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Abstract

We prove that the wavelet modulus maxima with a complex�valued wavelet

can detect and characterize singularities� This can be regarded as an extension

of the previous wavelet modulus work in ���� with a real wavelet� The ridges

of wavelet transforms are the places in the time�frequency plane where the local

energies of a signal are mostly concentrated� We show that based on the ridges

of the wavelet transforms� the osciallating singularities are better located and

their oscillating components are better characterized than they are based on the

general maxima of real�valued wavelet transforms� We demonstrate potential

applications of these techniques�
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� Introduction

Wavelet analysis has emerged in recent years as a methodology for solving

problems in many di
erent areas� Among these applications� it is believed that

the wavelet approach can achieve tremendous success in the detection and char�

acterization of the irregular structures of a signal� These are usually isolated

singularities and� thus� can be characterized by their Lipschitz exponents� or as

a distribution of singularities and measured based on their spectrum �	�� Sin�

gularities also carry important information in images� They correspond to the

locations of intensity discontinuities in an image and are usually referred to as

�edges� in the image ���� In planar objects� the curvature discontinuities of the

contour boundaries are primitive with respect to description and recognition of

the shapes ���

Irregular behavior of a signal can be characterized by wavelet transforms�

Some pioneer works were reported in ��������� We rephrase one of the results in

Appendix A� A wavelet can be either real�valued or complex�valued� We use the

term real�valued wavelet transform �modulus maxima� or complex�valued wavelet

transform �modulus maxima� to denote the wavelet transform �modulus maxima�

of a real function obtained with a real�valued wavelet or a complex�valued wavelet�

respectively� It was shown in ���� that the real�valued wavelet modulus maxima

can detect all the singularities and characterize the singularities� Also� the real�

valued wavelet modulus maxima carry as just much information about a signal

since a close approximation of a signal can be numerically constructed only from

the information contained in the real�valued wavelet modulus maxima ��	�� How�

ever� there are no similar results for singularity detection and characterization

based on complex�valued wavelet modulus maxima�

On the other hand� the complex�valued wavelet transform of a signal has

applications in many �elds� A popular complex�valued progressive wavelet can

be obtained by taking the imaginary part of the wavelet such that it is the Hilbert

transform of the real part of the wavelet� This wavelet responds only to the non�

negative frequencies of a given signal and� thus� produces a transform whose

	



modulus are less oscillatory than is the case for one obtained based on a real�

valued wavelet� Complex�valued wavelet transforms have been widely used to

detect and characterize the instantaneous frequencies of a signal and to analyze

a textured image ����������� A concise but not complete representation of it is the

ridges of the complex�valued wavelet transform� The ridges mark the places in the

time�frequency plane where most of the local energies of a signal are concentrated�

One can detect ridges from either the phase or the magnitude of a complex�valued

wavelet transform ���� A signal�s instantaneous frequencies can be approximately

identi�ed from the real�valued wavelet modulus based on the notion of the general

maxima� which are the places that have the largest modulus along maxima lines

�see De�nition in later section� ����� However� compared to the ridges� the general

maxima does not provide as elegant a method for detecting and characterizing

instantaneous frequencies�

The major contribution of this paper is to show that one is able to use complex�

valued wavelet modulus maxima� like real�valued wavelet modulus maxima� to

detect and characterize singularities� We will present some mathematical re�

sults similar to those given by Mallat and Hwang ���� with a complex�valued

wavelet� Once the singularity can be detected and characterized from complex�

valued wavelets� one can envision the possible e
ectiveness of processing instan�

taneous frequencies as well as singularities simultaneously based on the modulus

of a complex�valued wavelet transform�

The paper is organized as follows� Section 	 contains some background mate�

rial on complex�valued wavelet transform� In section �� we will review the results

of singularity processing using real�valued wavelet modulus maxima and then will

present our results from the complex�valued wavelet modulus maxima� In section

� we will introduce potential applications of our results� In pattern recogni�

tion� invariant features are important in indexing objects� We characterize the

curvature singularity created by spiral�like curves� We propose a segmentation

method which can partition the contour of a planar shape into subcomponents

by means of either curvature singularities or ridges� There are other potential

applications which are not discussed in this article� Finally� the last section will

give conclusions�
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� Complex�Valued Wavelets

We will review the continuous wavelet transform with a complex�valued wavelet�

The continuous wavelet transform was �rst introduced by Morlet and Grossmann

���� Let ��x� be a complex�valued function� The function ��x� is said to be a

complex�valued wavelet if its Fourier transform ����� satis�es

Z ��

�

j�����j�
�

d� �

Z �

��

j�����j�
�

d� � C� � ��� ���

The wavelet transform of a function f�x� � L��R� is de�ned by

Wf�s� x� � f ��s�x�� �	�

where �s�x� � �
s
��x

s
�� A wavelet ��x� is said to have n vanishing moments if

and only if for all positive integer k � n� it satis�es

Z ��

��
xk��x�dx � �� ���

If we use a complex�progressive wavelet of the type ��x� � ���iH���x�� where

��x� is a real wavelet and H denotes the Hilbert transform� then we restrict the

wavelet analysis in the real Hardy space�

H��R� � fWf�s� x� � L��R�� �Wf�s� �� � � for � � � and for all s � �g�

The wavelet transform is invertible� and f�x� is recovered with

f�x� � Ref �

C�

Z ��

��

Z ��

��
Wf�s� u�

�
�s�u� x�du

ds

s
g� ��

where
�
�s�x� denotes the complex conjugate of �s�x��

There are several interesting complex�valued progressive wavelets� and they

have been used in a wide variety of applications� For example� the so�called

Cauchy wavelet��� ��x� � �
��

�
���ix�� has been used in quantum mechanics� The

Morlet wavelet ��x� � e�
x�

��� ei��x has been used extensively in detecting instan�

taneous frequencies and in analyzing textured images ����������� Strictly speaking�





the Morlet wavelet is not a wavelet because it is not of integral zero� However� for

large enough �� �larger than � in practice�� the integral of ��x� is small enough

to ensure that for all practical purposes� it can be used numerically as if it were

a wavelet� A very popular type of wavelet in computer vision is the derivative of

the Gaussian with the following formula�

�n�x� � � dn

dxn
e�

x�

� � ���

These wavelets can be easily turned into progressive wavelets by canceling their

negative frequencies by means of Hilbert transformH� i�e�� by considering �n�x� �

�� � iH��n�x�� Then� the frequency response will be

��n��� � Kn�
ne�

��

� 	���������

where 	�������� denotes the Heaviside step function� which is equal to � when

� � � and to � otherwise� and Kn denotes a normalization constant� The param�

eter n gives di
erent numbers of vanishing moments of wavelets� When studying

singularity analysis with wavelets� the number of vanishing moments is very im�

portant� A real�valued wavelet becomes more oscillatory as the number of van�

ishing moments increases� Fig� � shows examples of this wavelet with n � � and

n � 	 with the real part given in �a�� the imaginary part in �b�� the amplitude in

�c� and the phase in �d�� respectively�

� Singularity Detection and Characterization with

Modulus Maxima of a Complex�ValuedWavelet

Much information about a signal can be extracted from its singularities� We

usually use the H�older exponent as a measurement of the strength of a singularity�

It has been shown that the H�older exponent of a local singularity can be charac�

terized by the wavelet transforms� One can �nd related results in ������������ for

further reference� Nevertheless� Mallat and Hwang ���� showed that the H�older

exponent can also be computed with the restriction of the wavelet transforms�
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Wf�s� x�� placed on their local modulus maxima at each scale s� However� their

results are valid only for the case where the wavelet is real�

In this section� we will �rst review some results of Mallat and Hwang regarding

the modulus maxima of a real wavelet� Then� we will extend part of their results

from the modulus maxima of a complex�valued wavelet� We will show that the

modulus maxima of a complex�valued wavelet can also detect and characterize

singularities� However� before we proceed to our results� we will �rst introduce

some related de�nitions�

De�nition

� If a function f�x� satis�es jf�x�� f�y�j � cjx� yj� with c � �� 
 � ��� �� and

x� y � �a� b�� then we say that the function f�x� is uniformly Lipschitz 
 over the

interval� A function is singular at x� if it is not Lipschitz � at x��

� A modulus maximum is the point �s�� x�� where jWf�s�� x�j � jWf�s�� x��j
when x belongs to either the right or the left neighborhood of x�� and jWf�s�� x�j �
jWf�s�� x��j when x belongs to the other side of the neighborhood of x��

� A maxima line is a connected curve of modulus maxima in the scale space �s� x��

��� Isolated Singularity

The following theorem was presented in ���� with a real wavelet�

Theorem � Let n be a strictly positive integer� Let ��x� be a compact support

real wavelet that has n vanishing moments and is n times continuously di�eren�

tiable� Let f�x� � L���a� b���

� If there exists a scale s� � � such that for all scales s � s� and x � �a� b��

and jWf�s� x�j has no local maxima� then for any � � � and 
 � n� f�x� is

uniformly Lipschitz 
 in �a� �� b� ���

� If ��x� is the nth derivative of a smoothing function� then f�x� is uniformly

Lipschitz n on any such interval �a� �� b� ���

� Let x� � �a� b�� We say that f�x� is uniformly Lipschitz n at x when x �� x��

and that f�x� is Lipschitz 
 at x�� where 
 � n is a non�integer� if and only
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if there exist a scale s� � � and constants C and A� such that for x � �a� b�

and s � s�� all the modulus maxima of Wf�s� x� belong to a cone de�ned

by

jx� x�j � Cs� ���

and such that at each modulus maxima �s� x� in the cone de�ned by ��	�

jWf�s� x�j � As��

The above theorem indicates that the wavelet modulus maxima of a real

wavelet can detect all the singular points in a given interval� The maxima lines

converge as the scale s decreases to all �though not limited to� the singular points

in the interval� and from the values of the lines� one can characterize their Lips�

chitz exponents�

In order to extend the abovementioned results from a real wavelet to a complex�

valued wavelet� one should place constraints on the real�part wavelet transforms

and the imaginary�part wavelet transforms� For convenience� we introduce here

the following de�nition� We say that two functions a�x� and b�x� are �nite�

deviations within a given interval I if for any subinterval �of length �� of I� they

can be divided into at most M��� intervals v�� v�� ���� vM � where in each interval

vi� either a�x� � b�x� for all x in vi or a�x� � b�x� at the two ends of the interval

but a�x� �� b�x� for any x in between them� An example of functions which are

not �nite�deviations for any interval including x � � are cos� �
x
� and �� The two

functions have an unbound number of intersections for any subinterval around

x � ��

We will show in the following theorem that given an interval� if there is no

complex�valued wavelet modulus maxima on all su�ciently small scales� and if

the real and the imaginary parts of the wavelet transform in all these scales are

�nite�deviations� then the function is uniformly Lipschitz 
� for any 
 � n� in

this interval�

Theorem � Let n be a strictly positive integer� Let ��x� be a complex�valued

wavelet which has compact support� has n vanishing moments and is n times

continuously di�erentiable� Let f�x� � L���a� b���
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�If there exists a scale s� � � such that for all scales s � s� and x � �a� b��

jWf�s� x�j has no local maxima� and if the nth�n � �	 derivatives of Re�Wf�s� x��

and Im�Wf�s� x�� are �nite�deviation for each scale s� then for any � � � and


 � n� f�x� is uniformly Lipschitz 
 in �a � �� b� ���

�If ��x� is the nth derivative of a smoothing function� then f�x� is uniformly

Lipschitz n on any such interval �a� �� b� ���

The proof of this theorem is given in Appendix C� This theorem indicates that

in order to have wavelet modulus maxima of a complex�valued wavelet ��x� �

�R�x��i�I�x� for detecting all the singular points of a function f�x� as is the case

with the real wavelet �R�x�� we must choose the imaginary part of the wavelet

�I�x� such that the real and the imaginary parts of the wavelet transform for the

given function f�x� are �nite�deviations for all su�ciently small scales� Thus� we

have the constraint between the real part and the imaginary part of a complex�

valued wavelet for detection of the singularities of a given function�

The following theorem states that the wavelet modulus maxima of a complex�

valued wavelet can characterize singularities�

Theorem � Let f�x� be a function� let x� � �a� b� and let the nth�n � �	 deriva�

tive of Re�Wf�s� x�� and Im�Wf�s� x�� be �nite�deviation for each scale s� We

say that f�x� is uniformly Lipschitz n at x when x �� x�� and that f�x� is Lip�

schitz 
 at x�� where 
 � n is a non�integer� if there exist a scale s� � � and

constants C and A� such that for x � �a� b� and s � s�� all the modulus maxima

of Wf�s� x� belong to a cone de�ned by

jx� x�j � Cs� ���

and such that at each modulus maxima �s� x� in the cone de�ned by �
	�

jWf�s� x�j � As�� ���

The proof of this theorem is similar to that in Appendix B in ����� We

sketch it in Appendix D� In order to obtain the Lipschitz exponent numerically�

Equation��� is usually rewritten as

logjWf�s� x�j � log�A� � 
log�s�� ���
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In ����� A and 
 are computed by

min
A��

�
X
s

jlogjWf�s� x�j � log�A�� 
log�s�j���

However� it is known that estimating 
 by means of least squared �tting is not

reliable in practice� A more robust least median of squares regression ���� is used

to �nd A and 
 so as to minimize

med
s

�jlogjWf�s� x�j � log�A�� 
log�s�j���

Fig� 	 shows the wavelet transforms and the wavelet modulus maxima of a

function obtained by using the wavelet �� � iH���x�� where ��x� is the second

derivatives of a Gaussian function� Our function is constructed with isolated

singularities shown in �a�� From left to right� In the left neighborhood of the �rst

singularity� the signal behaves likeO�jxj����� whereas in its right neighborhood� the

signal behaves like O�jxj����� The second singularity is a Dirac� whose Lipschitz

exponent is ��� The Lipschitz exponent of the third singularity is ���� and the

fourth is a step singularity� The complex�valued wavelet transform is shown in

�b�� In �c� are shown the maxima lines detected from �b�� There are four lines�

the �rst line is not a vertical line since the two sides of the corresponding singular

point behave di
erently while the rest of the maxima lines are vertical� The real

part of �b� is given in �d�� In �e� are shown the maxima lines detected from �d��

We observe that there are more maxima lines converging to each singular point in

�e� than there are in �c� due to the oscillation of the real wavelet transform� There

are three maxima lines in the �rst singularity� The left maxima line corresponds

to the behavior of the left neighborhood of the singularity� which is O�jxj�����
the right maxima line corresponds to the behavior of the right neighborhood of

the singularity� which is O�jxj����� and the middle maxima line corresponds to

the behavior of the singularity which is the compromise of the behaviors of the

left and right neighborhoods at the singular point� with a behavior like O�jxj��	��
In �f�� we plot the decay of log�jWf�s� x�j� as a function of log�s� along the

maxima line of jWf�s� x�j of the �rst singularity� The maxima line of �c� is

plotted with a solid line� The Lipschitz exponent of the line is ���� which is the
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compromise the behaviors of the left and right neighborhoods of the singularity�

There are three maxima lines corresponding to the �rst singularity in �d�� The

three maxima lines from left to right are plotted with � �� ����� and ���� respectively�

Their corresponding slopes are indicated on the lines�

��� Oscillating Singularities

In the previous section� we considered non�oscillating singularities� i�e�� satisfying

	x� f ��x� is H�older 
 � � i
 f�x� is H�older 
� Here� we will consider functions

having singularities created by fast oscillations� For these functions� we will

not have �nite�deviations of their real and imaginary wavelet transforms of any

interval containing the oscillating singularities� These singularities� therefore� can

not be fully characterized by the theorems given in the previous section and their

H�older exponents� We give in the following a typical chirp function creating such

singularities ���

f�x� � jx� x�jhsin� �

jx� x�j� �� h� � � �� ����

This function is singular at x � x�� and its H�older exponent is h�x�� � h�

However� the oscillating exponent � plays a very important role in the regularity

of the primitive of f�x�� Indeed� one can show that the primitive of f�x� is

singular at x � x� with the H�older exponent being h � � � �� Fig� ��a� shows

the chirp function with h � ��� and � � �� where f�x� � sin� �
x�
�� and shows

that it is oscillating at x � �� Fig� ��b� shows the magnitude of the wavelet

transform of �a� using the progressive wavelet ��x� � �� � iH���x�� where ��x�

is a real�valued wavelet�

Let jWf�s� x�j be the complex�valued wavelet modulus� The ridges at x� can

be approximately obtained from the local maxima of jWf�s� x��j along s� with a

�xed position at x�� The following theorem states that the ridges of jWf�s� x�j
form a continuous parabolic curve in the scale space �s� x��

Theorem � If f�x� � sin� �
x�
�� and if Wf�s� x� is the wavelet transform of f�x�

using the wavelet ��x� � ��� iH���x�� where ��x� is a real�valued wavelet� then

��



in the scale space of jWf�s� x�j� there is continuous ridge that converges to ��� ���

and along this ridge s � Kx���� where K is a constant�

Proof �

�Wf�s� w� �


i
���� �

�

x���
�� ��� � �

x���
�� ���s���

and since ��x� is a progressive wavelet� the negative frequency part vanishes�

Therefore�

jWf�s� x�j � j��s
�

x���
�j�

Let K be the argument of j��K�j such that j��K�j is a maximum� Then� the

ridges lie on a continuous curve in the scale space with s �

x���
� K� �

One can compare this result to that obtained by processing the same function

by means of a real�valued spline wavelet in ����� A general maxima is in the place

along a maxima line where the maximal amplitude occurs� In ����� the parabolic

function s �

x���
� K was obtained by �tting the general maxima sampled from all

the maxima lines� The general maxima of a real�valued wavelet transform form a

discrete sampling of the parabolic function �see Fig� ��d�� while in the complex�

valued wavelet transform� the ridges form a continuous parabolic function �see

Fig� ��c��� The advantage of using the complex�valued wavelet transform in

locating the oscillating singularity and in characterizing the oscillating exponent

� is obvious�

� Potential Applications

We will next present some potential applications of our methods� Our wavelet

is a complex�valued progressive wavelet of the type ��x� � �� � iH���x�� where

��x� is the Gaussian n�th derivative� In our experiments� we take n � 	�
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��� Curvature Singularities Created by Spiral�Like Curves

Spiral curves have been investigated by many researchers since they exhibit beau�

tiful symmetry in nature ����� Let ��t� be the argument� let r�t� be the radius�

and let ��t� be the curvature� We create spiral�like curves by controlling the

relation between r�t� and ��t� such that r�t� � ��t��
�

��� � where � is a parameter�

We will show that a curvature singularity is created at t � ��

Let s�t� be the length parameterized path following the contour of a spiral � We

have assumed that r�t� varies slower than ��t� does� Then� we have

ds�t� � r�t�d��t�

and� therefore�

ds�t��dt � K�constant� � s��t� � r�t����t�� ����

We can substitute

r�t� � ��t��
�

���

into Equation ���� and by means of simple calculations� we have

K� � ���t�r�t� � ��t���t��
�

��� � where K� is a constant�

��t� �
K�

��t�����
� where K� is a constant�

���t� � ��t� � K�
� � �

�
��t�

��

� ���t��

��t�
���
� � K	�

��t�� where K	 is a constant� ��	�

The solution of Equation��	� for curvature is

��t� � ct��� where c is a constant�

therefore� the argument is

��t� � d 
 t���� � e� where d and c are constants�

In Figs� �a� and �b�� the spiral�like curves are created by r��� � a���� �
����c with

� � �� in �a� and � � ��� in �b�� respectively� We traced the curves inwards �rst�

�	



so the curvature is increasing� and then we traced backwards� so the curvature is

decreasing� to the outside� A chain�code representation was created as our traced

along the curve ���� The Lipschitz exponent in �a� is ���� t � � ��� and that

in �b� is ��	�	 t �� ���� In �c� and �d�� we show the decay of log�jW��s� x�j as
a function of log��s� along the maxima line at the singular points of �a� and �b��

respectively�

��� Contour Segmentation

The contour of a planar shape is very useful for recognizing the planar shape

������� It can be represented by means of chain codes� For recognition purposes� a

contour is usually segmented into components� A typical approach is to locate the

salient points� usually corresponding to curvature singularities� along the contour

and to then segment the contour using them� However� not all the salient points

are suitable for segmentation purposes� An example is the salient points in the

�n of a �sh� Although there are many curvature singular points in the �n� we

would not use them to segment the �sh� Doing so would cut the �n into pieces�

Instead� these points are better regarded as a coherent piece�

In the Introduction� we mentioned that one is able to extract instantaneous

frequencies from the modulus of a complex�valued wavelet transform� In this arti�

cle� we have shown that the wavelet modulus maxima of a complex�valued wavelet

can be used to detect and characterize singularities� Thus� we are able to detect

simultaneously instantaneous frequencies and singularities from the wavelet mod�

ulus maxima of a complex�valued wavelet� Thus� when the contour of a shape is

composed of frequency components and isolated singular points� we can use the

modulus maxima of a complex�valued wavelet to detect both� After some proper

deletion of unwanted ridges or wavelet modulus maxima� the contour of a shape

is then divided into sub�contours of frequency components and smooth curves�

We use the following method to distinguish those sub�contours which are

dominated by frequency components from those by smooth curves� We compute

both the modulus maxima and ridge of the wavelet transform� First� we remove

the maxima lines which are too short or which have Lipschitz exponents not in

��



the interest region� Then� we chain the ridges horizontally along the position x by

assuming that the ridges form a smooth curve in the wavelet transform modulus

� Then� we remove those ridges whose lengths are too short based on a threshold

whose values are proportional to the length of the contour� The remaining ridges

are regarded as covering the parts of the contour dominated by the frequency

variations� We then remove all the modulus maxima within those sub�contours

which are dominated by frequency information� At this point� we have partitioned

the contour into components according to the modulus maxima� The sub�contour

within two adjacent modulus maxima contains either a frequency dominant region

or no frequency region�

Fig� � presents an example of applications of our segmentation algorithm to a

�sh� From the chain�code of the �sh� we computed its wavelet transform by tak�

ing the complex�valued progressive wavelet ��x� � �� � iH���x�� where ��x� is

the second derivative of a Gaussian function� The wavelet modulus maxima and

ridges were� then� computed from the modulus of the wavelet transform� respec�

tively� The maxima lines �in �a�� and the ridge curves �in �b�� were obtained by

connecting the neighboring modulus maxima and the ridges� respectively� Then�

we deleted the maxima lines that were too short or whose corresponding Lip�

schitz exponents were not of interests �in �c��� In �d�� we show the remaining

ridge curves we obtained after deleting the ridge curves which were too short� As

shown in �f�� we superimposed the singular points from modulus maxima lines in

�a� onto the boundary of the �sh� In �g�� the singular points from the maxima

lines in �d� are superimposed to the �sh� The contour of the �sh was divided

into subcomponents with frequencies and with smooth curves divided by salient

points� This segmentation algorithm can potentially be used in planar shapes

recognition� We are currently investigating this problem�

� Conclusion

We have proved that the wavelet transform modulus maxima of a complex�

valued wavelet can detect and characterize the singularities of a real�valued func�
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tion� We have also shown that the ridges of a complex�valued wavelet trans�

form provide a better representation than do the general maxima of a real�valued

wavelet transform for locating oscillating singularities and characterizing the oscil�

lating exponents� We have presented some potential applications of our methods

in characterization of curvature singularities and in segmentation of the contours

of planar shapes�

AcknowledgmentWen�Liang Hwang would like to express his gratitude to Pro�

fessors S� Mallat� B� Torr!esani� and E� Bacry� They have taught him a lot about

modulus maxima and ridges�

��



Appendix A

In this appendix� we review a well�known theorem� a proof of which can be

found in ���������

Theorem � � Let f�x� be a real�valued function� and let �a� b� be an interval of

R� Let � � 
 � �� Then� f�x� is uniformly Lipschitz 
 over �a� �� b� ��� if and

only if for any � � �� there exists a constant A� such that for all x � �a� �� b� ��

and s � �� jWf�s� x�j � A�s
��

One can easily show that the abovementioned theorem is also true for a

complex�valued wavelet ��x� � �R�x� � i�I�x�� provided that �R�x�� �I�x��
d�R�x�

dx
� and d�I �x�

dx
are all in L��R�� The abovementioned theorem can be ex�

tended to a Lipschitz exponent 
 larger than � by imposing the wavelet has

enough vanishing moments� One can �nd related discussion in �����

��



Appendix B

We need the following lemmas for our Theorem 	�

Lemma � Let f�x� be a real�valued function� If 	x � �t�� t��� jf ��x�j � C �

�� then
R t�
t�
jf�x�jdx � �



�t� � t��

�C�

Proof �

Since jf ��x�j � C � �� we know that f ��x� is a function with a constant sign

in �t�� t��� For simplicity� we will only discuss the case where f ��x� are all positive

in �t�� t��� Since f ��x� are all positive � f�x� is strictly monotonically increasing

in �t�� t��� We will present our result by discussing the following two cases �

Case� � f�x� intersects with the x axis

Suppose f�t� � �� t � �t�� t��� Since
R x
t
f ��x�dx � f�x�� we have f�x� �

C�x � t�� Therefore�
R t�
t
f�x�dx � �

�
C�t� � t��� By a similar argument� we have

� R t
t�
f�x�dx � �

�
C�t� t��

�� Then�R t�
t�
jf�x�jdx � �

�
��t� t��

�C � �t� � t��C� � �


C�t� � t��

��

Case	 � f�x� does not intersect with the x axis

Suppose f�x� � �� for x � �t�� t��� Since f�x� � f�t�� �
R x
t�
f ��x�dx �

C�x� t��� we have
R t�
t�
f�x�dx �

R t�
t�
f�x�dx� f�t���t� � t�� �

�
�
C�t� � t��

��

Similarly� let f�x� � � for x � �t�� t��� Since f�t��� f�x� �
R t�
x
f ��x�dx �

C�t� � x�� we have � R t�
t�
f�x�dx � � R t�

t�
f�x�dx� f�t���t� � t�� �

�
�
C�t� � t��

��

Based on cases � and 	� we� haveR t�
t�
jf�x�jdx � �



�t� � t��

�C� �

Lemma � Let f�x� be a real�valued function� If 	x � �t�� t��� jf ���x�j � C �

�� then
R t�
t�
jf�x�jdx � �

��
� t��t�

	
�	C�

Proof �

Since f ���x� is a constant sign function in �t�� t��� f
��x� is strictly monotonically

increasing or decreasing function in �t�� t��� We have �

� t��t�
	

�max�jf ��t� � �
	
�t� � t���j� jf ��t� � �

	
�t� � t���j� �

R t�� �

�
�t��t��

t��
�

�
�t��t�� jf

��x�jdx �
�


� t��t�

	
��C� The last inequality in the above follows from Lemma ��

Without loss of generality� let us suppose thatmax�jf ��t�� �
	
�t��t���j� jf ��t��

�
	
�t��t���j� � jf ��t�� �

	
�t��t���j� Then� f ��x� must be either all positive values or

��



all negative values within the interval �t��
�
	
�t��t��� t��� If this is not the case� then

jf ��t�� �
	
�t��t���j � jf ��t�� �

	
�t��t���j� and a violation of our assumption occurs�

Thus� we have for any x � �t� �
�
	
�t� � t��� t��� jf ��x�j � jf ��t� � �

	
�t� � t���j � ��

By Lemma ��R t�
t��

�

�
�t��t�� jf�x�jdx � �



� t��t�

	
��jf ��t���

	
�t��t���j � �



� t��t�

	
�	 �



C � �

��
� t��t�

	
�	C�

Therefore�
R t�
t�
jf�x�jdx � R t�

t��
�

�
�t��t�� jf�x�jdx � �

��
� t��t�

	
�	C� �

Lemma � Let K be a positive constant� Let g�x� be a complex function which

satis�es
R d
c
jg�x�jdx � K� Suppose that jdg�x�

dx
j has no local maxima in �c� d�� Let

� � �� and let the �rst derivatives of Re�g�x�� and Im�g�x�� be �nite�deviations�

then� there exists a constant C� such that for all x in �c� �� d� ��� jdg�x�
dx

j � C��

Proof �

Since jg��x�j has no local maxima in �c� d�� for all x in �c� �� d� ��� jg��x�j �
max�jg��c � ��j� jg��d � ��j�� Without loss of generality� let us suppose that

max�jg��c � ��j� jg��d � ��j� � g��c � ��� Then� for all x in �c� c � ��� jg��x�j �
jg��c���j � �� By Lemma �� we have

R c��
c��

�

jg�x�jdx � �


�c��� c� �

�
��jg��c���j�

Since
R d
c
jg�x�jdx � K� we then have K �

R d
c
jg�x�jdx �

R c��
c��

�

jg�x�jdx � �


�c �

��c� �

�
��jg��c���j� therefore� for all x in �c��� d���� jg��x�j � jg��c���j � ��K

��
�

Let g�x� � a�x� � ib�x�� where a�x� � Re�g�x�� and b�x� � Im�g�x��

are real functions� Since the �rst derivatives of Re�g�x�� and Im�g�x�� are

�nite�deviation� we can divide the interval �c � �

�
� c � �� into M��� subinter�

vals v�� v�� ���� vM with� in each interval vi� either a
��x� � b��x� for all x in vi or

a��x� � b��x� only at the two ends of the subinterval vi�

We now de�ne a real function c�x� over �c� �

�
� c� �� such that

c�x� �

���
��
a�x� if ja��x�j � jb��x�j�

b�x� if jb��x�j � ja��x�j�

As a result� we have jc��x�j � jg��x�jp
�

� jg��c���jp
�

� � for x � �c � �

�
� c � ��� We can

now apply Lemma � to each interval vi� i � �� 	� ����M��� over �c � �

�
� c � �� and

obtain
R
vi
jc�x�jdx � �



jvij� jg

��c���jp
�

� where jvij is the length of the subinterval vi�

��



Furthermore� we have

K �

Z d

c

jg�x�jdx �
Z c��

c��
�

jc�x�jdx �
X
i

Z
vi

jc�x�jdx �
X
i

jvij� jg
��c� ��j

p
	

� ����

It is not hard to show that �
P
i

jvij��M��� � �
P
i

jvij�� � ��



� Therefore�

P
i

jvij� �
��


M���
� Substituting this into the equation ����� we have K � �



p
�

��


M���
jg��c� ��j

and� therefore� jg��c���j � ��
p
�M���K
��

� C�� As a result� for all x in �c��� d����

jg��x�j � C�� �

Lemma � Let K be a positive constant� and let g�x� be a complex�valued function

which satis�es Z d

c

jg�x�jdx � K�

Suppose that jd�g�x�
dx�

j has no local maxima in �c� d�� Let � � �� and let the second

derivatives of Re�g�x�� and Im�g�x�� be �nite�deviations� then� there exists a

constant D� such that for all x in �c � �� d� ��� jd�g�x�
dx�

j � D��

Proof �

The proof of this lemma is similar to that of the previous lemma�

jg���x�j has no local maxima for all x in �c� d�� Then� for all x in �c � �� d �
��� jg���x�j � max�jg���c � ��j� jg���d � ��j�� Without loss of generality� let us

suppose that max�jg���c � ��j� jg���d � ��j� is equal to jg���c � ��j� Then� for

x � �c � �

�
� c � ��� we have jg���x�j � jg���c � ��j � �� By Lemma 	� we have

K �
R d
c
jg�x�jdx �

R c��
c��

�

jg�x�jdx � �
��
�
c���c��

�

	
�	jg���c � ��j� Therefore� for all x

in �c� �� d� ��� jg���x�j � jg���c� ��j � 	�
K
��

�

Let g�x� � a�x� � ib�x�� where a�x� � Re�g�x�� and b�x� � Im�g�x�� are

real functions� Since the second derivatives of Re�g�x�� and Im�g�x�� are �nite�

deviations� we can divide �c� �

�
� c� �� into M��� subintervals v�� v�� ���� vM � with

in each subinterval vi� either a
���x� � b���x� for all x in the subinterval or a���x� �

b���x� only at the two ends of the subinterval� Let a real function c�x� be

c�x� �

���
��
a�x� if ja���x�j � jb���x�j�

b�x� if jb���x�j � ja���x�j�

��



Then� we have jc���x�j � jg���x�jp
�

� jg���c���jp
�

� � for x � �c � �

�
� c � ��� For a

subinterval vi� by Lemma 	� we have
R
vi
jc�x�jdx � �

��
� jvij

	
�	 jg

���c���jp
�

� Furthermore�

we have

K �

Z d

c

jg�x�jdx �
Z c��

c��
�

jc�x�jdx �
X
i

Z
vi

jc�x�jdx �
X
i

�

��
�
jvij
�

�	
jg���c� ��jp

	
����

Assume that � � �� Then� all jvij � � and �therefore�
P
i

jvij	 �
P
i

jvij
� It is

not hard to show that
P
i

jvij
 �
�
P

i

jvij���

M���
� Then� we have

P
i

jvij	 �
P
i

jvij
 �
�
P

i

jvij���

M���
� ��

���M�����
� Substituting this into the equation ���� we then have K �

�
��

�
	�

��

���M�����
jg���c���jp

�
� Then� we have jg���c� ��j � ��	�

p
��M�����K
��

� D�� Thus� we

have for all x in �c� �� d� ��� jg���x�j � D�� �

	�



Appendix C

PROOF OF THEOREM 	

We will prove this theorem by induction with the following proposition�

Proposition�Pn� �

Let ��x� be a complex�valued wavelet that can be written as ��x� � dn"�x��dxn�

"�x� is equal to "R�x� � i"I�x�� and both "R�x� and "I�x� are continuous func�

tions of compact support� Let f�x� be a real function� Then� for any � � �� there

exists a constant K� such that at all scales s�

Z b��

a��

jf � "s�x�jdx � K�� ����

where "s�x� �
�
s
"�x

s
��

If Wf�s� x� has no maxima for x � �a� b� and s � s�� then for any � � �� there

exists a constant A��n such that for any x � �a� �� b� �� and s � s��

jWf�s� x�j � A��ns
n� ����

If we modify f�x� by multiplying it by the indicator function of �a� b�� we will not

modify its regularity on any interval �a� �� b� ��� In the following� we shall� thus�

assume that f�x� � � for all x �� �a� b��

Let us �rst prove that ���� is satis�ed�

Since f�x� � L���a� b�� and f�x� � � for all x �� �a� b�� it follows that

Z b

a

jf � "s�x�jdx �
Z b

a

jf�x�jdx
Z ��

��
j"s�x�jdx�

With a change of variable in the integral� we obtain

Z ��

��
j"s�x�jdx �

Z ��

��
j"�x�jdx

�
Z ��

��
j"R�x�jdx �

Z ��

��
j"I�x�jdx�

Hence�
R b
a
jf �"s�x�jdx is bounded by a constant independent of the scales� as in

�����

	�



Let us now prove that ���� is satis�ed�

We will �rst prove that the proposition is true for n � �� Since ��x� �

d"�x��dx� we �nd that

Wf�s� x� � s
d

dx
�f � "s��x��

Let g�x� � �f � "s��x�� By ���� and Lemma �� we have for all x � �c � �� d� ���

j d
dx
�f � "s��x�j � A���� Therefore� jWf�s� x�j � sA����

The proof of �Pn� for n � 	 is based on ���� and Lemma � Since ��x� �

d�"�x��dx�� we �nd that

Wf�s� x� � s�
d�

dx�
�f � "s��x��

For all x � �c � �� d� ��� j d�
dx�

�f � "s��x�j � A���� Therefore� jWf�s� x�j � s�A����

Let us now prove that if �Pn� is true� for n � 	� then �Pn��� is also true�

Let ��x� be a wavelet with n � � vanishing moments� The wavelet ��x� can be

written ��x� � d	�x��dx where 	�x� is a wavelet that has n vanishing moments�

Let df�x��dx be the derivative of f�x� in the sense of distributions� then�

Wf�s� x� � s
df

dx
� 	s�x�� ����

In order to apply our induction hypothesis �Pn� to df�x��dx with respect to the

wavelet 	�x�� we need to prove for any � � � that there exists a constant K� such

that at all scales s�

Z b��

a��

j df
dx

� "s�x�jdx � K�� ����

Since the wavelet ��x� has more than rwo vanishing moments� the proposition

�P��� which we just proved� implies that for any � � �� if x � �a� �� b� ���

jWf�s� x�j � s�A����

From Theorem � �in Appendix A�� we �nd that f�x� is uniformly Lipschitz 
 on

the intervals �a� �� b� ��� for any 
 � 	� Hence� df�x��dx is uniformly bounded

on any such interval� We can then easily derive that ���� is satis�ed�

		



Let us now apply the induction hypothesis �Pn� to df�x��dx with respect to

the wavelet 	�x�� There exists a constant A��n such that for any x � �a� �� b� ��

and s � s��

j df
dx

� 	s�x�j � A��ns
n�

Equation ���� implies that

jWf�s� x�j � A��ns
n���

This �nishes the proof of �Pn����

By applying Theorem � �in Appendix A� to the statement �Pn�� we derive

that the function f�x� is Lipschitz 
 for any 
 � n�

Let us now prove that ���� implies that f�x� is Lipschitz n if the wavelet ��x�

can be written as

��x� �
dn��x�

dx
� ����

where ��x� � �R�x� � i�I�x� and both �R�x� and �I�x� are smoothing functions�

Let dnf�x��dxn be the n�th derivative of f�x� in the sense of distributions� Similar

to ����� ���� yields

Wf�s� x� � sn
dnf

dxn
� �s�x��

Equation ���� of proposition �Pn� implies that for any � � �� there exists a

constant A��n such that for any x � �a� �� b� �� and s � s��

jd
nf

dxn
� �s�x�j � jd

nf

dxn
� ��R�s�x��j� jd

nf

dxn
� ��I�s�x��j

� �AR���n � �AI���n

� A��n�

Since the integral of ��x� is nonzero� this equation implies that dnf�x��dxn is

a function that is bounded by A��n over the interval �a� �� b� ��� Hence� f�x� is

uniformly Lipschitz n over the interval �a� �� b� ��� �

	�



Appendix D

PROOF OF THEOREM �

First� we derive that that f�x� is Lipschitz n at any x �� x�� For any � � ��

there exists a scale s� such that for all s � s�� there is no wavelet modulus maxima

at �a � �� x� � ��� Furthermore� since the n�th derivatives of Re�Wf�s� x�� and

Im�Wf�s� x�� are �nite�deviations for all s� from Theorem 	� the Lipschitz in the

neighborhood of any x� � �a � �� x� � �� is n� Thus� f�x� is uniform Lipschitz n

at any point in �a� x��� The same is true for any point in �x�� b��

Let us prove that f�x� is Lipschitz 
 at x� and can be characterized by

the complex�valued wavelet modulus maxima� For any interval �x� � �� x� �

�� including x�� there is a small enough scale s� such that for all s � s�� the

wavelet modulus maxima for these scales are contained entirely within the region

�x� � �� x� � �� by ��� s��� Then� there is a constant D� such that all the wavelet

transform in the region will be bounded by

jWf�s� x�j � D�s
��

From Theorem �� any subinterval including x� in �x�� �� x� � �� will be Lipschitz


� This implies that the Lipschitz at x� is 
�
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�a� �b� �c� �d�

Figure �� Complex�valued wavelet with type ���iH��n�x�� where �n�x� is de�ned

in Eq� ���� We show the cases n � ��top� and n � 	�bottom� with the �a� real

part� �b� imaginary part� �c� amplitude� and �d� phase�

	�



�a�

�b�

�c�

�d�

�e�

	�



�f�

Figure 	� �a� There are four singularities from left to right in this signal� In the

left neighborhood of the �rst singularity� the signal locally behaves like O�jxj�����
whereas in its right neighborhood� the signal behaves like O�jxj����� The second

singularity is a Dirac whose Lipschitz is ��� The Lipschitz exponent of the

third singularity is ���� The fourth is a step singularity� �b� The complex�valued

wavelet transform of �a�� �c� The maxima line of �b�� �d� The real part of

the wavelet transform in �b�� �e� The maxima lines of �d�� in which there are

three maxima lines corresponding to the �rst singularity� The left maxima line

corresponds to the left neighborhood of the singularity with O�jxj����� and the

right maxima line corresponds to the right neighborhood of the singularity with

O�jxj����� The middle maxima line is the compromise behavior between the left

and right neighborhoods of the singularity� �f� Decay of log�jWf�s� x�j� as a

function of log�s� along the maxima lines of the �rst singularity� The maxima

line of �c� is plotted with a solid line� The three maxima lines of �e� from left to

right of are plotted with � �� ����� and ���� Their slopes are recorded on the lines�
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�a�

�b�

�c�

�d�

Figure �� Oscillating singularity� �a� The chirp function with h � � and � � ��

�b� The wavelet transform magnitude obtained using a complex�valued wavlet

with the chirp function of �a�� �c� The ridges of the wavelet transform� which is a

continuous curve� �d� General maxima obtained from the real part of the wavelet

transform� These are discrete samplings of the continuous parabolic function at

�c�� We have enlarged the blach dot for easier visibility�

��



�a� �b�

�c� �d�

Figure � �a� �b� Spiral�like curves with chain code function ��x� � x���

��� � In �a��

� is ��� and in �b�� � is ���� �c� �d� Decay of logjWf�s� x�j as a function of log�s�

along the maxima line at the singular points of �a� and �b�� The singular point

is created by tracing the contours of �a� and �b� inwards �rst and� then tracing

outwards� The lines were computed by �tting the least median squares to the

sampled data� The slopes are recorded on the lines�
��
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�b�

�c�

�d�

�e�
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�f� �g�

Figure �� Shape characterization of a �sh� �a� Maxima lines of the singularities�

�b� The ridge curves� �c� The remaining maxima lines after removing the maxima

lines in �a� which are too short or whose Lipschitz exponents do not indicate the

singularities of interest� �d� The maxima lines after removing the maxima lines

in �c� which are on the ridges� �e� The remaining ridge curves after deleting short

curves� �f� The singular points corresponding to the maxima lines in �c�� �g� The

singular points corresponding to the maxima line in �d�� where the ridge parts

are indicated by a light black line�

��


