Automatic Verification of
Pointer Data-Structure Systems for
All Numbers of Processes*

Farn Wang

Institute of Information Science, Academia Sinica
Taipei, Taiwan 115, Republic of China
+886-2-27883799 ext. 1717; FAX +4886-2-7824814; farn@iis.sinica.edu.tw

ABSTRACT

Real-world softwares for concurrent systems may involve data-structures linked
together with pointers. Even with such sophistication, they are usually supposed
to work regardless of the number of processes. We propose a new automatic ap-
proximation method to safely verify algorithms used in such systems. The central
idea is to construct a finite collective image set (CIS) which collapses reachable
state representations for all implementations of all numbers of processes. Our
collapsing scheme filters out unimportant information of system behaviors and
results in CIS’s with manageable space requirements which allow for efficient ver-
ification. Analysis shows our method can automatically generate a CIS of size
657 to verify that a version of Mellor-Crummy & Scott’s algorithm preserves
mutual exclusion for all numbers of processes.

1 Introduction

With the success of automatic verification technology for hardware systems in
recent years[6, 8], people are now naturally looking forward to automating the
tasks of software verification. However, with vast variety of abstract devices like
unlimited concurrencies, pointers, dynamic data-structures, range-unbounded
variables, unbounded buffers, , etc., software systems are far more sophis-
ticate than hardware systems. Straightforward extension of the existing state-
based technology[9, 10, 13] is at an inappropriate abstractness level and has gen-
erally bumped into steep complexities of the verification problems for software
systems|[1, 2, 14, 22, 23]. For example, iteratively model-checking on a concurrent
algorithm implemented for a few different numbers of processes[4, 19, 24, 21] in
no way proves the correctness of the algorithm for all numbers of processes. Be-
sides, the algorithm implementations, which current model-checking technology
can verify, are still too small as far as the numbers of processes are considered.
In this paper, we propose a new automatic approximation verification method

* The work is partially supported by NSC, Taiwan, ROC under grant NSC 87-2213-
E-001-007.

TAIL # null
TAIL — next := P; TAIL := P;

waiting

TAIL = null microphone = true
\ TAIL := P;
microphone := false; TAIL := null,
TAIL # P

announcing

microphone := false;next — microphone := true;

Fig. 1. Speaking philosophers

which reasons at an abstractness level similar to that of hamans by filtering out
unimportant details of system behaviors for efficient veification. As will be shown
in later sections, our method is able to automatically verify real-world algorithms
like Mellor-Crummey & Scott’s mutual exclusion algorithm (MCS algorithm for
short) for concurrent systems[18] regardless of the numbers of processes. To our
best knowledge, MCS algorithm has so far defied automatic verification.

We are dealing with concurrent systems of unspecified number of processes
running different copies of a same algorithm. Conceptually, such an algorithm
S is a tuple (Enug, Ptrs, Enuga, Ptra, A(P)) where Enug and Enuy are respec-
tively the sets of global and local enumerate variables (as in Pascal programming
language), Ptrg and Ptra are respectively the sets of global and local pointers,
and A(P) is the process program template, with process identifier symbol P. The
global enumerate variables and pointers are accessible to all processes in an im-
plememtnation of the algorithm. On the other hand, each process has its own
local enumerate variables and pointers which no other processes can access.

Ezample 1. : Speaking philosophers There are many philosophers in a hall with
a single microphone on the platform. Most of the time, they walk around pon-
dering on the meaning of life. When a philosopher finds some truth worthy
announcing, she/he will try to grasp the microphone and announce the finding
on the platform. To avoid confusion, mutual exclusion to the microphone has to
be enforced, that is, at any moment, at most one philosopher is allowed to use
the microphone.

In figure 1, we have an algorithm for each philosopher to guarantee mutual
exclusion. Each philosopher records its own Boolean variable microphone which
is true if the the philosopher can exclusively use the microphone. Also, a global
waiting queue is implemented with local pointer next of each philosopher and
global pointer TAIL which points to the end of the queue. For each philosopher
waiting in the queue, her/his next points to the next philosopher waiting in the
queue. The purpose of the algorithm is that for any number of philosophers in the
hall, mutual exclusion to the microphone has to be maintained. The algorithm

is presented in the form of finite-state automata. We have circles for operation
modes: thinking, waiting, and announcing. Initially, each philosopher is mode
thinking, all pointers are set to null, and all enumerate variable are set to zero
(or false for Boolean variables). In between two operation modes, we have arcs
for transitions. On each arc, we label the triggering condition and the actions to
be taken on the happening of the transition. For example, at mode thinking,
we may transit to mode waiting if TAIL is not equal to null, and assign the
transiting philosopher’s identifier P to the next pointer of the philosophoer
recorded by TAIL, and then assign P to global pointer TAIL. [

Given algorithm S = (Enug, Ptrg, Enua, Ptra, A(P)) and a finite set of pro-
cesses {p1,...,Pm}, in our notation, we shall write S{pi,...,pn} for an im-
plementation of S of concurrent processes pi,...,pm whose behaviors are all
described by A(P). We put our verification tasks in the framework of safety
bound problem. Given an algorithm S, a process predicate 7 (defined later), and
a count C, the safety bound problem asks if there is a finite set I of processes
such that in a computation of SII, C' or more processes can satisfy n simul-
taneously. Safety bound problem is general enough to describe many practical
verification tasks, e.g. mutual exclusion, or process state reachability. In sec-
tion 3, we shall prove that such a problem is undecidable, i.e. no computers with
finite memory can answer such a queustion.

Since the verification problem is extremely difficult, we instead develop an
automatic approximation method which can answer the safety of a large class
of such algorithms regardless of the number of processes. Our intention is to
construct a finite collective image set (CIS) whose elements are reachable state
images describing the behaviors of all implementations with any number of pro-
cesses. Engineers’ intelligence and experiences in design and verification is en-
coded in the mapping from states to images in CIS’s and seems to result in
small CIS’s even for complicate data-structures. For safety analysis, if we can
construct a finite CIS which contains no images of states violating the safety
specification, then it is good enough to conclude that the algorithm is safe for
any number of processes. However if there is a state image violating the safety
specification in the CIS, then no conclusion can be made because the image may
be included due to insufficient approximation precision.

With the known high complexities of most verification problem models[1, 2,
14, 22, 23], it is clear that current technology cannot identify a large class of con-
current algorithms subject to efficient verification. On the other hand, we argue
that our technology can serve to identify such a large class of ”well-designed”
concurrent algorithms which can be efficiently verified. In section 5, we shall
establish the mighty lemma 2 which allows us to eliminate much combinatorial
complexity in CIS without sacrifising approximation precision. In section 6, we
shall analyze our method on a modified MCS algorithm in which local pointers
are set to null whenever the current values of the pointers will not be used in
the future. The modification is consistent with good programming practice of
elimination of “stray” pointers. The interesting thing here is that our method
can generate a small CIS of size 657 for the modified MCS algorithm while fails

to do so for the original one. This shows that our verification method is indeed
more efficient for “good” designs.

Here is our presentation plan. Section 2 discusses some related work. Sec-
tion 3 formally defines the type of algorithms we aim to analyze and shows how
hard the verification problem is. Section 4 rigorously defines our state collapsing
scheme. Section 5 describes how to construct CIS’s, how to verify safety prop-
erties with our method, and analyze the complexity. Section 6 shows that our
method works efficiently for a modified version of MCS algorithm. Section 7 is
the conclusion.

We shall adopt the following notations. Given a set or sequence K, |K| is the
number of elements in K. For each element e in K, we also write e € K. We let
N be the set of nonnegative integers.

2 Related work

Apt and Kozen already showed that in general verification of systems with un-
known number of concurrent processes is undecidable[3]. This means that such
verification problems are extremely hard and we can only rely on semi-decision
procedures or, as in this work, approximation algorithms to answer them. Oth-
erwise, we can also investigate to find out decidable subclasses of the problem.
In the following, we briefly describe some of the related work.

Browne, Clarke, and Grumberg [5] use bisimulation equivalence relation be-
tween global state graphs of systems of different sizes. The equivalence relation
must be strong enough for the method to work. Thus the construction of the
equivalence relation is difficult to mechanize.

Clarke, Grumberg, and Jha[l1] propose to use regular languages to specify
properties in a linear network with unknown number of processes. Then state-
equivalence relation is defined based on the regular languages and a mechanical
method is defined to synthesize a network invariant Z in the hope that Z can be
contained by the specification. But there is no guarrantee that Z is a model of
the specification even if the system indeed satisfies the specification. Moreover, it
is not known whether using the specification regular languages to derive equiva-
lence class properly perserves the reasonings behind the system design. Lesens,
Halbwachs, and Raymond[17] furthered the approach by designing a language
for the specification in systems with complex structures and by using fixed-point
resolution with different heuristics to calculate many network invariants. Com-
pared to our approach, we argue that the technique of CIS better captures the
design reasoning that the relations between processes in different states are far
more important than the actual numbers of processes in different states. We
believe in verifying complex systems, without utilizing the reasoning behind the
system designs, state-explosion problem cannot be properly dealt with.

Kurshan and McMillan[16] proposes to use network structural induction
which is not guarranteed to terminate. Also inductive hypothesis is difficult to
construct, although once it is ready, the whole approach is usually very efficient.
Compared to our approach, we are using an approximation algorithm which

captures the engineers’ view of linear list. Users only have to guess the value
of bound B, used in CIS construction, which for many real-world concurrent
algorithms, small value like 1 will do.

Emerson and Naamjoshi[12] specialized on static token ring networks. They
prove that for certain properties, verification on small size networks can be used
to guarrantee the verification of large size networks. In contrast, our method is
applicable to all different configurations of “dynamic” networks of processes.

Boigelot and Godefroid[7] choose to use state-space exploration to handle
the verification problems of systems with unbounded FIFO queues. Their state-
space representation is constructed by collapsing FIFO queues. Their approach
does not guarrantee termination.

Recently, the author also has researched on the technique of collective quo-
tient structures on dynamic linear networks [20]. The idea is similar to that of
CIS in that they both collapse state-spaces of all implementations into single
structures. However my work here is more general for pointer data-structures
which allows the development of lemma 2, in section 5, and can lead to signifi-
cant reduction in time and space complexity.

3 Concurrent algorithms and safety bound problem

We are dealing with concurrent algorithms with a local data structure for each
process. The address of a data structure can be viewd as the identity of the
corresponding process. We shall have the convention that if a process is named
p, then p is also the address of process p’s data-structure.

Two types of variables can be declared. The first is the type of enumerate
variables with predefined finite integer value ranges. For convenience, we can
also give symbolic names to those integer values. As in example 1, local Boolean
variable microphone with values in {false, true} denotes if a philosopher is using
the microphone. Traditionally, false is interpreted as 0 while true as 1. The
second is the type of pointers (address variables) to processes (data-stuctures).
As in example 1, TAIL is a pointer to the tail of a queue. Variables can be
declared as global variables which all processes can access, or local variables of a
process which only the declaring process can directly access. Test can be made
to determine if an enumerate type variable’s content equals to a constant, if a
pointer is null, or if two pointers point to the same process. We can also assign
a constant to an enumerate type variable or to assign a process address to a
pointer. In the following, we shall first formally define the syntax and semantics
of our systems, and then define the safety bound problem.

3.1 Syntax of algorithm descriptions

Given algorithm S = (Enug, Ptrg, Enug, Ptra, A(P)), a process predicate n of S
has the following syntax.
nu=m =710 =0[-n|mVn
yu=clz|zly—sz|w—oz
du=null |Plw|y|w—y

where ¢ € N, z € Enuyu, 2 € Enus, w € Ptrg, and y € Ptry. Traditional
shorthands are v; # v = —(y1 = 72), 01 # 02 = (0 = 02), M1 A2 =
=((=m1) V (-m2)), and 1 — 12 = (—m1) V 12, Thus a process may operate on
conditions of the global and local variables, and also on the local variables of
the processes pointed to by global pointers. We let PPredicates be the set of all
process predicates of S.

A finite sequence & of actions of algorithm S has the following syntax.

n= | ak

H=wp = we; | €:=6;
n=z|zlw—oz|ly—ox
s=ylwlw=yly =y

mE Q=

Here § is defined as in the syntax of process predicate. a defines what an action
looks like. The set of all finite sequences of actions of S is named Actionsg.

An algorithm S is described as S = (Enug, Ptrg, Enua, Ptra, A(P)) where
Enug is the set of global enumerate variables, Ptrg is the set of global pointers,
Enu4 is the set of local enumerate variables, Ptr, is the set of local pointers,
and A(P) is the program template for each process with identifier symbol P.
Program template A(P) has the syntax similar to that of finite-state automata.
A(P) is conceptually a tuple (@, qo, E, 7, 7) with the following restrictions.

@ is a finite set of operation modes.
qo € @ is the initial operation mode.
E C @ x @ is the set of transitions among operation modes.
7 : B — PPredicates is a mapping which defines the triggering condition of
each transition.
e 7 : F — Actionsg is a mapping which defines the action sequence performed
at the happening of each transition.
We do require that there is a variable mode € Enuy which records the current
operation mode of the corresponding process.

3.2 Computation of systems

Let IT be the set of all processes (conceptually represented by either their
identifiers, or their data-structure addresses) in an implementation. For each
enumerate-type variable z, we let D, be {0} unioned with the set of all constants
assigned to z in process program A(P) labeled in all transition’s assignment se-
quence. Especially, Dyoge = @ and mode = 0 means the process is in its initial
operation mode.

A process state 7 is a mapping from Enuy U Ptry to A/ U IT U {null} such
that 7(z) € D, if © € Enuy; and w(x) € IT U {null} if € Ptry. We shall let I'4
be the set of all process states.

A global state of SII is a pair (¢,) with the following restrictions.

e 1) is a mapping from Enug U Ptrg to N'U IT U {null} such that ¢(z) € D, if

x € Enug; and ¢(z) € II U {null} if z € Ptrg.

e ¢ is a mapping from IT to I'4.

Given a global state v = (¢, ¢), a process p € II, and a process predicate
n € PPredicateg, we define the relation of p satisfies n at v, written p,v = 7, in
the following inductive way. Assume that = € Enuy, 2z € Enug, y,y1,y2 € Ptry,
and w € Ptrg.

e p,v =y = iff value(p,v,y1) = value(p, v, y2)
e value(p,v,c) =c¢

e value(p, v, x) = ¢(p)(x)

e value(p,v,z) = ¥(z)

e value(p Vy—HU) P(o(p)(y))(2)

. Value(p,u w = z) = d(Y(w))(z)

e p,v =01 = &9 iff value(p,v, 1) = value(p, v, §2)
. value(p, v, null) = null

e value(p,v, P) =

. Value(p w) = (w)

e value(p,v) o(p)(y)

. Value(p,v w = y) = d(Y(w))(y)

o value(p, v,y1 = y2) = ¢(¢(p)(y1))(y2)

e p,v = - iff it is not the case that p,v En

e pvEMVniff pvEmn orpvEMR

Given an action «a of S, the new global state obtained by applying a to p at v,
written next_state(p, v, «), is defined in the following way.
o (V' ¢') = next_state(p, v,z := w;) is identical to v
except that ¢'(p)(x) = value(p, v,w).
o (¢, ¢') = next_state(p, v, z := w;) is identical to v
except that ¢'(z) = value(p, v,w).
o (¢, ¢') = next_state(p, v, w — x := w;) is identical to v
except that ¢' (¥ (w))(x) = value(p, v,w).
e (¢, ¢') = next_state(p, v,y — = := w;) is identical to v
except that ¢'(¢(p)(y))(x) = value(p, v,w).
o (¢, ¢') = next_state(p, v,y := §;) is identical to v
except that ¢'(p)(y) = value(p,v,0).
e (V' ¢') = next_state(p, v, w := ¢;) is identical to v
except that ¢'(w) = value(p, v, d).
o (), ¢") = next_state(p,v,w — y := ¢;) is identical to v
except that ¢'(¢¥(w))(y) = value(p, v, d).
o (¢, ¢') = next_state(p,v,y1 — y2 := J;) is identical to v
except, that ¢! ($(p) (1)) (y2) = value(p, ,).
Given an action sequence qj...Qp € Actionsg, we let
next_state(p, v, ayas ... a,) = next_state(p, next_state(p, v, a1), sz ... ap).

The initial state (1o, ¢o) of an implementation SII must satisfies the fol-
lowing restrictions: (1) ¢o(z) = 0 for all z € Enug, (2) ¢o(w) = null for all
w € Ptrg, (3) ¢o(p)(z) =0for all p € IT and x € Enuy, and (4) ¢o(p)(y) = null
for all p € IT and y € Ptr4. We assume that processes interact with interleaving
semantics, that is at any moment, at most one process can execute a transition.
Interleaving semantics is well-accepted in verification theory for its simplicity.

A computation of an implementation SIT is a sequence p = VoVy ... Vg of
global states with v, = (Y, ¢r) for all k > 0 such that
e 1y is the initial state of SII; and
e for each k > 0, either
— UV = Vg41 OT
— there is a p € IT and transition from ¢ to ¢’ such that p,v; = 7(q,q")
and next_state(p, v, 7(q,q")) = Vit1-

3.3 Safety bound problem and its undecidability

The computation definition of our algorithm implementations is independent of
the real names used for each process in II. Never the names of processes are
used to affect the behaviors of our implementations. Instead, only the count of
processes in IT is important. Thus it is better if we can present our safety analysis
problem regardless of the actual names used for processes. Given a global state
v = (¢, ¢) of an implementation SII and a process predicate 1, count,(v) is the
number of processes satisfying n at v, i.e. |{p | p € IT;p,v E n}|. A computation
P=VoVL ... Vkernunn. of SII violates safety property n with bound ¢ € A iff there
is a k > 0 such that count, () > c.

The safety bound problem instance SBP(S, 7, ¢) is to determine if for all finite
sets IT of processes and all computation p of SII, p does not violate safety
property 1 with bound ¢. Such a problem framework can be used to verify process
state reachability problem[14] which is a special case of SBP(S,7,¢) with ¢ = 1.
Also mutual exclusion problem can be formulated with ¢ = 1. Reader-Writer
problem can be formulated with ¢ set to the number of readers.

However, such a problem is extremely difficult to answer. In fact, we can show
SBP(S,n,1) for a given S and 7 is undecidable, i.e. there is no computer with
finite amount of memories capable of answering SBP(S,n,1). Lemma 1 proves
this by reducing two-counter machine halting problem[15] to SBP(S, 7, 1). A two-
counter machine M has a finite-state control and two counters which can hold
any natural numbers. The finite-state control can increment a counter, decrement
a counter, or transit between finitely many operation modes by testing whether
a particular counter contains zero. It is known that two-counter machine can
emulate Turing machine whose halting problem cannot be answered by any
computers with finite amount of memories.

Lemmal. : Two-counter machine halting problem is reducible to SBP(S,n,1).
Proof : Due to page-limit, we shall only give a sketch of the proof. Suppose we
are given a two-counter machine M. We shall implement two stacks to emulate
the two counters respectively with pointers linking together adjacent elements
in the stacks. The halting state of two-counter machine is encoded in 7. The
first transiting process in the computation will be used to emulate the finite-
state control. The second and third transiting processes in the computation will
respectively be used to emulate the stack bottoms for the two counters. Then
each increment operation of a counter will need one process to be pushed onto
the corresponding stacks. If there is not enough number of processes for the

increment in the implementation, then the computation simply halts in a state
without satisfying 1. Each decrement operation of a counter will need the top
process in the corresponding stack to be popped. Testing for zero value of a
counter can be implemented by asking if the stack top process is equal to the
stack bottom process for the corresponding counter. In this way, we can construct
S and 7 such that SBP(S,n, 1) answers true iff M reaches its halting state. ||

4 Collective image set

With lemma 1 and many similar complexity results[1, 2, 14, 22, 23], it is clear
that classic verification technology is not able to handle the complexity in-
curred by verification problems for concurrent algorithms with sophisticate data-
structures. However, we have observed that classic verification theory does not
distinguish ”well-behaved” systems from ”bad” systems. In many algorithms for
concurrent systems, the number of processes is usually not a crucial factor in
the correctness of systems. In the following, we shall formally define our global
state images for all implementation. There are two crucial steps in our collapsing
scheme.

e Process p points to process p' (and p' is called a reference of p) in state
(1, @) if there is a y € Ptr4 such that ¢(p)(y) = p'. State of each process p is
collapsed down to a PDSI (process data-structure image) which only records
information that process p can read from the local variables of itself and its
references.

e A global state image, called GDSI (global data-structure image), is treated
as a multiset of PDSI’s of the participating processes. However, users have
to choose a constant B. When more than B processes have the same PDSI
in a global state, they are only recorded by a flag (co here) which denotes
that the number of processes in that PDSI exceeds B.

With such techniques, we are able to map the infinitely many states of all im-
plememtations down to finitely many global state images.

In the following subsections, we shall define rigorously the image mapping
of global states of implementations. Then we shall define the transitions, among
GDSTI’s, which corresponds to transition rules described in A(P).

We need the following conventions regarding number systems respecting a
bound B. Let N'*° = A U {oo} where co means any number greater than B. For
any c € N, ¢ < oo. For any ¢,d € N*°, ¢ < o0 and ¢+ 0o = 0o +d = o0.

Given any two numbers ¢ and B in N, we let ¢(F) = ¢ if ¢ < B; ¢(P)
if ¢ > B. Finally, [0, B](>®) ={0,1,...,B}U {cc}.

=

4.1 Pointer data-structure images

The global-state images in our method is characterized by finite sets of proposi-
tional atoms. We shall first define PSI (process state images) as building blocks
to construct PDSI. PSI represents the observation a process can make with-
out going through the pointers. The process state image (PSI) of process p at

incoming link count
from local pointers of other processes

Equivalence between

p’s local pointers and

¢(p)(yi)’s local pointers|

PSI(¢(p)(y2), v

PS1(é(p)(y1),v) PSI(¢(p)(yn), v)

Fig. 2. Information of PDSI

state v = (¢, @), in symbols PSI(p, v), is a finite set of atoms constructed in the
following way.

{r =c |z € Enug;c€ Dy;c=o¢(p)(z)}
U{z=c|z€Enug;c€ Dy;c=1(2)}
U{P =y |y € Ptra;p=o(p)(y)}
U{P=w|w € Ptrg;p=9(w)}
U {y = null | y € Ptra;¢(p)(y) = null}
U {w = null | w € Ptrg; ¥ (w) = null}
U{y =w |y € Ptra;w € Ptrs; ¢(p)(y) = y(w)}
U{y1 = v2 | 1,92 € Ptra; d(p)(y1) = ¢(p)(y2)}

PSI(p,v) =

Here we use P to symbolically represent the address p of the corresponding
process. Note that we conveniently define PSI’s to also record information on
global variables. Thus in our GDSI defined later, PSI’s of all processes must all
agree on the informations of those global variables.

Conveniently, we shall let L4 be the set of all PST’s.

Our process image, called process data-structure image (PDSI), for a process
p is graphically shown in figure 2 and only records (1) the PSI’s of p and p’s
references; (2) the equality among p and p’s references’ references (i.e. if the
references point back); and (3) the multiset of incoming local pointers from peer
processes to p with bound B (ILM(®) for incoming link multiset with bound B).
As in example 1, the references of a philosopher is its predecessor and successor
in the queue and ILM is of size 0, 1, or 2. In the following, we shall make the
definition of PDSI more precise.

The referenced image (RI) from process p through y € Ptry at state v =
(¢, ¢), in symbols RI,(p,v), is the set of basic true relations between p and
#(p)(y) observed from p at state v and is constructed in the following way.

10

RI,(p,v) = {P=y =y |y € Ptra;p=0(o(p)(y))(v1)}
U{RV(y,a1) = RV(y, a3) | a1 = a3 € PSI(6(p)(y),)}

where RV stands for referenced variable and RV (y,a) = y — aif a € EnuaUPtr 4;
or RV(y, a) = a otherwise. Note that all atomic propositions true in p’s references
are reinterpreted with the corresponding local pointer y of p through function
RV().

The incoming link multiset (ILM) of process p at state v = (¢, ¢), in sym-
bols ILM(p, v), is the multiset of distinct local pointers from peer processes PSI
pointing to p. A multiset is conceptually a set which allows an element to repeat
many times. Mathematically, it is a mapping from a domain to A. Formally
speaking, for all A € L4 and y € Ptry,

ILM(p,v)(\,y) = {(®',y) | P’ € II; PSL(p',v) = X; 6(p') (y) = p}|

To respect bound B, we let (ILM(p,v))®) be a mapping from the domain
to [0, B](>) such that for all A\ € Ly and y € Ptra, (ILM(p,v))B)(\,y) =
(ILM (p, 1) (A,) 2.

With the definition of PSI, RI, and ILM, we now can define the PDSI of a
process p in a state v = (1, $) with bound B, in symbols PDSI®) (p, v), as the
following pair

PDSI(B) (p> V) = (PSI(p7 V) U UyePtrA RIy(p: V)) (ILM(p) V))(B))

Given an algorithm, it is clear that the number of different possible PDSI at all
states is finite. We let U4(B) be the set of all possible PDSI’s with bound B.

The global data-structure image (GDSI) x of a state v = (¢, ¢) with bound
B, in symbols GDSI®)(v), is a mapping from Us®) to [0, B](>) such that
for all p € UsB), if GDSI®) (v)(u) # oo, it means that there are exactly
GDSI®) (v)(u) processes in v whose PDSI’s are p; otherwise, it means that
there are more than B processes in ¥ whose PDSI’s are p. Since GDSI’s are
constructed with finite set of atomic propositions and constant B, it is clear
that the number of GDST’s is finite.

Notationally, we let X 4B) be the set of all distinct GDSI’s with B.

4.2 transitions among GDSI’s

We define the transitions among GDSI’s by visualizing transition taking place
in three steps as shown in figure 3. In each transition, global pointers, local
pointers of the transiting process and its references, and the local pointers of
processes pointed to by global pointers may change their contents. The changes
can also affect backward the PDSI’s of those processes which have the above-
mentioned processes as references. The first step is to identify the PDSI’s, which
corresponds to those processes mentioned in the last two sentences, and label
them with an auxiliary process symbol 7" to transform the current GDSI into a
transiting GDSI (TGDSI). The second step is to change the variables in labeled
PDST’s to calculate the new TGDSI after the transition. The third step is to

11

| xtlrlg | lift
| |
I I

Fig. 3. transition taking place between GDSI’s

discard the auxiliary symbol T" and backward transforms the new TGDSI down
to a new GDSI which corresponds to the global state after the transition.

We shall use T to symbolically denote the current transiting process. Let
transiting atom set be

{T =r}
U{T »y=P|y¢€Ptra}
U{T =P —y|yePtra}
U{T - y1 =P — ya | y1,y2 € Ptra}
U{T =w|w € Ptrs}
U{T =w—y|y€Ptra;w € Ptrg}
U{T - y=w|y € Ptra;w € Ptrg}
U{T - y1 =w — y2|y1,y2 € Ptra;w € Ptrg }

TAS =

A transiting process data-structure image (TPDSI) of a process p at state v
is a tuple (7 U 6,3) such that (6,3) is a PDSI while 7 is a subset of TAS
denoting the true TAS atoms for process p at state v right before the next
transition. Intuitively, a TPDSI represents the PDSI of a process whose PDSI
will be changed by the corresponding transition. 7' = P means transition P is the
transiting process. T — y = P means process P is a reference of the transiting
process. T'= P — y means the transiting process is a reference of process P.

A transiting global data-structure image (TGDSI) x' is a mapping from
Ua® U {p| pisaTPDSL} to [0, B]). Then xtion,) (x, x’) is defined as.

X" ((8,0)) =
A ((Ageo @) (nAT = P))
xtion, () = T, xT € XaB)3(9,0) € U4B) | Alift(x,x")
/\thngn%&] X7 xT)
A Lift (X', x

Relation lift(y, x7), defined in table 1, serves to filter out atoms with occurrences
of T from xT and collapse x” down to a GDSI ¥.

We can also define relation xting, ,;,(x”,x") which is true if transition
rule n — [k] transforms TGDSI x” to another TGDSI x”. In table 2, we have

12

lift(x, x")
{
(1) Let x1:=x";
(2) For each p = ((rUB,b),c) € xT such that 7 is composed of atoms
solely from TAS and 6 is composed of no atoms from TAS, do {
(1) Let x1:=x1— {n};
(2) If ((8,b),¢) € x1 for some ¢’ € [0, B]*™),
then replace it with ((6,b), (¢ + ¢/))); else add ((6,b,¢) to x1;
}

(3) If x = x1, return true; else return false;

}

Table 1. Implementation of lift(x, x”)

Xtingn%[alaz...an](XT7 XT)

(1) Let x1:=x";
(2) Sequentially for i :=1 to n, let x1 = x104;
(3) If x1 = x7, return true; else return false;

}

Table 2. Implementation of xting, (x,xT)

an implementation for relation xting, ., (xT,xT). Here xa is the result of
applying action a to the TPDSI’s in x. The computation of ya depends on
twenty four cases based on the syntax presented in section 3. However, due to
page-limit, we shall only elaborate on two of them. The rest can be done in
similar although tedious reasoning.
e case «a is y := P; where y € Ptrg. {
(1) Find p = (0,b) with x(u) =1and P =T € 6.
(2) If y = P € 0, return with ya = x;
(3) Delete any atom with y from 6.
(4) Let 0 :=0U {y = P};
(5) Replace 8 with its transitivity closure of equivalence induced by new the
new atom y = P.
(6) For every p' = (6',b") with x(u') =1 and P — y; =T € ', changes its
0" according to the new # modified by the addition of y = P.
}

e case « is w := y; where w € Ptrg and y € Ptry. Note in this case, global

4
)

~ ~— ~— ~—

13

variable w is changed. {

(1) Find py = (61,b1) with x(1) =1 and P = w € 6.

(2) T — y =P € 6y, return with ya = yx;

(3) Delete all atoms related to w from all images in x;

(4) Find p2 = (02,bs) with x(u2) =1l and T — y = P € 6y;

(5) replace 65 with 62 U {w = P},

(6) For all pus = (fs,b3) with x(us) =1 and P = y; =T — y € 63, adjust
elements in 63 to reflect that now P — y; is pointing to w.

}

5 Safety bound verfication with CIS

By just naive enumerating all the GDSI’s reachable from the initial state in
an algorithm implementation, we will easily bump into combinatorial explosion
of complexity because each PDSI can be mapped to any number in [0, B](O").
However, we can take advantage of our interleaving semantics to eliminate much
of such complexity. The idea is based on lemma 2. A GDSI x’ contains another
GDSI y, in symbols x C ', if for every PDSI € UsB), x (1) < x' ().

Lemma2. Suppose we have two GDSI x C x' and a PDSI . Then for every
GDSI sequence XoXx1----- - with xo = x, we can construct another GDSI se-
quence Xoxy -« --- with x4 = X" such that for all k >0, xx C xx and x and X},
may go to Xr+1 and X}, respectively with the same transition rule.
Proof : A pictorial explanation of this fact is in figure 4. The relation can hap-
pen because in a concurrent system, we can withhold those PDSI’s in x’ but not
in x from firing transitions. I
Now we shall present our approximation algorithm for safety bound problem
with finite GDSI set as our CIS. We shall take advantage of lemma 2 such that
two GDSI’s x, x' will not be in the CIS simultaneously if x C x'.
Givenay € X4B), count, (x) is the number, respecting bound B, of PDSI’s
satisfying n in x. Formally speaking,

count,(y) = (Z(e,ﬁ)eUﬁlB);(/\)= X((Qﬁ))) (B)

a€b
Now we have the procedure Safety_Bound() in table 3 to embody our safety
bound verification method in details. Note in statements (2.2.2) and (2.2.3),
we delete those GDSI’s contained by other GDSI’s in V' according to lemma 2.
Also, careful implementation of lift() is needed so that in the generation of H,
we don’t have to go through all elements in U 4(P).

The complexity of the method is polynomial to the number of GDSI’s of
states which then depends on A(P) and B. A rough complexity analysis follows.
The equivalence relation among pointers in a PDSI basically partitions global
pointers, local pointers of P, the local pointers of references of P, the local
pointers of references of those process pointed to by global pointers. The total

14

(o) c (i)
<— - - game transition rule —--=
G c (i)
I
I
I
I

@ s @

<-— - - game transition rule —--=

@ < @

Fig. 4. Containing relation between GDSI sequences

number of pointers involved is H = 1+ (|Ptrg| + |Ptra|)(1 + |Ptra|) which is
square to the size of S. The number of different partitions on these many pointers
is roughly in the complexity of factorial to H. This will be the dominating factor
in the complexity. Considering the values of ILM(P), we can deduce that the
number of different PDSI is roughly O((B + 1)IFal2f) = 0(2‘5‘21‘%3). Since
GDSI are mappings from PDSI’s to [O,B](Oo), the total number of different
GDST's is then (B + 2)0@!775%) = g20Usisiiostsmy _ 2008 0s) rpp g
our approach in each iteration of B value is of complexity doubly exponential to
|S|? log B.

For a lot of mutual exclusion protocols, small value of B like 1 will work and
the CIS’s exhibit simple regularity. The complexity analyses for MCS mutual-
exclusion algorithm in section 6 shall justify our claim.

6 On Mellor-Crummy & Scott’s algorithm

We shall prove that our method indeed can verify Mellor-Crummy & Scott’s
(MCS) locking algorithm[18] for mutual exclusion in concurrent systems. MCS

15

/* S is an algorithm with transition rule set E.
/* n is a process predicate describing the dangerous property.
/* C is the number of processes allowed in critical section.
/* B is the bound used in GDSI’s. It is assumed C < B. */
Safety _Bound(S,n,C, B) {
(1) Generate the initial GDSI vo; let V := {vo}; W :=V;
(2) Repeat until W = 0. {
(1) Let W :=0;
(2) For every v; € W, do {
(1) Calculate H := {vs | v» € X4®);3e € E(xtion(vi,v2))}, i.e.
the set of GDSI can be reached from v in one step transition.
(2) Let H:={vs | v3s € H;Yva € V(v3 L v4)};
(3) Let V :={vs | vs € V;Vuvs € H(vs € vs)} U H;
(4) Let W := W UH,

}
(3) Let W := W;
}

(3) If there is no v € V such that count,(v) > C, then report “SAFE;”
else report “don’t know.”

Table 3. Safety analysis with CIS

locking algorithm is a provenly correct algorithm requiring little shared memory.
We believe that our method can verify many such algorithms with small B values
regardless of the number of processes.

MCS locking algorithm is an example protocol in which explicitly a queue
is used. In Figure 5, a modified version of MCS locking algorithm for a process
is drawn while the original version is given in figure 7 in the appendix. (Note
true and false for variable locked is interchanged in the modified version to be
consistent with our initial state restrictions.) There is one global pointer L to
the tail of the queue. Each process has one Boolean variable locked and two
local pointers: next and prev which respectively point to the successor and pre-
decessor processes of the local process in the queue. We modify the algorithm by
setting local pointers to null as soon as the contents of the local pointers will not
be used again. This is consistent with good programming practice. For example,
in our modified algorithm, when a process releases the lock, it then also set its
next to null because it is not meant in the queue already. However, in the origi-
nal algorithm, this local next can still outdately point to some random process.
Without cautious management, such “stray” local pointers can be mistakenly
used.

The following lemma shows that our method can verify the modified version.

16

locked := false;
next — locked := {rue;

next := null; next # null

prez = next # null
next = null@@
prev = null L#P
prev 7 null ocked := true; =L
L :=null;)
(2 locked := false;
prev — next := P; next = nul

prev :=null;

locked = false 3 locked = true

Fig. 5. modified MCS locking algorithm

A similar one can be used to prove for the original version.

Lemma 3. : In the CIS constructed for MCS locking algorithm as shown in fig-
ure § with B =1 and lemma 2, there is no image v with countyege=4(v) > 1.
Proof : This is true because only one PDSI in a GDSI can hold locked = true
with mode € [4,7]. To see this, we notice that only the transiting PDSI with
locked = true can make its successor in the queue’s locked true. Intially,
all PDSI are in mode 0. Note that, the first PDSI detecting prev = null
while leaving mode 1, will enter mode 4 with locked to true. Our definitions
of xtion, (), lift(), and xting, ,,;(), ensures that in any reachable GDSI,
only one PDSI will have prev=null.

Following the definition of xtion, (), we find that all other PDST’s will
be kept in mode= 0,1, 2, or 3. Then when the PDSI corresponding to the process
in critical section leaves mode 7, it sets the locked of the PDSI pointing to by
its next. Moreover, this PDSI, say P, pointed to by the next pointer is unique
in the GDSI because it is either with prev=null or with prev set to a PDSI
in mode 7. By detailed checking that our definition of lift() and xting, _,;()
indeed ensure all the facts that we mentioned in the above true, we can then
prove the lemma. |

We want to point out that our proof for lemma 3 is very much like a human
proof for MCS algorithm. This shows that our method indeed reasons at an
abstractness level similar to that of humans. Now we proceed to analyze the
size of the CIS with B = 1 for the modified MCS locking algorithm, in figure 5,
which has the good property that once a process is in mode=0, its local pointers

17

prey

§—’next
prey
e D
next
null

Fig. 6. PDSI pattern for modified MCS algorithm

will all be set to null and no other processes will have local pointers pointing
to it again. This make the data-structure pretty much “clean” without “stray”
pointers. Thus the number of different GDSI’s solely depends on the different
possibilities of PDSI’s near the queue head, noted by H, and tail as shown in
figure 6. We thus have the following case analysis.

e In case there is only one PDSI in the queue. Then H — mode € {1} U [4,7]
and there are 5 possibilities.

e In case there are two PDSI’s in the queue. The values of H — next and
L — prev depend on H — mode and L — mode. H — mode € [1,7] and
L — mode € [1,3]. This accounts for 7 x 3 = 21 possibilities.

o In case there are three PDSI’s in the queue. Similar to the reasoning in last
item, we have 7 x 3 x 3 = 63 possibilities.

e In case there are more than three PDSI’s in the queue. Assume the second
PDSI in the queue is H' while the last second is L’. The values of H' — next
and L' — prev depends on the modes of the third and the last third PDSI’s
in the queue. Also the ILM’s of H' and L’ also depend on the third and the
last third PDSI’s in the queue. Moreover, all other PDSI’s will be mapped to
oo according to lemma 2. Again, we have 7x3x 3 x3x x3 = 567 possibilities.

Summing up all the possibilities in addition to the initial GDSI, we have 5421+
63 + 567 + 1 = 657 different GDSI’s in our final CIS where the “1” represents
the initial GDSI which maps the initial PDSI to co and everything else to zero.

7 Conclusion

With the known worst-case complexities of most verification problems in theory,
it is apparent that the current technology of model-checking is incapable of

18

verifying nontrivial software systems. We believe such a dilemma results from
the fact that current verification theory does not distinguish “good” design from
“bad” design. We argue our CIS technology is a successful example to verify well-
designed concurrent systems in which relations among different PDSI groups are
more important than both the actuagl numbers of processes in each PDSI group
and the actual values of all pointers. We feel hopeful our technology can be
extended to verify well-designed concurrent systems with other types of infinite
behaviors.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

R. Alur, C. Courcoubetis, D.L. Dill. Model Checking in Dense Real-Time, Infor-
mation and Computation 104, pp.2-34 (1993).

R. Alur, T.A. Henzinger. Real-Time Logics: Complexity and Expressiveness. In-
formation and Computation 104, pp.35-77 (1993).

K.R. Apt, D.C. Kozen. Limits for Automatic Verification on finite-state concurrent
systems. Information Processing Letters, 22:307-309, 1986.

F. Balarin. Approximate Reachability Analysis of Timed Automata. IEEE RTSS,
1996.

M.C. Browne, E.M. Clarke, O. Grumberg. Reasoning about Networks with Many
Identical Finite State Processes. Information and Computation 81, 13-31, 1989.
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model
Checking: 10?° States and Beyond, IEEE LICS, 1990.

B. Boigelot, P. Godefroid. Symbolic Verification of Communication Protocols with
Infinite State Spaces using QDDs. CAV 1996, LNCS, Springer-Verlag.

R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE
Trans. Comput., C-35(8), 1986.

E. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons
using Branching-Time Temporal Logic, Proceedings of Workshop on Logic of Pro-
grams, Lecture Notes in Computer Science 131, Springer-Verlag, 1981.

E. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications, ACM Transactions on
Programming Languages and Systems 8(2), 1986, pp. 244-263.

E.M. Clarke, O. Grumberg, S. Jha. Verifying Parameterized Networks using Ab-
straction and Regular Languages. CONCUR’95, LNCS 962, Springer-Verlag.
E.A. Emerson, K.S. Namjoshi. Reasoning about Rings. ACM POPL, 1995.

E.A. Emerson, A.P. Sistla. Utilizing Symmetry when Model-Checking under Fair-
ness Assumptions: An Automata-Theoretic Approach. ACM TOPLAS, Vol. 19,
Nr. 4, July 1997, pp. 617-638.

S.M. German, A.P. Sistla. Reasoning about Systems with Many Processes. Journal
of ACM, Vol. 39, No. 3, July 1992, pp.675-735.

J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

R.P. Kurshan, K.L. McMillan. A Structural Induction Theorem for Processes. In-
formation and Computation 117, 1-11(1995).

D. Lesens, N. Halbwachs, P. Raymond. Automatic Verification of Parameterized
Linear Networks of Processes. ACM POPL, 1997.

19

18.

19.

20.

21.

22.

23.

24.

A

J.M. Mellor-Crummey, M.L. Scott. “Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors.” ACM Transactions on Computer Systems, Vol.
9, No.1, Feb. 1991, pp.21-65.

X. Nicolin, J. Sifakis, S. Yovine. Compiling real-time specifications into extended
automata. IEEE TSE Special Issue on Real-Time Systems, Sept. 1992.

F. Wang. Automatic Verification of Dynamic Linear Lists for All Number of
Processes. Technical Report TR-IIS-98-019, Institute of Information Science,
Academia Sinica, 1998.

F. Wang, C.T. Lo. Procedure-Level Verification of Real-Time Concurrent Systems.
to appear in Proceedings of the 3rd FME, Oxford, Britain, March 1996; in LNCS,
Springer-Verlag.

F. Wang, A. Mok. RTL and Refutation by Positive Cycles, in Proceedings of the
Formal Methods Europe Symposium, Barcelona, Spain, Octobor 1994, LNCS 873.
F. Wang, A.K. Mok, E.A. Emerson. Real-Time Distributed System Specification
and Verification in APTL. ACM TOSEM, Vol. 2, No. 4, Octobor 1993, pp. 346-378.
H. Wong-Toi. Symbolic Approximations for Verifying Real-Time Systems. Ph.D.
thesis, Stanford University, 1995.

Original MCS locking algorithm

next — locked := false;

next # null

next # null

~

~

prev # null

©

locked := true;

O,
prev — next := P;

locked = false

locked = true

Fig. 7. original MCS locking algorithm

20

