is a parameter.

We will show that a curvature singularity is created at ¢ = 0.

Let s(t) be the length parameterized path following the contour of a spiral . We

have assumed that r(¢) varies slower than 0(¢) does. Then, we have
ds(t) = r(t)do(t)
and, therefore,
ds(t)/dt = K (constant) = §'(t) = r(t)6'(1).

We can substitute
r(t) = 0(t) 51

into Equation (11) and by means of simple calculations, we have

K, = 0@)r() = m(t)@(t)*% ,  where K is a constant;
K.
6(t) = m ,  where K, is a constant;
-1 -
o) = n(t)= K" 5 ORAGE
Ii(t)% = K3k'(t), where K3 is a constant.

The solution of Equation(12) for curvature is
k(t) = ct™, where c is a constant;
therefore, the argument is

O(t) =d-t7"*" + e, where d and c are constants.

(11)

(12)

In Figs. 4(a) and (b), the spiral-like curves are created by r(0) = ax(6) 5 +¢ with

f=0.4in (a) and g = 0.8 in (b), respectively. We traced the curves inwards first,
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so the curvature is increasing, and then we traced backwards, so the curvature is
decreasing, to the outside. A chain-code representation was created as our traced
along the curve [5]. The Lipschitz exponent in (a) is 0.594 &~ 1 — 0.4, and that
in (b) is 0.212 =~ 1 — 0.8. In (c¢) and (d), we show the decay of logs|[WH(s, x)| as
a function of logs(s) along the maxima line at the singular points of (a) and (b),

respectively.

4.2 Contour Segmentation

The contour of a planar shape is very useful for recognizing the planar shape
[4][17]. It can be represented by means of chain codes. For recognition purposes, a
contour is usually segmented into components. A typical approach is to locate the
salient points, usually corresponding to curvature singularities, along the contour
and to then segment the contour using them. However, not all the salient points
are suitable for segmentation purposes. An example is the salient points in the
fin of a fish. Although there are many curvature singular points in the fin, we
would not use them to segment the fish. Doing so would cut the fin into pieces.
Instead, these points are better regarded as a coherent piece.

In the Introduction, we mentioned that one is able to extract instantaneous
frequencies from the modulus of a complex-valued wavelet transform. In this arti-
cle, we have shown that the wavelet modulus maxima of a complex-valued wavelet
can be used to detect and characterize singularities. Thus, we are able to detect
simultaneously instantaneous frequencies and singularities from the wavelet mod-
ulus maxima of a complex-valued wavelet. Thus, when the contour of a shape is
composed of frequency components and isolated singular points, we can use the
modulus maxima of a complex-valued wavelet to detect both. After some proper
deletion of unwanted ridges or wavelet modulus maxima, the contour of a shape
is then divided into sub-contours of frequency components and smooth curves.

We use the following method to distinguish those sub-contours which are
dominated by frequency components from those by smooth curves: We compute
both the modulus maxima and ridge of the wavelet transform. First, we remove

the maxima lines which are too short or which have Lipschitz exponents not in
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the interest region. Then, we chain the ridges horizontally along the position x by
assuming that the ridges form a smooth curve in the wavelet transform modulus
. Then, we remove those ridges whose lengths are too short based on a threshold
whose values are proportional to the length of the contour. The remaining ridges
are regarded as covering the parts of the contour dominated by the frequency
variations. We then remove all the modulus maxima within those sub-contours
which are dominated by frequency information. At this point, we have partitioned
the contour into components according to the modulus maxima. The sub-contour
within two adjacent modulus maxima contains either a frequency dominant region
or no frequency region.

Fig. 5 presents an example of applications of our segmentation algorithm to a
fish. From the chain-code of the fish, we computed its wavelet transform by tak-
ing the complex-valued progressive wavelet W(x) = (1 + iH)i(x), where ¥ (z) is
the second derivative of a Gaussian function. The wavelet modulus maxima and
ridges were, then, computed from the modulus of the wavelet transform, respec-
tively. The maxima lines (in (a)) and the ridge curves (in (b)) were obtained by
connecting the neighboring modulus maxima and the ridges, respectively. Then,
we deleted the maxima lines that were too short or whose corresponding Lip-
schitz exponents were not of interests (in (c)). In (d), we show the remaining
ridge curves we obtained after deleting the ridge curves which were too short. As
shown in (f), we superimposed the singular points from modulus maxima lines in
(a) onto the boundary of the fish. In (g), the singular points from the maxima
lines in (d) are superimposed to the fish. The contour of the fish was divided
into subcomponents with frequencies and with smooth curves divided by salient
points. This segmentation algorithm can potentially be used in planar shapes

recognition. We are currently investigating this problem.

5 Conclusion

We have proved that the wavelet transform modulus maxima of a complex-

valued wavelet can detect and characterize the singularities of a real-valued func-
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tion. We have also shown that the ridges of a complex-valued wavelet trans-
form provide a better representation than do the general maxima of a real-valued
wavelet transform for locating oscillating singularities and characterizing the oscil-
lating exponents. We have presented some potential applications of our methods
in characterization of curvature singularities and in segmentation of the contours

of planar shapes.
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Appendix A

In this appendix, we review a well-known theorem, a proof of which can be
found in [10][15].

Theorem 5 : Let f(z) be a real-valued function, and let [a,b] be an interval of
R. Let 0 < aw < 1. Then, f(x) is uniformly Lipschitz « over (a +¢€,b —€), if and
only if for any € > 0, there exists a constant A, such that for all x € (a+¢€,b—¢)
and s > 0, |IWf(s,x)| < Acs®.

One can easily show that the abovementioned theorem is also true for a
complex-valued wavelet ¥(z) = Wg(z) + iV (), provided that Vg(x), ¥ (z),
'ﬂ%(m), and %x(m) are all in L'(R). The abovementioned theorem can be ex-
tended to a Lipschitz exponent « larger than 1 by imposing the wavelet has

enough vanishing moments. One can find related discussion in [13].

16



Appendix B

We need the following lemmas for our Theorem 2.

Lemma 1 Let f(z) be a real-valued function. If Nz € [ty,t1], |f'(x)] > C >
0, then [* |f(x)|dz > L(t; —t0)2C.

Proof -

Since |f'(z)| > C > 0, we know that f'(x) is a function with a constant sign
in [t,t1]. For simplicity, we will only discuss the case where f'(z) are all positive
in [tg,?1]. Since f’(z) are all positive , f(z) is strictly monotonically increasing
in [to, t1]. We will present our result by discussing the following two cases :

Casel : f(x) intersects with the z axis

Suppose f(t) =0, t € [to,t1]. Since ;" f'(z)dz = f(z), we have f(z) >
C(x — t) Therefore, ft z)de > $C(t — t)°. By a similar argument, we have
—ft r)dr > 1C(t—to) . Then,

f,j: F@)ldr > 3(t = 6)2C + (b = 0°C) 2 1C(t — to)®

Case2 : f(x) does not intersect with the x axis

Suppose f(x) > 0, for x € [to,tl] Since f(z) — f(ty) = fto x)dr >
C(z — to), we have [ f(z)dx > [ f(x)dx — f(to)(t1 — to) > 3C(t1 — ty)°.

Similarly, let f(z) < 0 for z € [to,tl] Since f(t1) — f(z) = [ f'(x)dw <
C(t; — x), we have — [ f(x)dz > — [} f(z)dz + f(t1)(t: — to) > $C(t1 — to)2.

Based on cases 1 and 2, we, have
ft? |f(2)]|de > {(ty — t0)*C. O

Lemma 2 Let f(x) be a real-valued function. If Yz € [to,t1], |f"(x)| > C >
0, then [ |f(x)|dz > & (15%)%C.

Proof:
Since f"(z) is a constant sign function in [ty, ¢;], f'(z) is strictly monotonically

increasing or decreasing function in [tg, t;]. We have :

t t1 to)
() mas(| (to + 1t — t)]. Fho+ 20— o)) 2 T30 | ) >
1(85%)2C. The last inequality in the above follows from Lemma 1.
Without loss of generality, let us suppose that max(| f'(to+3 (t1 —to))1, | /' (to+

2(ti—t0))|) = | /' (to+2(ti —to))|. Then, f'(x) must be either all positive values or

17



all negative values within the interval [fg+2 (¢; —to), t1]. If this is not the case, then
| (to+5(ti—t0))| > | f'(to+2(t1 —to))], and a violation of our assumption occurs.
Thus, we have for any z € [ty + 2(t; — to), t1]: | /(@) > | ' (to + 2(t1 — )| > 0.
By Lemma 1,

ot 2(1to) If(x)ldl"> 11521 f (to+5 (=)

| (tl t0)310
Therefore ft (z |d:1¢>ft0Jr o | f(@ z)|dr > (53

BC. O

t1—to )30

z 16( 3

1
4
to

Lemma 3 Let K be a positive constant. Let g(x) be a complex function which
satisfies fcd lg(z)|dx < K. Suppose that | | has no local mazima in [c,d]. Let
B >0, and let the first derivatives of Re(g ( )) and Im(g(x)) be finite-deviations;
then, there ezists a constant Cyz such that for all x in [c+ (,d — [], d

Proof:

Since |¢'(z)| has no local maxima in [c, d], for all z in [c + 3,d — 3], |¢'(z)] <
maz(|lg'(c + B)|,1¢'(d — B)]). Without loss of generality, let us suppose that
maz(lg'(c + )}, 19'(d — I) = ¢(c + §). Then, for all & in [e,c + A, |¢/(x)| >
|g'(c+ )| > 0. By Lemma 1, we have fcw g(z)|dx > e+ B—c—5)?|g'(c+B)|.
Since fc lg(z)|dz < K, we then have K > fc lg(z)|dz > fc+”6 z)|dz > (c+
B—c—5)%g'(c+B)|; therefore, for all x in [c+8,d— 3], |¢'(z)| < |¢g'(c+3)| < IGK.

Let g(x) = a(z) + ib(x), where a(z) = Re(g(z)) and b(z) = Im(g (:L‘))
are real functions. Since the first derivatives of Re(g(x)) and Im(g(z)) are
finite-deviation, we can divide the interval [c + 2,c + ] into M() subinter-
vals vy, vg, ..., vpr with, in each interval v;, either a'(z) = b'(z) for all z in v; or
a'(z) = b'(x) only at the two ends of the subinterval v;.

We now define a real function ¢(z) over [c + 2, ¢+ f] such that

@) = a(z) ifld'(z)| = [V'(z)],
b(a) if|b'(x)] > |d'(z)].

As a result, we have |¢/(z)| = |g:%)| > |g’(\c/;ﬁ)‘ >0 for z € [c+ 5, ¢+ B]. We can
now apply Lemma 1 to each interval v;,i = 1,2,..., M(3) over [c + g, ¢+ f] and
obtain [ |c(x)|dz > §| v 2 el c+ﬁ)‘, where |v;] is the length of the subinterval v;.

18



Furthermore, we have

d c+p ,C
K >/C (@) |dz > /ﬁg e(x)|da = Z/ o(z)|dz > zijw%;;)'. (13)

It is not hard to show that (Z|vl|2) (B) =2 (Z|vl|) = %2. Therefore, Z|vl|2 >

. Substituting this into the equat1on (13), we have K > 4\[ 4M |g (c+B)|

4M
and, therefore, lg'(c+0)] < 16\/_M = (3. As aresult, for all z in [c—l—ﬁ, d— 0],
|9'(x)] < Cp. O

Lemma 4 Let K be a positive constant, and let g(z) be a complex-valued function

/Cd|g(a:)|da: <K

Suppose that |%| has no local mazima in [c,d]. Let 3 > 0, and let the second
derivatives of Re(g(x)) and Im(g(x)) be ﬁnite—deviationS' then, there exists a
constant Dg such that for all x in [c+ (,d — ﬁ],

which satisfies

2| < Dy.

d:v2

Proof:

The proof of this lemma is similar to that of the previous lemma.

|¢" (z)| has no local maxima for all  in [c,d]. Then, for all z in (¢ + 3,d —
B), 19" (x)] £ maz(|¢"(c + B)|,|¢"(d — £)]). Without loss of generality, let us
suppose that max(|¢"(c + 5)l,]9"(d — 5)|) is equal to |¢"(c + B)|. Then, for
x € [c+5,c+ B, we have |¢"(x)| > |g"(c +ﬂ)| > 0. By Lemma 2, we have
K > fcd|g( )|dx > fc+”3 T)|dz > (m) |g"(c + )]. Therefore, for all x
i e+ Bud— B, |o"(2)] < lg"(c + )] < K.

Let g(z) = a(z) + ib(x), where a(z ) = Re(g(z)) and b(x) = Im(g(x)) are

real functions. Since the second derivatives of Re(g(z)) and I'm(g(z)) are finite-

deviations, we can divide ¢+ g, ¢+ ] into M (3) subintervals vy, va, ..., vps, With
in each subinterval v;, either a”(x) = 0"(x) for all z in the subinterval or a"(z) =

b"(z) only at the two ends of the subinterval. Let a real function ¢(z) be

a(z) ifla"(x)] = |b"(2)],
b(z) ifb"(z)] > |a"(z)].

c(x) =

19



Then, we have |¢"(z)| = ‘g:/(;)‘ > |g”(\7§rﬂ)| > 0 for x € [c+2,c+ p]. Fora
subinterval v;, by Lemma 2, we have | dr > 35 ‘"l‘ 3l"(cB)| Furthermore,
v V2

we have

K>/C |g(a:)|da:>/ |dx_Z/| |dx>216 (lply \/;ﬁ)l(

Assume that § < 1. Then, all |v;] < 1 and ,therefore, Y |v;|> = 3

5
Clwil*)?
not hard to show that > |v;|* = S Then, we have S = Slult =
(o) \
VB > 607 ﬁ( . Substituting this into the equation (14), we then have K >
4 823 2
T 16(1\/51(5))2 = (\f . Then, we have |g"(c+ )| < W = Dg. Thus, we

have for all z in [c+ §,d — (], |¢"(z)| < Dg. O

Ui|4- It is
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Appendix C
PROOF OF THEOREM 2
We will prove this theorem by induction with the following proposition.
Proposition(FP,) :
Let ¥(z) be a complex-valued wavelet that can be written as ¥(x) = d"®(z)/dz".
®(z) is equal to ®g(z) +i®7(z), and both ®g(x) and ®;(z) are continuous func-
tions of compact support. Let f(z) be a real function. Then, for any € > 0, there

exists a constant K, such that at all scales s,

[ i <k, (15)

+e

where ®,(z) = TO(%).

If Wf(s,x) has no maxima for x € (a,b) and s < s, then for any € > 0, there

exists a constant A.,, such that for any z € (a +¢€,b0 —€) and s < s,
W5 2)] < Acns™ (16)

If we modify f(z) by multiplying it by the indicator function of [a, b], we will not
modify its regularity on any interval [a +¢,b—¢€]. In the following, we shall, thus,
assume that f(z) = 0 for all = ¢ [a, b].

Let us first prove that (15) is satisfied:

Since f(z) € L'([a,b]) and f(z) = 0 for all z ¢ [a, b], it follows that

/ab |f % ®y()|dr < /a” |f(2)|dx /_:O |, (z)|dz.

With a change of variable in the integral, we obtain

/+00|<I>s(x)|da: _ /+OO|<I>(x)|dx

>~ f;Ooo +00
g/ |@R(x)|dx+/ 1B ()| da-

Hence, f: | f * @4 (xz)|dx is bounded by a constant independent of the scales, as in
(15).
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Let us now prove that (16) is satisfied:
We will first prove that the proposition is true for n = 1. Since ¥(z) =
d®(x)/dx, we find that

W(s,2) = 50+ @) (0).

Let g(z) = (f * ®)(x). By (15) and Lemma 3, we have for all z € [c + €,d — €],
(f * @,)(x)| < Aey. Therefore, |Wf(s,z)| < sAe.

The proof of (P,) for n = 2 is based on (15) and Lemma 4. Since ¥(z) =
d*®(x)/dx?, we find that

d
Fr

2

W(s,2) = 5" 557+ @) (x).

For all x € [c+€,d — €, |£2(f * D) (x)| < Aca. Therefore, [Wf(s,z)| < s?Acs.

Let us now prove that if (P,) is true, for n > 2, then (P,;) is also true.

Let U(x) be a wavelet with n + 1 vanishing moments. The wavelet ¥(z) can be

written W(z) = dx(z)/dx where x(x) is a wavelet that has n vanishing moments.
Let df (z)/dz be the derivative of f(z) in the sense of distributions; then,

df

w — s (). 17

Fls0) =50« x,(a) (1)

In order to apply our induction hypothesis (P,) to df (x)/dxz with respect to the

wavelet y(z), we need to prove for any € > 0 that there exists a constant K, such

that at all scales s,

b—e
df
— x P, dr < K.. 1
|G s e < (18)

Since the wavelet W(z) has more than rwo vanishing moments, the proposition

(P,), which we just proved, implies that for any € > 0, if z € (a +€,b — ¢),
Wf(s,1)] < s*Aca.

From Theorem 5 (in Appendix A), we find that f(z) is uniformly Lipschitz a on
the intervals (a + €,b — €), for any a < 2. Hence, df (z)/dz is uniformly bounded

on any such interval. We can then easily derive that (18) is satisfied.
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Let us now apply the induction hypothesis (P,) to df (z)/dz with respect to
the wavelet x(z). There exists a constant A.,, such that for any x € (a+¢,b—€)

and s < s, p
|£ * Xs(7)] < Aens™.

Equation (17) implies that
Wf(s,x)] < Ac st

This finishes the proof of (P,11).
By applying Theorem 5 (in Appendix A) to the statement (P,), we derive
that the function f(x) is Lipschitz « for any a < n.
Let us now prove that (16) implies that f(z) is Lipschitz n if the wavelet ¥(x)
can be written as
_ d"0(z)

) = =,

(19)

where 0(x) = 0r(z) + i0;(x) and both Or(x) and 0;(x) are smoothing functions.
Let d™ f(x)/dz™ be the n-th derivative of f(z) in the sense of distributions. Similar
to (17), (19) yields

n

Wf(s,z) = s"jx‘z * 0,().

Equation (16) of proposition (FP,) implies that for any € > 0, there exists a
constant A, such that for any x € (a+¢€,b —€) and s < s,

d” d" A"
PLr0@) < (5L s 0. )]+ 9L 5 (01 @)
S (AR)e,n+(AI)e,n
< A

’

Since the integral of #(z) is nonzero, this equation implies that d” f(z)/dx™ is
a function that is bounded by A, over the interval (a +¢€,b — €). Hence, f(z) is

uniformly Lipschitz n over the interval (a + €,b — €). O
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Appendix D
PROOF OF THEOREM 3

First, we derive that that f(x) is Lipschitz n at any x # 4. For any € > 0,
there exists a scale s, such that for all s < s, there is no wavelet modulus maxima
at (a + €,z9 — €). Furthermore, since the n-th derivatives of Re(Wf(s,z)) and
Im(Wf(s,x)) are finite-deviations for all s, from Theorem 2, the Lipschitz in the
neighborhood of any z; € (a + €, 29 — €) is n. Thus, f(z) is uniform Lipschitz n
at any point in (a, xy). The same is true for any point in (xg,b).

Let us prove that f(z) is Lipschitz a at zp and can be characterized by
the complex-valued wavelet modulus maxima. For any interval (zo — €,z +
¢) including xg, there is a small enough scale s, such that for all s < s, the
wavelet modulus maxima for these scales are contained entirely within the region
(xg — €,x29 +€) by (0, s¢). Then, there is a constant D, such that all the wavelet

transform in the region will be bounded by
IWF(s,x)| < D.s“.

From Theorem 5, any subinterval including z in (29 — €, o + €) will be Lipschitz

«. This implies that the Lipschitz at zg is a.
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(a) (b) (c) (d)

Figure 1: Complex-valued wavelet with type (1-+iH )1, (), where ¢, (z) is defined
in Eq. (5). We show the cases n = 1(top) and n = 2(bottom) with the (a) real
part, (b) imaginary part, (¢) amplitude, and (d) phase.
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Figure 2: (a) There are four singularities from left to right in this signal. In the
left neighborhood of the first singularity, the signal locally behaves like O(|x|%?),
whereas in its right neighborhood, the signal behaves like O(|z|°®). The second
singularity is a Dirac whose Lipschitz is —1. The Lipschitz exponent of the
third singularity is 1.5. The fourth is a step singularity. (b) The complex-valued
wavelet transform of (a). (c) The maxima line of (b). (d) The real part of
the wavelet transform in (b). (e) The maxima lines of (d), in which there are
three maxima lines corresponding to the first singularity. The left maxima line
corresponds to the left neighborhood of the singularity with O(]z|%?), and the
right maxima line corresponds to the right neighborhood of the singularity with
O(|z]>%). The middle maxima line is the compromise behavior between the left
and right neighborhoods of the singularity. (f) Decay of log(|Wf(s,x)|) as a
function of log(s) along the maxima lines of the first singularity. The maxima
line of (c) is plotted with a solid line. The three maxima lines of (e) from left to

right of are plotted with ™=, ’-.”, and ’.”. Their slopes are recorded on the lines.
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f(x)

Figure 3: Oscillating singularity. (a) The chirp function with h = 0 and § = 1.

(b) The wavelet transform magnitude obtained using a complex-valued wavlet
with the chirp function of (a). (c¢) The ridges of the wavelet transform, which is a
continuous curve. (d) General maxima obtained from the real part of the wavelet
transform. These are discrete samplings of the continuous parabolic function at

(c). We have enlarged the blach dot for easier visibility.
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Figure 4: (a) (b) Spiral-like curves with chain code function 0(x) = "itg In (a),

[ is 0.4, and in (b), £ is 0.8. (¢) (d) Decay of log|Wf (s, z)| as a function of log(s)

along the maxima line at the singular points of (a) and (b); The singular point

is created by tracing the contours of (a) and (b) inwards first and, then tracing
outwards. The lines were computed by fitting the least median squares to the

sampled data. The slopes are recorded o the lines.
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Figure 5: Shape characterization of a fish. (a) Maxima lines of the singularities.
(b) The ridge curves. (c) The remaining maxima lines after removing the maxima
lines in (a) which are too short or whose Lipschitz exponents do not indicate the
singularities of interest. (d) The maxima lines after removing the maxima lines
in (c¢) which are on the ridges. (e) The remaining ridge curves after deleting short
curves. (f) The singular points corresponding to the maxima lines in (c). (g) The
singular points corresponding to the maxima line in (d), where the ridge parts

are indicated by a light black line.
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