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Abstract

In this paper, we present an intelligent Internet information system ACIRD using machine learning

techniques to organize and retrieve Internet Web documents. ACIRD consists of three parts:

knowledge acquisition, document classifier and two-phase search engine. The knowledge

acquisition of ACIRD automatically learns the classification knowledge from classified Internet

Web documents and the classifier applies the classification knowledge to classify newly collected

Internet Web documents to one or more classes in a class hierarchy. The experiments show that

ACIRD performs as good as or better than human experts in both knowledge extraction and

document classification. Based on the learned classification knowledge and the given class

hierarchy, the ACIRD two-phase search engine presents hierarchically navigable structured results

to the users instead of conventional flat ranked results that greatly helps users in discovering

information from diversified Internet documents.

1. Introduction

The explosive growth of the Internet dramatically changes the way of working and living of all

walks and the Internet becomes a major source of information and means of communication.

However, the excessive information on the Internet creates the information overflow problem. To

alleviate the problem, there are many Internet search engines available for the Internet users. Most

of the search engines are implemented to facilitate rapid retrieval of documents for diverse users.

Terms1 are extracted from a document, stemmed, stored and indexed in database or other storage

systems by applying indexing approach [12]. The user query is usually represented by a sequence of

terms that are matched with the indexed terms based on TFIDF algorithm or similar algorithm [9]

to retrieve relevant documents. In order to distinguish the relevance of the documents to the query,

the retrieved documents are presented in a ranked list.

                                                

1 In the paper, “term” is considered as the “word” extracted from a document. In this paper, “keyword” is representative
of a concept, while “term” may not be meaningful.
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From the perspective of retrieval efficiency and effectiveness, word-based information retrieval (IR)

systems are efficient in handling a large document base. However, documents collected from the

Internet are extremely numerous. In such case, for a query with two words2 submitted to a search

engine implemented with similarity-based algorithms [8, 9], thousands of documents are probably

retrieved. For the query example “education and university”, there are 87,368,493 hits by AltaVista,

7,379,086 hits by Infoseek, 237,902 hits by WebCrawler and 2,879 hits by Yahoo. Ranking a large

number of documents using very few words is not likely to produce an order of documents meeting

the preference of the user. Consequently, user has to retrieve many uninteresting documents before

obtaining the desired information. Several search engines has applied relevance feedback [34] to

expand or refine the query based on documents selected by the user. However, query expansion

based on the selected documents may not be effective since the user intention is difficult to grasp

from the feedback.

The conception gap between the web document developers and the user creates the difference

between the retrieved results and the user expectation. Due to the richness of language and culture,

web developers and users may use different terms to represent the same concept, or use the same

term to describe different things. Therefore, word-based search engines often retrieve documents,

probably not desired by users. As a result, Internet search engines generally retrieve thousands

documents with few desired. In contrast, desired documents may not be retrieved. For instance, the

term “airline schedule” in documents does not match the term “flight schedule” in the query by a

word-based search engine, but both terms are considered to have the same meaning. However, a

thesaurus for the whole domain still cannot solve the problem, since a word may have different

meaning in different contexts, such as the word “bank”. A thesaurus for each specific domain can

help to alleviate the problem. But, due to the diversity and dynamic nature of the Internet, no static

thesaurus can handle the shifting semantics of terms.

Ideally, Internet search engines should be able to retrieve relevant documents efficiently, and

present the documents in accordance with user expectation. For the efficient retrieval, the search

engine should be able to shrink the document search space, since it is also possible to have more

documents than the physical memory can store. As for effective retrieval, the system needs to draw

close the semantics mismatch between queries and documents. Assigning classes to documents is

essential to the efficient management and retrieval of knowledge [10], and also provides a

                                                

2 According to the statistics in [13], the average query length is 1.3 words.



3

framework for structured query processing. Our system, ACIRD3 (Automatic Classifier for the

Internet Resource Discovery) [7, 11] is designed to automatically classify documents into proper

classes in a class hierarchy provided by Yam4. The system is capable of learning classification

knowledge from classified documents and mining the association rules among terms to explore the

implicit term semantics. ACIRD also infers from the term associations to refine the classification

knowledge of each class. To reply user query, the system implements a two-phase search that

presents a hierarchically navigable view, based on the discovered classification knowledge and the

given class hierarchy, to the user.

In the rest of the paper, we discuss related work in Section 2. The system, ACIRD, is described in

Section 3. In Section 4, we define the terminology used in this paper. In order to illustrate the

system clearly, in Section 5, we describe the learning model of ACIRD. Section 6 shows the

experiments of automatic classification to justify to the design and implementation of ACIRD. Then

the two-phase search approach is introduced in Section 7. Finally, we conclude the contribution and

point out future work.

2. Related Work

Past studies in Information Retrieval (IR) systems and search engines focus on the improvement of

retrieval efficiency by using indexing and query reformulation techniques. The first step of word-

based document processing is to extract words from documents based on pre-constructed dictionary,

stoplist, and stemming rules. Once words are extracted, a widely used method TFIDF [9, 23] is

applied to determine the weights of words. Term frequency (TF) is the number of occurrence of a

word in a document and inverse document frequency (IDF) is the inverse of the document

frequency, defined as the number of documents in which the word occurs. The weight of a word can

be determined by the product of its TF and IDF for the TFIDF method. A document thus can be

represented by a set of words and their weights, called vector of weighted words representation. The

similarity function of two documents or a query and a document is the direct product of their

vectors of weighted words, the cosine value between the two vectors in a multi-dimensional vector

space.

Another popular approach, string-based indexing, indexes strings and all their sub-strings, instead

of words, in the document. The string-based indexing approach is particularly useful for the

                                                

3 http://YamNG.iis.sinica.edu.tw/Acird/class.htm
4 http://www.yam.org.tw/b5/yam, which is a popular search engine in Taiwan.



4

applications of full-text search, exact string match (e.g. address) and character-based language (e.g.

many oriental languages) that search for arbitrary-length strings. In comparison with word-based

indexing approaches, the storage requirement of string-based indexing approach patterns is much

larger. In addition, their complicated data structures take more time in retrieval. As retrieving exact

matched strings only, string-based indexing approaches do not fit for many Internet information

discovery queries that only give conceptual descriptions instead of exact strings. Some string-based

indexing technologies, such as PAT-tree [25], are proposed to improve the performance of various

search functions, such as prefix searching, proximity searching, range searching, longest repetition

searching, most significant and most frequent search, and regular expression searching [12].

However, these searching functions are rarely used in the Internet document search.

Both of word-based and string-based indexing approaches require large storage space for

maintaining the indexes, even larger than original documents. For a huge document base such as the

Internet, the physical memory up to many giga bytes is required to retain good performance.

Otherwise, the page faults of operating system will dramatically degrade the performance.

Generally it is a good idea to organize the indexes in a hierarchical structure in order to reduce the

access time and memory requirement. To further reduce access time and memory, the organization

of hierarchy has to fit the user retrieval patterns. In this paper, we propose a hierarchical indexing

approach that each internal node of the hierarchy represents a class, as the concept of class fits well

with many Internet information discovery procedures. Using machine learning techniques, our

system is capable of learning classification knowledge from training documents. The classification

knowledge is the first-level index. Combining with the second-level index (e.g. keyword-index and

string-index), our system provides a hierarchical index structure for efficient document retrieval.

There are several approaches to the classification of documents, including manual classification,

automatic classification that can be further divided into classification knowledge acquisition from

domain experts and automatic learning of classification knowledge. Manually assigning classes to

documents is time consuming and expensive. Knowledge acquired from domain experts, while is

relatively effective, is also expensive in time and efforts of development and support. Furthermore,

the acquired knowledge may be incomplete. Classification knowledge automatically learned from

training document is efficient in time and cost, but its accuracy is limited by the employed learning

model.

There are many text categorization studies in the information retrieval discipline [4, 10, 20, 21, 22,

31]. In this paper, we use “document classification” instead of “text categorization”, since we focus

on the Internet HTML documents rather than general texts. Document classification is the problem
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of automatic documents grouping. Many studies also deal with the problem of document retrieval,

relevance feedback, text categorization, routing, filtering, and clustering. For example, ExpNet [35]

uses similarity measurement as the category ranking method to determine the best matched category

as the classification of the input document. [needs more examples]

Past studies in machine learning developed many algorithms that have been well tested and

performed in many domains such as medical, finance, etc. To name a few popular algorithms, there

are ID3 [27], C4.5 [28], CN2 [29], and AQ algorithm [30]. However, these algorithms are applied

to structural training data instead of non-structured textual data. This motivated many approaches to

document classification use corpus to characterize documents and develops new algorithms to learn

classification knowledge. These algorithms include Bayesian independence classifier [21], k-

nearest-neighbor [22, 32], rule-based induction algorithm [10], and mixed approached such as

INQUERY [33]. Those systems concentrate on the document categorization and the learning

algorithm, but they omit the diversity of the semantics of terms (or features) in the document. In

machine learning, the feature is usually an attribute-value pair that its semantics is certain. However,

the semantics of document feature is uncertain, and varies with different domains. For example, the

document feature “apple” has different meanings for the domain “computer” and “food”.

In this paper, we apply the technique of mining association rules to explore the semantics of

document feature in different domains. Mining association rules [16, 17, 18] is applied to discover

the important associations among items in transactions. A well-known application of mining item

associations is to discover an optimal item arrangement in the supermarket to allow customers to

gather their grocery conveniently.

3. The ACIRD System

One of the main goals of the system, Automatic Classifier for Internet Resource Discovery (ACIRD)

[11], is to automatically collect and classify Internet documents for efficient and effective

management and retrieval. The initial motivation of ACIRD is to improve the expensive and time-

consuming manual classification process used by many Internet search engines. Employing the

classification knowledge learned from the manually classified Internet documents, the system

automatically classifies incoming Internet documents. The classification knowledge together with

the class hierarchy enables two-phase search in the document retrieval. This section gives the

overview of ACIRD, and the details of the system are presented in the following sections.
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The knowledge base of ACIRD is learned from the Internet documents collected and manually

classified in Yam that the Internet documents are assigned to one or more classes in a class

hierarchy (or more precisely, a class lattice). An Internet robot is implemented to automatically

collect HTML documents. The system assigns a unique object ID to every document (called object

in this paper) and stores the object in the database. Each HTML document is parsed into a set of

terms with weights calculated from term frequency and weight of HTML tags. The terms and

weight pairs form the feature vector to represent the object knowledge. Inverted index of terms to

their objects is implemented using commercial relation database management system for convenient

access during learning and searching.

The classification learning process of ACIRD consists of two phases: training phase and testing

phase. In the training phase, given a class hierarchy, a collection of manually classified documents

is the training data. The learning process starts from the most specific classes to the most

generalized classes of the class hierarchy. For the most specific classes (i.e. the leaves of the class

hierarchy), the class knowledge is generalized from the knowledge of objects in the class. For other

classes, the knowledge is generalized from its child classes. In the testing phase, a classifier is built

by incorporating the learned class knowledge. The newly collected documents manually classified

by experts are compared with the class assignment of the classifier in order to verify the quality of

learned knowledge.

After classification learning process, the technique of mining association rules is employed to mine

term associations to enhance the class knowledge. As term associations highly depend on the class

domain, the mined term associations can only be applied to refine the classification knowledge of

the specific class. We showed that the mined term association is effective to enhance the term

semantics from the experiments in [7].

ACIRD has a two-phase search engine that allows users to retrieve interesting documents,

represented as a class hierarchy rather than a sequence of ranked documents, effectively and

efficiently. In the two-phase search, a query string is parsed and formulated as a sequence of terms,

called the query feature vector. Similarity match based on Vector Space Model is applied to decide

the relevance between the query and the classes and objects, which are also represented as feature

vectors. In the first phase, class-level search is performed that the query feature vector is used to

match qualified classes. Those qualified classes form a shrunk view of the class hierarchy. If user

decides to further explore a qualified class in the hierarchy, the query feature vector is again

employed to match subclasses of the class in the second phase. In object-level search, ACIRD

matches and retrieves and qualified documents in the class. The two-phase search approach not only
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reduces the search domain, but also provides a hierarchical conceptual view that is effective to help

the user to discover the information.

Document
Collection

(Objects in Database)
Query

Term Association
Rules

Query
Representation

Refined
Classification
Knowledge

Class Lattice
(Classification
Knowledge)

Query

Term

Class

Document (Object)

Fig. 1 The overview of the ACIRD

In Fig. 1, we summarize the system. First, Document Collection and Class Lattice are originated

from Yam, and every document in the document collection is assigned one or more class in the

class lattice. From right to left of Fig. 1, terms are extracted from documents. By applying learning

algorithms, the knowledge of each class, Classification Knowledge, is obtained. By mining Term

Association Rules of every class, the classification knowledge is refined to Refined Classification

Knowledge, which is used to construct the automatic classifier and for the class-level search. From

left-hand side, two-phase search engine parses the submitted Query into Query Representation that

is used to match Refined Classification Knowledge to discover relevant classes (concepts) or to

match and retrieve the interesting documents.

4. Notations and Definitions

In this section, we define the terminology used in the paper and introduce the conceptual model and

knowledge representation of ACIRD. We denote an entity as a lower case letter, and a set or series

of entities as an upper case letter. For example, let c  denote a class and C  denote a set of classes.

In the following, we describe the system entities with their notations in parentheses from the higher

level concept to the lower level concept.
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 ACIRD learning system automatically learns and refines classification knowledge from a given

class hirarchy and a set of manually classified objects. The hierarchy is called ACIRD Lattice

because of the the hierarchy satisfies the lattice properties.

 ACIRD Lattice ( ),( RCLACIRD ) is set of classes C and a set of relations R between classes that

can be represented as a graph with nodes ( C ) and edges ( R ).

 Class ( c ) is a class node of ACIRDL . c  possesses the knowledge generalized from the sub-

classes or objects in the class.

 Object ( o ) is an HTML document that consists of paragraphs ( pg ) enclosed by HTML tags.

An object o  can belong to one or several classes in ACIRDL .

 Paragraph ( pg ) consists of a series of sentences ( s ) that in term contain phrases and terms.

pg  is informative if it is enclosed by informative HTML tags that are defined later in this

paper. Separators such as comma, period, semicolon, or other characters specified in the system

are used to identify the boundary of sentences ( s ).

 A phrase is a sequence of terms in a sentence that are frequently used in some class domain and

satisfies one of the specified phrase rules. To automatically construct thesauras, Phrase

Discovering Process applies phrase rules to find new phrases satisfying the rules. For example,

the simple noun phrase rule {NNN, NN} means that a phrase can be triple co-occurrence nouns

or double co-occurrence nouns. Currently, the construction of thesauras of ACIRD is a semi-

automatic process that the system extracts discovered candidates for the selection of users.

 Term ( t ) is a word (excluding stop words) extracted from sentences of an informative

prargraph. Each term has a support value to the object that it appears. The support (
ot

sup
,

) of t

to o  is calculated from the term frequency and the weight of HTML tags, which quantifies the

importance of t  to o .

 Object Knowledge ( oKnow ) is a set of selected terms (T ) with supports to the object. oKnow

can be represented by the Term Support Graph ( ),,( EoTTSG ) that each directed edge in E

from it  (in T) to o  has a label oti
sup , . The number of extracted terms in oKnow  is denoted

by oKnow .
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 Classification Knowledge of class c ( cKnow ) is a set of term T that each term it  has a support

value ctsup ,  to c . cKnow  is generalized from oKnow  or classification knowledge of its child

classes. Similar to oKnow , cKnow  can be represented as a graph ),,( EcTTSG  that each

directed edges in E from it  (in T) to c is labeled with cti
sup , . The number of terms in cKnow

is denoted by cKnow .

 For each class c, the process of mining association rules is applied to mine associations among

terms of cKnow . The mined rules are called term associations. For each pair of terms, it  and

jt , there is a corresponding confidence (
ji ttconf , ). A strongly connected graph Term

Association Graph ( ),( ETTAG ) can be generated by considering terms of T  as nodes and

term associations as edges labeled with 
ji ttconf , .

 For each class c, Term Semantics Network ( ),,( EcTTSN ) is constructed as the union of the

),,( EcTTSG  and ),( ETTAG . TSN is used to represent the semantics of the class and the

associations between terms in the class.

 Perfect Term Support (PTS) algorithm [7] is applied to promote cti
sup ,  of edges in

),,( EcTTSN . The algorithm finds an optimal path ( *
,ctp ) from t  to c , where *

,ctp  is a path

with the maximal value among all the possible paths ( ctP , ) from t  to c  in ),,( EcTTSN . The

value of ctp ,  is the product of edges’ confidence values in the path and the support to c of the

last term, ( cttttttt zzykjj
supconfconfconf ,,,, ...  ). The optimal support of t to c (denoted as

*
,ctsup ) is defined as the value of *

,ctp .

 A keyword ( k ) is a term that passes Filtering Process that filters out terms whose *
,ctsup  are

less than the specified threshold C . For a keyword, its *
,ctsup  is defined as membership grade

( ctMG , ) of t  to c . The application of PTS and Filtering Process refine cKnow  to become

Refined Classification Knowledge ( *
cKnow ). *

cKnow  is the knowledge base employed by Two-

Phase Search Engine and Automatic Classifier of ACIRD.

In Fig. 2, the top-down view of these abstractions is shown in the left-hand-side and the systematic

knowledge representation is shown in the right-hand-side.
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Fig. 2 Conceptual model and systematic knowledge representation of ACIRD.

5. The Learning Model

In this section, we describe the learning model of ACIRD in details. In the training phase, ACIRD

adopts supervised learning techniques and regards previously classified documents as the training

objects. The testing phase is described in Section 6.

ACIRD applies machine learning methods to learn classification knowledge as shown in Fig. 3. The

learning model is applied to each class of ACIRD lattice from the most specific classes to the most

general class. Each document is preprocessed into a weighted term vector. Then the dimension of

the vector is reduced by Feature Selection Process to reduce the complexity of learning and noise.

For the most specific class, the knowledge of the class cKnow  is generalized from the knowledge

of all objects in the class, which can be represented by Term Support Graph (TSG). Mining

association algorithm is applied to mine associations of terms in TSG that the obtained term

associations can be represented by Term Association Graph (TAG). By combining TSG and TAG,

Term Semantic Network (TSN) is derived. TSN is further optimized to become TSN* to represent

*
cKnow  of the class. For each iteration, only one term is promoted. As the promotion may be used to

promote other terms, the promotion process is applied recursively until the stable state is reached.

For the non-most specific classes, the learning process is the same except the initial weighted term

vector is from its subclasses and objects.

��! �����

Fig. 3 The Learning Model of ACIRD.

5.1 Preprocessing Process and Knowledge Representation

Preprocessing process consists of two parsers, HTML Parser and Term Parser. HTML parser parses

an object into paragraphs that their weights are determined by the associated HTML tags. Term

Parser partitions the paragraphs into sentences and extracts terms from sentences. Term Parser also

calculates term supports using the weight assigned by HTML Parser and its term frequency.

HTML Parser

An HTML document consists of paragraphs that the associated HTML tags indicate their

importance and meta-level information. Web developers highlight the contents by HTML tags

[reference], such as TITLE, Hn (headings), B, I, U, etc. In addition, META tag allows developers to
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add extra information to the document such as “CLASSIFICATIONS” and “KEYWORDS”.

Apparently, the implication of tags is necessary to be considered during indexing the documents.

Currently, human experts assign weights to HTML tags from observing the outcomes of numerous

experiments. We classify these tags into four types.

� Informative. The paragraph enclosed by such tags are the the meta knowledge of the documents

or the contents presented to the users. Thus, the tags have higher weights than the others. For

example, CLASSIFICATION and KEYWORD in META, TITLE, Hn, B, I, U, etc.

� Skippable. Tags, such as BR and P have no effects in the semantics of the document and are

omitted.

� Uninformative. Contents enclosed by tags, such as AREA, COL, SCRIPT, COMMENT, etc.,

are invisible from the users. Thus, these tags and their contents are excluded.

� Statistical. Contents included in these tags, such as !DOCTPYE, APPLET, OBJECT, SCRIPT,

etc., are stored in database for statistics purpose.

The implementation of HTML Parser uses two stacks that one is for HTML tags and the other is for

paragraphs. The execution of the algorithm is completed in a file scan.

Term Parser

Term Parser partitions the paragraph into sentences, extracts terms in the sentence, and counts the

term frequency (TF) of each term. As designed to handle multi-lingual documents, ACIRD

currently considers English and Chinese languages. For English, each extracted term is stemmed.

For the character-based language, like Chinese, a sentence needs to be segmented into meaningful

multi-character terms. As there are no apparent stop characters, Term Parser uses a pre-constructed

term base of multi-character Chinese terms to extract meaningful terms. After a term t  is extracted

from an object o , the support value otsup ,  is measured based on TF and HTML weight, as

defined in equation (5.1). The value, normalized to be in the range of [0, 1], indicates the

importance of a term to represent the object.

1] [0,  tonormalized is  i.e.,  ,
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’

 . in  tagsof  weighmaximum  theis 
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Since a sentence may have more than one tag, the tag with the maximum weight is used in

calculating the term support. We use TF and the maximum tag weight to calculate the term support

rather than the TFIDF weighting approach. Inverted Document Frequency (IDF) is designed to

enhance the discriminating capability of high-frequency terms, which is not critical in supervised

learning, as in ACIRD.

Term Parser extracts Chinese terms based on the heuristics of “the longer term first” to resolve the

ambiguity. I.e. for two terms that one term is part of the other term, Term Parser will choose the

longer one. A pre-constructed term base is built as a B*tree [36] for linear time access. In addition,

the rules for Chinese term segmentation are supplied to handle the ambiguity of segmentations

between conflicting candidate terms. The complexity of term extraction is )( 2nO , where n is the

length of the input sentence. Including the linear time complexity of HTML Parser, the complexity

of Preprocessing Process is )( 2NO , where N is the content length of an object.

5.2 Feature Selection Process

After HTML Parser and Term Parser process an object, the obtained object knowledge can be

represented as a vector of attribute-value pairs, )},(),...,,(),,{( ,,2,1 21 otnotot n
suptsuptsupto  .

Theorectically, induction process can be applied immediately to learn the classifcation knowledge

from the object knowledge. In practice, the complexity of the learning process is exponentially

increased by the dimension of the vector and the noise may be increased with the increase of the

dimension. Feature Selection Process is designed to reduce the complexity and noise during

learning process. For each object, a pre-defined threshold of support s  is used to discard less

important features, and remaining features are used to represent the object knowledge oKnow . In

this way, the problem of feature selection is shifted to the selection of s . Higher s  discards more

features that the remaining terms may not be sufficient to represent oKnow . In contrast, lower s

has little effect in feature selection. In ACIRD, the selection of s  is adaptive to the emperical

experiments. For instance, by analyzing the distribution of term supports from the training data as

shown in Fig. 4, we observe that more than one half of term supports are in the range [0, 0.2). If we

choose 2.0s  to filter out terms with low supports, the average number of terms in an object is

reduced from 28.64 to 11.61. It is obvious that the complexity of the feature selection is linear to the

number of features.
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Fig. 4. The distribution of term supports of training data.

5.3 Classification Knowledge Learning

To discover the classification knowledge, induction learning is used to generalize the object

knowledge oKnow  to the most specific class knowledge cKnow , and further generalize the class

knowledge to its supper classes. The induction process is applied from the most specific to the most

general classes. The class assignments of training objects are given by the human experts of Yam.

In the conventional learning schemes, the values of features of training objects are either TRUE or

FALSE. I.e. the learning algorithms generalize the term it  to the class c  based on the occurrence

of objects containing it  in c. In other words, it considers all the terms are equally important that

ignores the degrees of term supports to the object or class. To amend the shortfall, we define the

support of t  to c , denoted as ctsup , , in equation (5.2). Similar to (5.1), ctsup ,  is also normalized

to [0, 1].
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}’{

’

. class  theinobject  an is  ,  to ofsupport   term theis  ,’

,,
,

,
,

,,,

ctct
ct

ct
ct

jjiot
o

otct

ii

i

i

i

ji

j

jii

supsup
supMAX
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(5.2)

Similar to Eq. (5.2), the support of term to non-most specific class can be obtained from the support

of term to its objects and subordinate classes, as shown in Eq. (5.3). The number of objects in a

subordinate class affects its contribution to the super class.
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The algorithm of Classification Knowledge Learner is described in the following.

1. For each class from the most specific to the most general, do the preprocessing and feature
selection processes.

2. For most specific class, calculate the term supports to class based on Eq. (5.2). The complexity
is the sorting complexity, )log( ooo NTNTNO  , where oN  is the number of object in the

class, and oNT  is the maximum number of terms in an object of the class.

3. If the class has subordinate classes, calculate the term supports to class based on Eq. (5.3). The
complexity is )log*( cccco NTNTNTNNO  , where cN  is the number of subclasses, and

oNT  is the maximum number of terms in a subordinate class.

As the number of term in a class is large and due to the diversity of Inteernet documents, the term

supports to the class is generally low. For instance, from the statistics of training data, there are

about 472 terms per class in average and the supports are low as shown in Fig. 5. From the figure,

most term supports locate in low support range (e.g., [0, 0.3)). Therefore, a feature selection process

is needed to reduce the low support terms in cKnow . Given a threshold c =0.1, in average there are

47 terms per class, 24 terms with 2.0c , and 20 terms with 3.0c . A filtering process may

remove meaningful but with low support terms, which include aliases of high support terms and

terms highly associated with them. To alleviate the problem, we propose a mining association rules

approach to discover term associations in a class, and apply the result to enhance the supports of the

otherwise filtered out terms.
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Fig. 5. The distribution of term supports of all the classes in ACIRD.

5.4 Mining Term Association

The feature selection process in the class level is more complicated than in the object level. The

first reason is, in general, cKnow  is larger than oKnow , since cKnow  is generalized from

several oKnow . The second reason is that the terms in an object are more consistent in both

semantics and representation than in a class. Usually an object is written by one web developer that

a simple filtering method using a threshold value can do a reasonably good job, while the objects in

a class are collected from many web servers and written by a diverse of web developers that add

diversity in the term wording and usage. Often applying a filtering algorithm using a threshold

value c  directly to cKnow  removes many representative terms but with low support values. As

only few concepts remain, the recall rate on cKnow  is likely low. Therefore, the system must

identify and consolidate terms with or related to the same concept before applying filtering process.

In ACIRD, we propose mining term associations and perfect term support algorithm to promote

representative terms with low supports.

According to the definition of association rule in [17], elements in the problem are items,

transactions, and the database.

Let � � � �
�

 � � � � �
� �

�  be a set of items and �  be a set of transactions (the transaction database)

in which each transaction �  is a set of items such that � � . An association rule is an

implication of the form � � , where � � , � � , and � �   . The rule � �
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holds in the transaction set �  with confidence c, if c% of transactions that contain �  also

contain � . The rule � �  has support s in the transaction set �  if s% of transactions that

contain � � .

We follow the above definition and map the problem of mining term associations to the

specification of mining association rules. Two important issues should be considered before mining

association rules [16, 17, 18]. One is the granularity (or the transaction defined in [17]) used to

mine associations. The other is the domain used to generate association rules, which is

corresponding to the transaction database defined in [17].

Granularity of mining associations.

In [19], the system restricts the granularity of generating associations to 3-10 sentences per

paragraph in order to reduce the computational complexity. The restriction is impractical for web

documents since a paragraph may have hundreds of meaningful sentences. Additionally, the

importance of a sentence in web document depends on the HTML tags, not its position. Therefore,

the granularity of mining term association is the whole informative paragraphs.

Domain of generating association rules.

As Internet documents are published by diverse people, the semantics of a term depends on the

authors and contexts that it is common to have the same word to represent different meanings. For

example, if a document mentions “apple computer” in a paragraph, the semantics of the apple

should not be “apples of fruit or food”. Most likely, it indicates “Macintosh” in the class of

“Computer”. Similarly, “apple” and “pie” means the apple of fruit in the class of “Food”. The above

observation supports the idea to restrict the domain of mining term associations within the boundary

of a class. On the other hand, it is also common to observe a meaning has many forms of

representations that makes their associations good candidates for mining. Based on these reasons,

ACIRD applies the mining association rules process [17] to mine term associations by regarding

(i) Terms are corresponding to items.

(ii) The object’s informative paragraph is corresponding to the transaction.

(iii) The class is corresponding to the transaction database.

Concentrating on objects of a class instead of all objects also has the advantage of small database

size, as the complexity of mining associations is exponentially increased with the size of the
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database. When the size of database is not large, a simple mining association algorithm, such as

Apriori [16], can be efficiently applied.

For the definitions of confidence and support [17] of term association ji tt  , we do the following

modifications.

.  termcontain that documents ofnumber  for the stands  )(  where,)(

)(
iictdf

ttdf

tt ttdfconf
ic

jic

ji


 

. class in documents ofnumber  for the stands   where,
)(

cD
D

tdf
sup c

c

ic
tt ji


Confidence is regarded as the degree of association between terms and is employed by the

following Classification Knowledge Refiner to refine cKnow  to *
cKnow . Support is the percentage

of transactions supporting the associated rules, and is considered as a metric of the correctness of

the rules. For example, cKnow  of class Art contains term supports: 13.0, Artexhibitionsup  and

1, Artartsup . It is likely that exhibitiont  will be filtered out from cKnow  for the low support value.

After mining term associations of the class Art, ACIRD discovers the term association

artexhibition   with 826.0artexhibitionconf  and 1.0artexhibitionsup . Let’s assume a rule with

10% supports is considered useful. Following the definition of *sup  defined in the previous section,

*
,Artexhibitionsup  is increased from 0.13 to 0.826 (i.e. *

,Artexhibitionsup  = artexhibitionconf   Artartsup ,  =

0.8261 = 0.826). The inference process promotes the support value of exhibitiont  to 0.826 to pass the

filter.

After mining term associations of a class, TSN is obtained, as shown in Fig. 6. TSG represents the

term supports of a class, TAG represents the term associations in a class, and TSN is the union of

TSG and TAG, i.e., ),(),,(),,( ETTAGEcTTSGEcTTSN  .



18

Document

Term Semantic
Network (TSN)

Extracting
Terms

Mining
Association

Rules

�����

Term Association
Graph(TAG)

Term Support
Graph(TSG)

��������

���	

Document Document Document

Learning
Classification

Knowledge

Fig. 6. Construction of Term Semantic Network

5.5 Classification Knowledge Refinement

As the term associations are asymmetric, both TAG and TSN form strongly connected digraphs. In

order to decide *sup , all the possible paths from the term to the class need to be considered. For a

TSN, the number5 of all the possible paths from terms to the class is 
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average number of terms of a class is 472 that exhaustive search is infeasible. Although the support

value of term association can be employed as a filter to remove rarely used term, it is still

computationally expensive for a small number of terms. For instance, a class with 10 terms creates

8103.2   possible paths. Therefore, an efficient algorithm is required.

Here we propose the PTS algorithm to find *
,cti

sup ’s for all terms in a class in polynomial time.

From the definition }...{*
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their product is. In other words, a sub-path of an optimal path must be an optimal path too. The

proposed greedy heuristic is as follows.

Heuristic. Divide the nodes in TSN into two groups T  and *T . T  contains all term nodes and

*T  is empty in the initial state. Each time find a node t  from T  has the maximum *
,ctsup , t  is

moved from T  to *T . The heuristic is recursively applied until T  is empty.

The PTS algorithm is shown below.

Perfect Term Support (PTS) Algorithm

1. [Initial state: This step initializes every *
,ct j

sup  and partitions the terms into two groups: *T

contains the terms that have been optimized and T  contains terms that are not optimized.]

};{ )};,{(Let 
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2. [This step updates *
,ct j

sup  for each term in T , if necessary. lastt  indicates the latest term

added into *T .]
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3. [This step finds the term with maximal *
,ctsup  from T  and inserts it to *T .]
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In [7], we have proved that the PTS algorithm always finds the optimal solution in time complexity

)(
2

cKnowO . PTS can efficiently promote some non-representative terms by exploring their

associations with representative terms. Fig. 7. illustrates the effect of PTS. In the left-hand side,

there are four non-representative terms in TSN. After refinement using PTS, in the right-hand side

of the graph, three terms are promoted to the representative for their associations to the

representative term. All other non-representative terms and associations are eliminated to reduce

the complexity of learning.
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Threshold of Support in Class

The remaining task of the Knowledge Refining Process is to select a threshold to filter out non-

representative terms. An experiment is designed to compare cKnow  and *
cKnow  with the

keywords selected by ten human experts. The experiment shows Knowledge Refining Process

indeed refines the knowledge contents of cKnow , and it also demonstrates the trade-off between

precision and recall based on different criteria of threshold. There are two types of criteria used to

evaluate the outcomes of the experiment.

� Top n. All the *
,ctsup  are sorted in descendent order. The first n terms are selected to be the

keywords of *
cKnow .

� Threshold = ? . This criterion selects terms with .*
, ctsup

The experiment results are shown in Table 1. Before applying PTS, the lowest precision is 0.76, due

to the high selection standards (Top 10, Top 20, T = 0.5, and T = 0.7) that select highly informative

terms only. However, the recall is low for the same reason. It implies that the Induction Process

does not learn the implicit association among terms, although it generalizes the terms of objects to

class. In comparison with the case without applying PTS, PTS increases both precision and recall

for the Top n criterion as it promotes important but non-representative terms at the cost of

removing less important terms (as Top n criterion selects a fixed number of terms). For the

"Threshold = ?" criterion, PTS increases recall while decreases precision since it promotes terms to

the keywords of the class. Hence, by applying Induction Process and Knowledge Refining Process,

the hidden semantics among terms can be discovered. With the carefully chosen selection criterion,

the acceptable compromise of precision and recall can be achieved.

Table 1. Experiment results of PTS based on precision/recall.
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Before PTS algorithm After PTS Algorithm

Selection Criterion Precision Recall Precision Recall

Top 10 0.76 0.27 0.91 0.38

Top 20 0.78 0.53 0.85 0.62

Threshold = 0.5 0.97 0.10 0.73 0.97

Threshold = 0.7 0.96 0.07 0.79 0.83

6. Evaluation of ACIRD Automatic Classification

In this section, we describe the testing phase of the learning process. Based on the similarity

concept, we implement an automatic classifier, ACIRD Classifier, to clssify newly collected

Internet objects. For each object, the classifier assign one or more classes which, in the testing

phase, are compared with the classes assigned by human experts to evaluate the classification

accuracy. Based on a series of experiments and analyses, it can be observed that *
cKnow  is effective

to support automatic classification of the Internet documents.

Similarity Measurement

ACIRD Classifier uses the conventional similarity measurement, the cosine value of feature vectors

of document and class, defined in equation (6.1).

class.  theof norm  theis ...

object;  theof norm  theis ...

(6.1)                                           ; i.e., ,  to of grade membership is  and  ,  to of              

support   theis   , and  of  termcommona  is   where,
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Since the concept of class is generally imprecise, the class assignment of an object cannot be

exactly “true” or “false”. It is also impractical to categorize an object to one class only while an

object may is conceptually relative to several classes. Therefore, for an input object, ACIRD

Classifier gives the best N classes that are closest to the intension of the object. The classification

accuracy is estimated by the criterion that if the target class of a testing object is located in the set of

best N matched classes.
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Experiment Results

At the time we perform this experiment, there are totally 512 classes in ACIRDL  with 386 most

specific classes . (i.e. the leave nodes of the class hierarchy). Yam provides 9,778 training objects

and 8,855 testing objects, which have been manually classified to the classes in ACIRDL . The

training set and the testing set are disjoint. Before the learning process, ten human experts extract

the keywords from each class as the classification knowledge benchmark, denoted as U
cKnow . The

learning and testing processes run on U
cKnow , *

cKnow , and cKnow , which are marked as “10

Users”, “With PTS”, and “Without PTS”, respectively, in Fig. 8. The result shows that *
cKnow  has

the quality in par with the manually extracted classification knowledge U
cKnow  in terms of the

accuracy of class assignment of objects.
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Fig. 8. The classification accuracy of 8855 testing objects based on exact class match.

However, the classification accuracy of all the three cases is not high enough. By analyzing the

training and testing sets, we found that there are not sufficient training objects in many classes, and

some training/testing objects contains very few keywords because they are non-text pages or link-

only pages. Thus, we design another experiment to circumvent the situation. The same testing

process is performed based on the 12 most general classes6 of Yam, and the resulting classification

accuracy is shown in Fig. 9. The “Top 1” accuracy of *
cKnow  is increased from 0.139 in Fig. 8 to

                                                

6 In http://taiwan.iis.sinica.edu.tw/en/yam/, users can see the 12 most general categorizes of Yam: “Arts”, “Humanities”,
“Social Sciences”, “Society and Culture”, “Natural Sciences”, “Computer and Internet”, “Health”, “News and
Information”, “Education”, “Government and State”, “Companies”, and “Entertainment and Recreation”.
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0.595. The increase is due to sufficient training objects in the most general classes, and the total

number of testing classes is reduced from 512 to 12 so that the noise level is also reduced.
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Fig. 9. The classification accuracy of 8855 testing objects based on 12 most general classes.

The numbers of objects and keywords of the twelve most general classes are shown in Table 2. As

we can observe, the distribution of the numbers is skewed, and some classes still suffer from the

problem of insufficient training objects and keywords. Thus, we perform another experiments on

classes with sufficient training objects and keywords only. In the experiment, every tested class has

at least 40 training objects. The total tested classes are reduced from 512 to 48 in contrast with the

experiment shown in Fig. 8. Since there are sufficient training objects in the classes, we call these

classes as well-trained classes and their refined classification knowledge as well-trained

classification knowledge. To evaluate the quality of well-trained classification knowledge, the

classification knowledge generated from the ten human experts is compared. The results in Fig. 10

shows that our learning model is capable of discovering more accurate classification knowledge

than that of human experts, if there are sufficient training objects in the classes. As shown in the

figure, the “Top N” classification accuracy is also dramatically increased while there are sufficient

training objects.

Table 2. The distribution of training objects in Yam’s most general classes.

Class Name Objects Keywords
Companies 2702 (27.88%) 950 (22.83%)

Entertainment and Recreation 2577 (26.59%) 1084 (26.05%)
Computer and Internet 1199 (12.37%) 471 (11.32%)

Education 1169 (12.06%) 589 (14.15%)
Society and Culture 502 (5.18%) 226 (5.43%)
Government and State 384 (3.96%) 241 (5.79%)
News and Information 288 (2.97%) 162 (3.89%)

Health 280 (2.89%) 180 (4.32%)



24

Arts 223 (2.30%) 115 (2.76%)
Social Science 208 (2.15%) 92 (2.21%)
Natural Science 106 (1.09%) 44 (1.06%)

Humanities 53 (0.55%) 8 (0.19%)
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Fig. 10. The classification accuracy of testing objects on the well-trained classification knowledge in comparison with
the knowledge generated by human experts.

7. Two-Phase Search Engine

Most current search engines return user queries with a list of ranked documents that is time

consuming and inconvenient for users to access the needed documents. In ACIRD, the system

provides two-phase search that allows users to perform class-level search and object-level search.

Utilizing the two-phase search, the user can associate his information needs to the classes in the

hierarchy, navigate the class hierarchy, find the interesting classes, and finally retrieve the

documents from the designated class. The above procedure can be carried out repeatedly until the

desired information is accessed. To determine the effectiveness of the two-phase search, it is critical

that the terms of user queries are in *
cKnow  so that the class-level search on *

cKnow can return the

desired classes. The conjecture “most query terms are in *
cKnow ” is further investigated by the

following analysis on the query log of Yam.

Analyses on the Query Log of Yam

In the experiment, we analyze the Internet search query from the log of Yam collected in October

1997, and extract terms from queries and count their frequency. By regarding each term as an

information need and its frequency as the reference count, we can discover information needs that
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users of Yam are interested in. There are 9644 terms, denoted by the set YamCT , with 648006

references. A series of tests on the distribution of keywords of *
cKnow  are performed to verify the

above conjecture. Each test has a different threshold to select keywords for *
cKnow , denoted by “Th

= x.x”. If the keywords in *
cKnow  are the same with the terms in YamCT , their reference counts are

the reference counts of the terms; otherwise, the reference count of the keyword is 0. The

summation of the reference counts and the number of keywords of each test are shown in Table 3.

Regarding references and query terms of Yam’s query log as the baseline, the recall rate and index

rate of each test are defined as:

    Recall rate = references of the test / references of Yam query log.

    Index rate = indexed terms of the test / query terms of Yam query log.

For example, in the case “Th = 0” (i.e., no keyword is eliminated), indexed keywords cover 96.92%

information needs (the recall rate) with about doubled index size of query terms (the index rate).

However, when “Th = 0.5”, it covers 69.89% information needs with about 30.91% index size. In

practical, it is an acceptable compromise. From the experiments, it can indicate that two-phase

search is capable to shrink the searching domain with little information loss and can be applied as

an efficient search engine.

Table 3. The summation of reference counts (the recall rate) vs. the number of keywords (the index rate).

Based Line: Query Terms of Yam 648006 (100%) 9644 (100%)
Threshold to Filter Out Keywords in
Refined Classification Knowledge

References of Information
Needs (Recall Rate)

Number of Keywords
(Index Rate)

Th = 0.0 628065 (96.92%) 18076 (187.43%)
Th = 0.1 477906 (73.75%) 3775 (39.14%)
Th = 0.2 470277 (72.57%) 3446 (35.73%)
Th = 0.3 465396 (71.82%) 3260 (33.8%)
Th = 0.4 458468 (70.75%) 3090 (32.04%)
Th = 0.5 452897 (69.89%) 2981 (30.91%)
Th = 0.6 440661 (68%) 2723 (28.24%)
Th = 0.7 421649 (65.07%) 2498 (25.9%)
Th = 0.8 404615 (62.44%) 2277 (23.61%)
Th = 0.9 389439 (60.1%) 2015 (20.89%)
Th = 1.0 378249 (58.37%) 1905 (19.75%)

Two-Phase Search Algorithm

Based on the above analysis, it is worth to perform class-level search in the first phase to shrink the

search domain. The first-phase search is capable of satisfying most queries efficiently and returns

with structured presentation. The conventional searching approach, i.e. search all objects in the

object-level search, is also implemented as an “escape” for users. After quickly reviewing the result
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of class-level search, the user can navigate down the class hierarchy or choose object-level search in

some class. The algorithm of Two-Phase Search is described in the following, and the data flow

diagram is shown in Fig. 11.

Two-Phase Search Algorithm

1. Process query string: Parsing the query string into a sequence of keywords indicated by
keyword ID (KID).

2. Class-Level Search: Retrieving classes (CID) associated to the KID, calculating each class’s
relevance score, and sorting CID’s by the scores in descending order. Presenting the result in
HTML format.

3. Object-Level Search in a class: Retrieving objects, in the selected class, associated to the KID,
calculating each object’s relevance score, and sorting OID’s by the scores in descending order.
Presenting the result in HTML format.

4. If Two-Phase Search was unable to find the desired information, then the user can chose the
conventional search approach to search all objects.

5. Search all objects: Retrieving all objects associated to the KID, calculating each object’s
relevance score, and sorting OID by MG in decreasing order. Presenting the result in HTML
format.

Fig. 11. Data flow diagram of Two-Phase Search algorithm.
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Examples of Two-Phase Search Engine

Users can search desired objects from ACIRD7 by giving their query strings. For example, in Fig.

12, the user selects the query mode “Two-Phase Search” and gives the query “interesting technical

magazine”.

Fig. 12. Two-Phase Search in ACIRD (Query Interface).

The result of the query is shown in Fig. 13, which contains the following information. “Rank”

indicates the ranking order of the matched classes. “Refined Search in Class” presents the class

name that user can resume the same query on the class objects. “Object In Class” shows two links,

“All” and “Direct”. The former, shown in Fig. 14, lists all objects in the class (including objects of

its subclasses); the latter, shown in Fig. 15, lists the class’s direct objects. “MG (membership

grade)” indicates the normalized relevance score. “Keywords” links to the keywords of *
cKnow .

The page in Fig. 13 shows 8 matched classes, and the user can press the link in the bottom of the

page to perform the conventional search on all objects, if no classes are interesting to the user.

Fig. 13. Two-Phase Search in ACIRD (Query Result: Matched Classes).

                                                

7 The current version of ACIRD (http://YamNG.iis.sinica.edu.tw/Acird/class.htm) provides Chinese interface only. The
figures shown in this example are the English translations.
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Fig. 14. Two-Phase Search in ACIRD (Query Result: List all objects under a class).

Fig.15. Two-Phase Search in ACIRD (Query Result: List direct objects of a class).

If the user focuses on the class “Technical Journal” and clicks on it to perform object-level search,

the search result will be refined and shown in Fig. 16. “In Class” presents one or several classes that

contain the object. It can be clicked to list all objects in the class. “Object Title” shows the object’s

content in <TITLE>, which is linked to the physical page on the Internet. “Latest Date” indicates

the latest date that the Internet robot visited the page. “Status” shows the status of the latest visit.

“Text Size” is the file length of the object’s HTML source without counting non-text media. The

user can quickly preview the page by clicking on the link in the column “Cache”.
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Fig.16. Two-Phase Search in ACIRD (Query Result: Search Objects in Specific Classes).

If the user presses the link to perform “Search All Objects”, the result is shown in Fig. 17. There are

totally 746 relevant objects in this example. In comparison with 8 relevant classes of class-level

search, it is infeasible to visit and find information from a large number of links.

Fig. 17. Two-Phase Search in ACIRD (Query Result: Search All Objects).
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8. Conclusions and Future Work

In this paper, we shows that machine learning and data mining techniques can be applied to learn

and refine classification knowledge. Based on the knowledge, automatic classification is able to

automatically classify the Internet documents to classes in a class hierarchy. According to the

analysis of the query log of Yam, we show that the knowledge can be the meta-index to shrink the

searching domain. The index is used to retrieve classes containing potentially desired documents

efficiently.  The result of class-level search can be presented in a comprehensible view of concepts.

Users can associate the queries to the presented classes and perform object-level search in the

classes to get their desired documents. In this way, the system helps users from visiting and finding

information from a large number of ranked documents.

In the future, the learning model must be extended to the incremental learning model to cope with

dynamic changes of the Internet. In addition, the classification accuracy of the learning methods and

the classifier still has room for improvement. There are also some issues for further study. For

example, extending the research of mining term associations in classes to automatic construction of

the thesaurus, which is corresponding to the semantics of terms in the specific domain. Also, by

analyzing the query log of Yam, the system can learn and extract new terms that can not be found in

thesauruses, such as “MP3”, “ICQ”, “CGI”, etc. to extend the term-base of ACIRD.
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