
Automatic Data and Computation Decomposition

on Distributed Memory Parallel Computers�

PeiZong Lee Zvi M� Kedem
Institute of Information Science Dept� of Computer Science

Academia Sinica New York University
Taipei� Taiwan� R�O�C� New York� NY� USA

Internet� leepe�iis�sinica�edu�tw Internet� kedem�cs�nyu�edu
TEL� ���� 	
�
������� TEL� �� 	
�
� �������
FAX� ���� 	
�
��
���� FAX� �� 	
�
� �����
�

Abstract

On shared memory parallel computers �SMPCs� it is natural to focus on decomposing the com�
putation �mainly by distributing the iterations of the nested Do�Loops�� In contrast� on distributed
memory parallel computers �DMPCs� the decomposition of computation and the distribution of
data must both be handled�in order to balance the computation load and to minimize the mi�
gration of data� We propose and validate experimentally a method for handling computations and
data synergistically to optimize the overall execution time� The method relies on a number of novel
techniques� also presented in this paper� The core idea is to rank the �importance	 of data arrays in
a program and de
ne some of the dominant� The intuition is that the dominant arrays are the ones
whose migration would be the most expensive� Using the correspondence between iteration space
mapping vectors and distributed dimensions of the dominant data array in each nested Do�loop� we
are able to design algorithms for determining data and computation decompositions at the same
time� Based on data distribution� computation decomposition for each nested Do�loop is determined
based on either the owner computes rule or the owner stores rule with respect to the dominant data
array� If all temporal dependence relations across iteration partitions are regular� we use tiling to
allow pipelining and overlapping the computation and communication time� However� to use tiling
on DMPCs� we needed to extend the existing techniques for determining tiling vectors and tile sizes�
as they were originally suited for SMPCs only� The method is illustrated on programs for the �D
heat equation and for the �D fast Fourier transform both on a linear processor array�

Keywords� computation decomposition� data alignment� data distribution� distributed�memory computers�

iteration space mapping vector� parallelizing compilers� spatial dependence vector� temporal dependence vector�

tiling techniques�

�This work was partially supported by the NSC under Grant NSC ��������E��������� by DARPA	Rome AFL under
Agreement F��
����
�������� and by NSF under Grant CCR��������� Part of this work was carried out when the
second author was visiting the Center for Applied Sciences and Engineering Research and the Institute of Information
Science� Academia Sinica� Nankang� Taiwan� July � August� �����

� Introduction

Distributed memory parallel computers �DMPCs� have been playing an important role in solving

computation�intensive problems� as they are relatively easily scalable� so that given a large number of

processing elements �PEs�� they are suited for solving large problems�such as Grand Challenge Prob�

lems ��	
� However� program development form DMPCs is time�consuming and error�prone� as the

programmer is forced to manage both parallelism and communication ��� �� �
� The tools generally

used for these are the decomposition of computation and the decomposition of data� Our key contri�

bution is a set of integrated techniques of simultaneously producing decomposition for computation

and data� focusing on data distribution �rst� and specifying computation decomposition based on it�

In this Introduction� we start by brie�y reviewing some relevant previous work and then providing

an overview for our techniques� Early pioneering work dealt with mapping Do�loops �For�loops� with

regular temporal dependence relations into systolic arrays by exploiting pipelining opportunities in

sequential programs� Iterations in a nested Do�loop were mapped using space and time transformations

into PEs and a global schedule obeying a semantically required partial order� For some theoretical and

experimental work in this area� see ��� ��� ��� ��� ��� ��� ��� �� �� �� �
�

As in general� the number of iterations of a nested Do�Loop is much larger than the number of PEs�

a set of iterations called a tile is assigned to each PE� with the property that they can be executed

in the PE without communication with other PEs� Of course� there cannot be a cyclic dependency

among �the iterations in� the tiles� In ���
� a su�cient condition for existence of tiles without size

restriction was presented� Others concentrated on �nding tiles with size restriction to minimize exe�

cution time �� �� �� ��� �� �
� Previous work� however� addressed only tiling the iteration space

of a single nested Do�loop on �e�ectively� shared memory devices� Thus� data distribution was not

considered� making this work too restrictive for DMPCs� where� e�g�� consideration must be given to

minimizing the cost of data reorganization between consecutive Do�Loops�

Results were also obtained on deriving communication�free properties through loop transformations

and data replication� If the null space of the space generated by temporal dependence vectors in a

nested Do�loop is not empty� there exists a communication�free computation decomposition� whose

partitioning hyperplanes are perpendicular to a basis of that null space� if read�only data can be

replicated �	
� It is also possible to formulate equations for mapping both iteration space and data

�

space into PEs� and then to �nd communication�free properties or data and computation decomposition

properties of nested Do�loops ��� ��� ��� ��� �� �
� In ��
� additional methods were proposed for

determining non�trivial communication�free solutions for the computation and data alignment problem�

However� partitioning hyperplanes found by the above methods frequently are not perpendicular to

any axis of the iteration space or the data space� Which implies that data arrays are not distributed

independently along each dimension� for example� data arrays are stored among PEs in a skewed

manner�

However� as mentioned above� data distributions may be ignored on shared memory model� but

they are a crucial factor to gain performance on DMPCs� To support data parallel programming�

current High Performance Fortran �HPF� standard only allows data arrays to be distributed in block�

cyclic� block�cyclic� replicated� �xed� or not�distributed fashions ���
� communication�free approaches

only can be adopted with additional restrictions on DMPCs� All systolic algorithm approach� tiling

approach� and communication�free approach belong to the computation decomposition approach� To

use these methods� additional data distribution constraints are needed so that they can be employed

for DMPCs�

Recently� component alignment algorithms for guiding data distributions and scheduling computa�

tion based on the owner computes rule ���� ��� ��
� became prominent� Data redistribution between

program fragments can also be optimized by comparing the relative costs of di�erent data distribution

schemes ���
� For other approaches see ���� ��� ��
� For a complete survey of other data distribution

techniques see ���
�

In general� component alignment approaches are very promising for DMPCs� because dimensions

on each data array can be distributed independently among one another� and following the HPF

standard� What needs to be done is the combination of determining data distributions for data spaces

and computation decompositions for iteration spaces� This is the focus of our paper�

We will use both temporal and spatial dependence vectors �we introduce the latter� for deter�

mining which dimensions of a data array should be distributed� Temporal vectors come from data

dependence�use relations in the iteration space of a single nested Do�loop� Therefore� they are useful

for determining computation decomposition for that Do�loop� Spatial vectors come from data de�

pendence�use relations in the data space of data arrays within a program fragment� which possibly

�

includes several nested Do�loops� Therefore� they are useful for determining data distributions for that

program fragment� We will show how to integrate data alignment techniques and iteration space tiling

techniques for optimizing both data and computation decompositions�

Our approach is di�erent from previous work� which focus on determining the computation decom�

position for a single nested Do�loop �rst� and thus implying a corresponding data decomposition for

the data used in that nested Do�loop� Therefore� for di�erent nested Do�loops� data distributions may

be di�erent� which may incur heavy data redistribution cost� In contrast� we focus on data decomposi�

tion �rst� We start by determining axis alignments for a program fragment� with consecutive Do�loops

within the fragment sharing the same data distribution scheme� To decide on data decomposition� we

rank the �importance� of all data arrays� and refer to some as dominant� By focusing on such dom�

inant arrays� we are able to produce novel techniques� Dominant arrays are those� which we do not

want to migrate during the computation� We then establish correspondence between iteration space

mapping vectors and distributed dimensions of the dominant data array in each nested Do�loop� We

can thus design algorithms for determining data and computation decompositions at the same time�

When data distributions are determined� based on either the owner computes rule or the owner stores

rule with respect to the dominant data array� computation decomposition for each nested Do�loop is

determined� If all temporal dependence relations across iteration partitions are regular� we propose

algorithms to �nd tiling vectors and tile sizes� so that tiles satisfy the atomic computation constraint�

Hence� iterations can be executed with a coarse�grain pipelining� overlapping the computation and

communication time�

The rest of this paper is organized as follows� Section � presents necessary de�nitions� models�

assumptions� and background materials� Section � presents an overview of our proposed method� Sec�

tion demonstrates our methodology by analyzing di�erent data distributions for the two�dimensional

heat equation� Section � proposes algorithms to determine data and computation decompositions all

at once� Section � illustrates our tiling techniques on DMPCs� Section 	 presents experimental studies

on a ���node nCUBE�� computer and on four workstations connected by a fast Ethernet� Finally�

some concluding remarks are given in Section ��

�

� De�nitions� models� assumptions� and background materials

Grid�connected processors

The abstract target machine we adopt is P � a g�dimensional �g�D� grid of N� � N� � � � � � Ng PEs�

g � �� An individual PE is represented by a tuple �p�� p�� � � � � pg�� where � � pi � Ni� �� Such a grid

can be embedded into almost any common DMPC� For example� a g�D grid can be embedded into a

hypercube using a binary re�ected Gray code ���
�

SPMD model

The parallel program for a grid generated from a sequential program corresponds to the SPMD �Single

Program Multiple Data� model� in which each PE executes the same program but operates on possibly

distinct data items ���� ��� ��
� More precisely� in general� a source program has sequential parts

and concurrent parts� Each PE will execute the sequential parts individually� while all the PEs will

execute the concurrent parts jointly� using message passing communication primitives� In practice�

scalar variables and small data arrays used in the program are generally replicated in all the PEs to

reduce communication� while large data arrays are partitioned and distributed among PEs� We will

use the term �array� to stand for any dimensional array� including a ��D array �vector� or ��D array

�matrix��

Subscripts

In this paper� we will analyze only those fragments of the program in which the subscript of every

dimension of every array is an a�ne function of a single loop control index variable� So a typical

subscript will be l � is� where l is an o�set� i is a loop control index variable� and s is a stride�

��� Data distribution

Block� cyclic� and cyclic�b� data distributions

cyclic�b� distribution is the most general regular distribution� in which blocks of size b of a ��D data

array are distributed among the PEs of a ��D PE array in a round�robin fashion� For example� let

array A�l � u� be indexed from l to u� where A is a ��D array� or� in general� some speci�c dimension

of a high�dimensional array� We will write here N for N�� Then� under cyclic�b� distribution� the set

of elements A�l � pb � l � pb� b� ��� A�l � �p�N�b � l � �p�N�b� b� ��� etc�� is stored in pth PE�

denoted by PEp� Thus� the xth entry of A is stored in PEp� where p � b�x� l��bc mod N � We will say

that array A is distributed in a cyclic fashion if b � �� in a block fashion if b � d�u� l � ���Ne� and in

a block�cyclic fashion if � � b � d�u� l � ���Ne�

Data decomposition

We now focus on assigning elements of a k�D data array A to the elements of a g�D grid P � Since

data distributions for di�erent dimensions of A are independent� we can deal with data distribution

for each dimension separately� Let the ith dimension of A be Ai and the jth dimension of P be Pj �

We have the following four cases�

�� Ai is distributed in cyclic�dbi� along Pj� if and only if there exists a function fAi
of the form

fAi
�x� � b�x� doffseti���dbi�c mod Nj�

where doffseti is an o�set� such that if �a�� ���� ai� ���� ak� is assigned to �p�� ���� pj � ���� pg�� then

pj � fAi
�ai��

�� Ai is replicated along Pj � if and only if any two elements of P of the form �p�� ���� pj��� pj � pj��� ����

pg� and �p�� ���� pj��� p
�

j � pj��� ���� pg� are assigned exactly the same elements of A�

�� Ai is �xed along Pj � if and only if for some constant c� every location of P of the form �p�� ���� pj���

pj � pj��� ���� pg�� where pj �� c� is assigned no elements of A�

� Ai is not distributed along any dimension of P �

Thus� if Ai is either distributed� replicated� or �xed along some dimension of the PE grid� then the

data distribution function of the entry Ai�x� is of the form�

fAi
�x� �

���
��

b�x� doffseti���dbi�c mod Nmap�Ai� if Ai is distributed in cyclic�dbi��

R � �� � Nmap�Ai� � �
 if Ai is replicated�

constant if Ai is �xed�

where map�� is a one�to�one function� � � map�Ai� � g� and fAi
�x� returns that PE index along the

dimension map�Ai� of the PE grid in which Ai�x� is stored� Otherwise� if Ai is not distributed along

any dimension of the processor grid� then fAi
�x� is not de�ned� In the sequel� we will also use �R� to

indicate replication and ��� to indicate non distribution�

�

Since two distinct dimensions of a single data array cannot be distributed along the same dimension

of P � and since each dimension of the data array can only be distributed along at most one dimension

of P � it is possible that the number of distributed dimensions of a data array is smaller than the

dimensionality of P � Then� for each of the remaining dimensions of P � we can specify replication

or ��xing�� We use a data�matching vector to specify which distributed dimensions of the array are

mapped to which dimensions of P � For an �in general multidimensional� array A� a vector PEA of

length g is de�ned by �j is the position in the vector��

PEA�j
 �

���������������
��������������

Ai if the ith dimension of A is distributed� replicated� or �xed along the jth
dimension of P �

R if no dimension of A is distributed along the jth dimension of P �
in addition� any two elements of P of the form �p�� ���� pj��� pj � pj��� ���� pg�
and �p�� ���� pj��� p

�

j � pj��� ���� pg� are assigned exactly the same elements of A�

constant if no dimension of A is distributed along the jth dimension of P �
in addition� for a single speci�c constant c� every location of P of the form
�p�� ���� pj��� pj � pj��� ���� pg�� where pj �� c� is assigned no elements of A�

See Figure � for some examples� where arrays A�� � ��� � � ��� � � ���� B�� � ��� � � ���� C�� � ��� � � ����

and D�� � ��� are distributed in a � � � PE grid P � We will ignore the data�matching vector when

there is no risk of confusion� or when P is a ��D PE array�

PE01

PE11

PE21

A(0 : 3, 1 : 10 : 3, 0 : 11)
C(0 : 9 : 3, 0 : 11)
D(0 : 11)

A(4 : 7, 1 : 10 : 3, 0 : 11)
C(1 : 10 : 3, 0 : 11)
D(0 : 11)

A(8 : 11, 1 : 10 : 3, 0 : 11)
C(2 : 11 : 3, 0 : 11)
D(0 : 11)

PE00

PE10

PE20

A(0 : 3, 0 : 9 : 3, 0 : 11)
B(0 : 1, 0 : 11)
B(6 : 7, 0 : 11)
D(0 : 11)

A(4 : 7, 0 : 9 : 3, 0 : 11)
B(2 : 3, 0 : 11)
B(8 : 9, 0 : 11)
D(0 : 11)

A(8 : 11, 0 : 9 : 3, 0 : 11)
B(4 : 5, 0 : 11)
B(10 : 11, 0 : 11)
D(0 : 11)

A(0 : 3, 2 : 11 : 3, 0 : 11)
D(0 : 11)PE02

A(4 : 7, 2 : 11 : 3, 0 : 11)
D(0 : 11)PE12

A(8 : 11, 2 : 11 : 3, 0 : 11)
D(0 : 11)PE22

Figure �� Data distributions represented by �A�block� cyclic��� and PEA�A�� A���� �B�cyclic������
and PEB�B�� ���� �C�cyclic� �� and PEC�C�� C���� and �D�R� and PED�D��R���

In order to specify the relation between the dimensions of the data space and the dimensions of the

iteration space as depicted in Equation ��� in Section ���� we introduce the following representation of

the mapping�relationship when a dimension of A is distributed along some dimension of P � De�ne the

data space mapping operator for mapping the data space of a k�D data array A onto a g�D PE grid

to be a g � k matrix DTg�k� such that

DT � �a�� a�� � � � � ak�T � �p�� p�� � � � � pg�
T� ���

�

where �a�� a�� � � � � ak� is an index of an element of the k�D data array A� �p�� p�� � � � � pg� is an index of

a PE in the g�D grid� and for convenience we use ��� as an operator for matrix�vector multiplication�

If A���� is either distributed� replicated� or �xed along the �th dimension of the PE grid� then the

�th row of DT is an elementary vector �e���� with a functional operator fA����
�a����� in position �����

such that the �th row has fA����
�a����� in position ���� and has � s in other positions� Then� we have

fA����
�a����� � p� or R or c� We will� however� ignore the relationship when no dimension of A is

distributed along the �th dimension of the PE grid�

For example� in Figure �� for mapping the data space of a ��D data array A�� � ��� � � ��� � � ���

onto a ��D � � � PE grid based on the data distribution represented by A�block� cyclic��� and

PEA�A�� A��� then� the data space mapping operator

DT��� �

�
b�dpar���c � �

� �dpar�� mod � �

�
�

where dpar� and dpar� are input parameters of the data space�

The dominant data array in a nested Do�loop

On DMPCs� data distributions of all data arrays have to be determined for the entire computation

before the execution starts� The same holds for the computation distributions of all the iterations in

the nested Do�loops� Of course� if an iteration is assigned to a PE� the data for this iteration must be at

that PE during the execution of the iteration� Ideally� the distributions are such that the computational

load is balanced and there is no redistribution �migration� of data during the computation� This is

in general not possible� and therefore we will try to minimize migration of data by �nding those data

arrays that are accessed most often �later referred to as �dominant�� and try to assign them for as

large fragments of computation as possible following either the �owner computes� rule or the �owner

stores� rule� so that when they are accessed during the fragments� they� and other �related� arrays are

in the PEs that need to access them� �We brie�y discuss the owner computes and owner stores rules

later in Section �����

A program may include generated�and�used arrays� which induce temporal dependence relations�

and write�only arrays� read�only arrays� and privatization arrays� which are only seen within a Do�

loop� In each Do�Loop� we rank data arrays in a decreasing order according to their characteristic�

generated�and�used � write�only � read�only� privatization� data arrays of equal characteristic are

	

ranked by decreasing dimensionality� data arrays of equal characteristic and dimensionality are ranked

by decreasing frequency of being generated and�or used in Do�loops�

We pick one of the highest ranked arrays and choose it as the dominant array �in the Do�Loop��

Its distribution will be decided �rst and it will in�uence the decomposition of the computation �par�

titioning of the iteration space�� Other data arrays will be distributed based on their alignment with

the dominant array�

Axis alignment

The axis alignment technique has been introduced in ���
� and further developed in e�g�� ���� ��
� We

brie�y describe it here� and for completeness include a more detailed description in the Appendix�

Data distributions are based on the alignment relations among components of arrays� Two dimen�

sions� each from a di�erent array� have an a�nity relation if two subscripts of these two dimensions

are a�ne functions of the same �single� loop control index variable of a Do�loop� It is better for these

two dimensions of the two arrays to be aligned with each other� thus avoiding communication�

For an example� consider the program in Figure ���a�� The �rst dimension of u is aligned with the

second dimension of q because subscripts of these two dimensions are a�ne functions �j and j � �� of

the same �single� innermost loop control index variable j� and the second dimension of u is aligned with

the �rst dimension of q because subscripts of these two dimensions are a�ne functions �i and i� �� of

the same �single� outermost loop control index variable i� Figure ���b� shows the component a�nity

graph of the program� where q� and u� represent the �rst dimension of arrays q and u� respectively� q�

and u� represent the second dimension of arrays q and u� respectively� Suppose that the target machine

is a linear PE array of N � � PEs and the problem size is m � �� Figure ���c� shows data layouts of

arrays q and u under a well aligned data distribution scheme� q�block��� and u��� block�� It is easily

seen� that during the computation� communication is required only for accessing read�only� boundary

data from neighboring PEs� Figure ���d� shows data layouts of arrays q and u under a not�aligned data

distribution scheme� q�block��� and u�block���� Also� it is easily seen� that during the computation�

data re�organization accesses among PEs are needed for performing a transpose operation�

In Appendix� we describe how to construct component a�nity graphs and how to determine axis

alignment� using a standard approach� For example� in Figure ���a�� suppose that the dominant data

�

j

PE0

PE1

PE2

PE0 PE2PE1

j

(d)

(e) (f)

i i

(c)

(a) (b)
DO i = 1, m

DO j = 1, m

ENDDO ENDDO
q(i, j) = q(i, j-1) + u(j, i) + u(j, i-1)

{* q(i, 0) and u(j, 0) are zero’s. *}

q11 q12 q13 q14 q15 q16
q21 q22 q23 q24 q25 q26

q31 q32 q33 q34 q35 q36
q41 q42 q43 q44 q45 q46

q51 q52 q53 q54 q55 q56
q61 q62 q63 q64 q65 q66

PE0

PE1

PE2

u11 u12 u13 u14 u15 u16
u21 u22 u23 u24 u25 u26

u31 u32 u33 u34 u35 u36
u41 u42 u43 u44 u45 u46

u51 u52 u53 u54 u55 u56
u61 u62 u63 u64 u65 u66

u11 u21 u31 u41 u51 u61
u22 u32 u42 u52 u62u12

q11 q12 q13 q14 q15 q16
q21 q22 q23 q24 q25 q26 PE0

u13 u23 u33 u43 u53 u63
u14 u24 u34 u44 u54 u64

q31 q32 q33 q34 q35 q36
q41 q42 q43 q44 q45 q46 PE1

u15 u25 u35 u45 u55 u65
u16 u26 u36 u46 u56 u66

q51 q52 q53 q54 q55 q56
q61 q62 q63 q64 q65 q66 PE2

q1

q2

u1

u2

space hyperplanes j = c with the corresponding
iteration space mapping vector iv = (0, 1)

space hyperplanes i = c with the corresponding
iteration space mapping vector iv = (1, 0)

Figure �� �a� A depth�two nested Do�loop� �b� component a�nity graph representing alignment rela�
tions among dimensions of arrays q and u� When the problem size m � � and the number of PEs N � ��
data layouts of arrays q and u under data distribution schema� �c� q�block��� and u��� block�� �d�
q�block��� and u�block���� Cases when iteration space mapping vectors� �e� iv � ��� �� and �f�
iv � ��� ���

�

array is u in this nested Do�loop� as in other parts of programs not shown here u is �more important�

than q� The corresponding component a�nity graph of the nested Do�loop is shown in Figure ���b��

Each edge needs to be assigned a weight� However� we do not discuss weights here� and for this

see ���� ��� ��
� The bold� dashed line partitions array dimensions into two groups according to the

component alignment algorithm� so that dimensions among arrays in each group are aligned with one

another� For instance� the �rst dimension of q is aligned with the second dimension of u and the second

dimension of q is aligned with the �rst dimension of u�

��� Temporal vectors and spatial vectors

In this section� we discuss dependence relations among iteration space and data space�

Iteration space of a depth�n nested Do�loop

Each iteration in a depth�n nested Do�loop can be represented by an n�tuple �i�� i�� � � � � in�� where the

value ij is within the range of the level�j Do�loop� The iteration space of a depth�n nested Do�loop is

the union of all its iterations� We will denote that space by I� When it is useful to indicate n� the

depth of the Do�loop� we will write I�n�� For example� the iteration space of the depth�two nested

Do�loop in Figure ���a� is I��� � f�i� j� j � � i� j � mg�

Temporal dependence vectors and temporal use vectors

In the iteration space of a nested Do�loop� each array variable may appear once� twice� or many times�

resulting in its traces among the iteration space� If an array variable is �rst generated in some iteration

� and then it is used in the other iteration �� this induces one temporal dependence vector d � ����

If an array variable is used in di�erent iterations � and �� this induces one temporal use vector

d � � � �� We will use du to represent a temporal dependence vector and dru to represent a temporal

use vector both for array u� �Superscript �r� stands for �read��� For example� in Figure ���a�� the pair

hq�i� j�� q�i� j � ��i induces one temporal dependence vector dq � ��� �� and the pair hu�j� i�� u�j� i� ��i
induces one temporal use vector dru � ��� ��� both in the iteration space I����

In this paper� we only consider nested Do�loops with constant �that is regular� temporal vectors�

known as uniform dependence algorithms ���� �� �
� For cases when some temporal vector dv is

��

not constant �that is irregular�� to avoid irregular communication� we have to �nd a set of g iteration

space mapping vectors IV �which we will introduce later�� where g is the dimension of the target PE

grid� so that IV � �dv�T � constant� or� we have to transform the original program to an equivalent

one which contains only regular temporal vectors� These techniques� however� are beyond the scope of

this papers�

Spatial dependence vectors and spatial use vectors

Focusing on data arrays� we are interested in whether di�erent variables in the same dimension are

accessed simultaneously in the same iteration� For example� if u�j� i� and u�j� i��� both appear in the

loop body of an iteration� we will associate with u the spatial vector ��� ��� This indicates that for the

same value of the �rst dimension� several elements with di�erent subscripts in the second dimension

will be accessed while performing an iteration� Spatial vectors allow us to decide which dimension of

an array should be �xed in PEs so that communication is not incurred� It is especially convenient

to use spatial vectors when temporal vectors are irregular� For example� the pair hu�j� i�� u�i� i�i�
arising from Gaussian elimination with partial pivot� induces irregular temporal vectors which cannot

be represented by a constant number of temporal vectors� But it is easy to use one spatial vector

��� �� to indicate that it is better not to distribute array u along the �rst dimension in order to avoid

communication overhead due to irregular data accesses�

Formally� each pair of occurrences of the same data array de�nes a spatial vector� If two subscripts

of the same ith dimension of the pair of occurrences are the same� then the value in position i of the

spatial vector is �� otherwise� it is �� We will say that a pair of data array occurrences induces a spatial

dependence vector if one occurrence is on the left�hand side �LHS� and the other occurrence is on the

right�hand side �RHS�� it induces a spatial use vector if both occurrences are on the RHS� We will use

su to represent a spatial dependence vector and sru to represent a spatial use vector� both for array

u� For example� in Figure ���a�� the pair hq�i� j�� q�i� j � ��i induces one spatial dependence vector

sq � ��� �� for array q and the pair hu�j� i�� u�j� i � ��i induces one spatial use vector sru � ��� �� for

array u�

��

DO k = 1, m
DO i = 1, m

DO j = 1, m
A(i, j) = A(i, j) + B(i, k) * A(k, j)

ENDDO ENDDO ENDDO

(a) (b) DO i = 1, m
DO j = 1, m

A(i, j) = A(i, j) * B(i, j) + C(i, j)
ENDDO ENDDO

DO i = 1, m
A(m, i) = A(i, i) + 2.0

ENDDO

Figure �� �a� A depth�three nested Do�loop and �b� a program fragment containing two nested Do�
loops�

The respective roles of temporal and spatial dependence vectors

Temporal vectors and spatial vectors and their implications are quite di�erent� Temporal vectors come

from data dependence�use relations among the iteration space of a single nested Do�loop� Therefore�

they are useful for determining computation decomposition for that Do�loop� Spatial vectors come

from data dependence�use relations among the data space of data arrays within a program fragment�

which possibly includes several nested Do�loops� Therefore� they are useful for determining data

distributions for that program fragment� For example� Figure ���a� shows a Depth�three nested Do�

loop program in which the pair hA�i� j�� A�k� j�i induces two irregular temporal dependence vectors

dA � f��� �� ��� ����	� ��g� where � � �� 	 � m� and also induces one spatial dependence vector

sA � ��� ��� During computation decomposition� in order to avoid communication among PEs due

to temporal dependence relations� we distribute the iteration space of the nested Do�loop along its

third dimension among PEs� As values in the third dimension of all temporal dependence vectors are

all zeros� there is no dependence relation along the third dimension in the iteration space� During

data decomposition of array A� we distribute the data space of A along its second dimension among

PEs� As the value in the second dimension of the spatial dependence vector is zero� subscripts of

data occurrences appearing in each iteration have the same single value along the second dimension

of the data space� Therefore� the distribution of data space along the second dimension will not incur

communication�

Spatial vectors can help determine a quick and good solution for data distribution� Figure ���b�

shows a program fragment� which contains two Do�loops� There is no temporal dependence relation

within this program fragment� however� there is a spatial dependence vector sA � ��� �� due to the pair

hA�m� i�� A�i� i�i� Of course� computation decompositions for these two Do�loops cannot be determined

based on the non�existent temporal dependence relation� However� based on the spatial dependence

��

vector sA � ��� ��� we can decide to distribute array A along its second dimension among PEs� Then�

based on the owner computes rule� the iteration space of the �rst Do�loop is decomposed along its

second dimension�

��	 The relation between data and computation decompositions

In this section� we discuss the relation between data and computation decompositions� Computation

decomposition has a representation similar to that of data decomposition� As we are really interested

in matching dimensions of the data space with dimensions of the iteration space� we will omit the

implementation details of the PE�iteration matching vector� which are similar to the PE data�matching

vector� see Section ���� Note� that in general� the formalism below is similar to that of Section ����

Computation decomposition

In the iteration space I�n� of a depth�n nested Do�loop� iterations in each dimension are distributed

independently in cyclic�b�� replicated� �xed� or not�distributed fashions� Let the jth dimension of

the iteration space be Ij � Iterations along every iteration space dimension Ij either will be distributed

or replicated or �xed along a unique dimension of the g�D PE grid P � or will not be distributed� The

iteration distribution function of the entry Ij�y� is of the form

fIj �y� �

���
��

b�y � ioffsetj���ibj�c mod Nmap�Ij� if Ij is distributed in cyclic�ibj��

R � �� � Nmap�Ij� � �
 if Ij is replicated�

constant if Ij is �xed�

where ioffsetj is an o�set� map�� is a one�to�one function� � � map�Ij� � g� and fIj �y� returns the

PE index along the dimension map�Ij� of the PE grid where Ij�y� is stored� Otherwise� if Ij is not

distributed along any dimension of the processor grid� fIj �y� is not de�ned�

In order to specify the relation between the dimensions of the data space and the dimensions of

the iteration space as depicted in Equation ��� later� we introduce the following representation of the

mapping�relationship when a dimension of the iteration space is distributed along some dimension of

P � De�ne the iteration space mapping operator for mapping the iteration space of a depth�n nested

Do�loop onto a g�D PE grid to be a g � n matrix ITg�n� such that

IT � �i�� i�� � � � � in�T � �p�� p�� � � � � pg�
T� ���

��

where �i�� i�� � � � � in� is an index of an iteration of the depth�n nested Do�loop� �p�� p�� � � � � pg� is an

index of a PE on the g�D grid� and� as before� ��� is an operator for matrix�vector multiplication�

If I���� is either distributed or replicated or �xed along the �th dimension of the PE grid� then the

�th row of IT is an elementary vector �e���� with a functional operator fI�����i����� in position �����

such that the �th row has fI�����i����� in position ���� and has � s in other positions� Then� we have

fI�����i����� � p� or R or c� We will ignore the relationship when no dimension of I�n� is distributed

along the �th dimension of the PE grid�

The relation between data and computation decompositions

Consider some iteration �i�� i�� � � � � in� of a Do�loop� Assume that in this iteration� the dominant k�D

data array is generated or used� so that the subscript for each dimension � is an a�ne function of some

single loop control index variable ix���� From Equations ��� and ���� we want to match both data and

computation decompositions� such that

DT � �af�ix����� af�ix����� � � � � af�ix�k���
T � IT � �i�� i�� � � � � in�T� ���

where af�ix�j�� is an a�ne function of a loop control index variable ix�j� appearing in the jth position

of the subscript of the data array variable� More precisely� suppose that the �th row of DTg�k is �ek����

with a functional operator fA����
�a����� in position ����� where ek���� is the �����th elementary vector

of the k�D data space� If the subscript of the �����th dimension of the data array involves only the

level�x������ loop control index variable ix������� then the �th row of ITg�n is �enx������ with a functional

operator fIx�������ix������� in position x������� where enx������ is the x�������th elementary vector of the

n�D iteration space� In this case we say that there is a correspondence between the �����th dimension

of a k�D data array A and the x�������th elementary vector in the iteration space of a depth�n nested

Do�loop� Also let af�ix������� � l � �ix�������s� Then the block size db���� of the data distribution

function and the block size ibx������ of the iteration distribution function satisfy db���� � s�ibx��������

For example� based on the data distribution q�block���� DT��� � �b�dpar���c� �� and IT��� �

�b�ipar���c� ��� where dpar is an input parameter of the data space and ipar is an input parameter

of the iteration space� as shown in Figure ���c� and Figure ���e�� This holds since the subscripts of

the �rst dimension of q only involve the outermost loop control index variable i� Based on the data

distribution u��� block�� DT��� � ��� b�dpar���c� and IT��� � �b�ipar���c� �� as shown in Figure ��

�

�c� and Figure ���e�� because the subscripts of the second dimension of u only involve the outermost

loop control index variable i� Based on the data distribution u�block���� DT��� � �b�dpar���c� �� and

IT��� � ��� b�ipar���c� as shown in Figure ���d� and Figure ���f�� because the subscripts of the �rst

dimension of u only involve the innermost loop control index variable j�

Iteration space mapping vectors

Since we can use any normal vector to represent a set of parallel hyperplanes� we will use the elementary

vector enx������� which has � in position x������ and has � s in other positions� to represent �enx������ with

a functional operator fIx�������ix������� in position x������� Therefore� we will say that we want to �nd

g iteration space mapping vectors� which are g elementary vectors corresponding to the g rows in ITg�n�

For example� Figure ���e� shows the temporal dependence relations in the iteration space� which is

partitioned by the iteration space mapping hyperplanes i � c� whose normal vector �the iteration space

mapping vector� is iv � e� � ��� ��� Figure ���f� shows that the iteration space is partitioned by the

iteration space mapping hyperplanes j � c� whose normal vector is iv � e� � ��� ���

Iteration scheduling

After partitioning the iterations among PEs� we still need to schedule the iterations in each individual

PE� The global schedule has to satisfy dependence constraints� We will later attempt to produce sched�

ule with the goal of minimizing execution time� accounting for both computation and communication

costs�

Owner computes rule and owner stores rule

If iteration space mapping vectors are determined based on the data distribution of the LHS array�

we say that the iteration scheduling is based on the owner computes rule� If iteration space mapping

vectors are determined based on the data distribution of a RHS array� we say that the iteration

scheduling is based on the owner stores rule� If the LHS array and the RHS arrays are aligned well�

then both under the owner computes rule and the owner stores rule� communication overhead incurred

is not signi�cant� However� if the LHS array and some RHS arrays are not aligned well� then whatever

we use the owner computes rule or the owner stores rule� signi�cant communication cannot be avoided�

We use the owner computes rule or the owner stores rule depending on whether we prefer not to move

��

data elements of �the dominant data array which maybe is� the LHS array or a speci�c RHS array� in

order to minimize communication�

We continue with the example in Figure �� Consider the data distribution scheme� q�block��� and

u��� block�� as shown in Figure ���c�� Suppose that the iteration space mapping vector iv is chosen

based on the data distribution q�block��� of the LHS array q� Thus� the computation decomposition

is based on the owner computes rule� Since the subscripts of the �rst dimension of q involve only the

outermost loop control index variable i� the iteration space mapping vector iv is thus ��� �� as shown

in Figure ���e�� But if the iteration space mapping vector iv is chosen based on the data distribution

u��� block�� where u is a RHS array� the computation decomposition is based on the owner stores

rule� Since the subscripts of the second dimension of u also involve only the outermost loop control

index variable i� the iteration space mapping vector iv is also ��� ��� That means� under iteration space

mapping vector iv � ��� ��� all elements of arrays q and u are stored in local memory� Therefore� under

this well�aligned data distribution scheme� both under the owner computes rule and the owner stores

rule� the same good result is obtained�

We now consider the other not�aligned data distribution scheme� q�block��� and u�block���� as

shown in Figure ���d�� Suppose that the iteration space mapping vector iv is chosen based on the

data distribution q�block��� of the LHS array q� As seen above� under the owner computes rule�

the iteration space mapping vector is iv � ��� ��� Under this computation decomposition� elements

of array q are stored in local memory� however� elements of array u are not� We have to perform a

transpose operation to fetch elements of array u before the computation�

Suppose that the iteration space mapping vector iv is chosen based on the data distribution

u�block���� where u is a RHS array� Thus� the computation decomposition is based on the owner

stores rule� Since the subscripts of the �rst dimension of u involve only the innermost loop control

index variable j� the iteration space mapping vector iv is ��� �� as shown in Figure ���f�� Under this

computation decomposition� elements of array u are stored in local memory� however� elements of

array q are not� Before the computation� PEp has to wait for data generated by its neighboring PEp���

for all p � �� due to the temporal dependence on q� After the computation� if q�i� j� will be used

again later� a transpose operation is needed to send elements q�i� j� to PEs according to the data

distribution of array q� Therefore� under this not�aligned data distribution scheme� whatever we use

��

the owner computes rule or the owner stores rule� signi�cant communication cannot be avoided�

� An overview of the proposed method

We brie�y sketch our method� We have shown in Section ��� that if the subscript of each dimension

of a data array is an a�ne function of a single loop control index variable� then each iteration space

mapping vector corresponds to a dimension of data array which is distributed� Therefore� the problem

of determining data distributions for all data arrays is reduced to the problem of �nding a set of

iteration space mapping vectors� They are based on either the owner computes rule or the owner

stores rule� following the data distribution of the dominant data array in each Do�loop� The complete

procedure from determining data and computation decompositions to performing computation consists

of four steps�

Step �� We apply the loop �ssion techniques according to the data dependence graph among state�

ments ��
� to make the original program more amenable to parallel execution�

Step �� We construct a component a�nity graph for each Do�loop� then we apply the dynamic pro�

gramming algorithm for axis alignments to decide whether data redistribution is needed between

adjacent program fragments ���
� After that� all Do�loops in a program fragment will share a

static data distribution scheme�

Step �� We �nd a data distribution scheme for each program fragment� In each program fragment� we

�rst determine a static data distribution scheme for some of the dominant generated�and�used

data arrays �excluding privatization arrays� based on �nding iteration space mapping vectors

from some of the most computation�intensive nested Do�loops� in which these data arrays are

generated or used� After that� based on alignment relations� a static data distribution scheme is

determined for all data arrays throughout all Do�loops in each program fragment� �A detailed

algorithm will be given in Section �� while an example is presented in Section ��

Step �� While performing the computation in each Do�loop� based on the owner computes rule or

the owner stores rule� we �nd the corresponding iteration space mapping vectors from the data

distribution of a target �the dominant� data array� If communication cannot be avoided due to

temporal dependences� we �nd tiling vectors and determine tile sizes so that iterations can be

�	

executed in a coarse�grain pipelining fashion� Otherwise� it is a communication�free computation

decomposition� provided that we can replicate the required remote read�only data� �A detailed

algorithm will be given in Section �� while an example is presented in Section ��

An algorithm to perform Step �

In the following� we brie�y describe the algorithm for performing loop �ssion� The structure of Do�

loops in a general program can be treated as a tree or a forest� in which assignment statements are

leaves and Do statements are internal nodes� We assume that statements within each Do�loop have

been topologically sorted according to dependence precedences among statements in a preprocessing

step� Loop �ssion� which is based on the dependence level of a Do�loop to detect whether each level�j

Do�loop is parallel or not� was proposed for vectorization ��
� But even for the case when some level�j

Do�loops are sequential� if temporal dependence vectors are regular� we can exploit parallelism using

tiling techniques� In this paper� we apply loop �ssion to identify the execution order of nested Do�loops

in sequence�

If a Do�loop contains assignment statements and other Do�loops� we apply loop �ssion techniques

top�down as follows� Suppose that dependence relations among all k children of a parent induce k�

strongly connected components� If k� � �� we apply loop �ssion for the parent Do�loop� Now the

grandparent loses one child but gains k� children� After that� we recursively deal with each of k�

children� If k� � �� we do not apply loop �ssion for the parent Do�loop� but recursively deal with each

of k children�

An algorithm to perform Step �

We follow the tree�structure of Do�loops� obtained in Step �� We apply a dynamic programming

algorithm bottom�up to decide whether consecutive Do�loops can share the same data distribution

scheme as follows� Based on axis alignments� we construct a component a�nity graph for each Do�loop

and various component a�nity graphs for consecutive Do�loops� We heuristically determine whether

data redistribution is needed between adjacent program fragments� If it is better for children Do�loops

to use di�erent data distribution schemes� we do not proceed to the parent Do�loop� If it is better for

them to share a static data distribution scheme� the parent Do�loop will adopt this static scheme� We

repeatedly check whether the parent s and its siblings Do�loops can share a static distribution scheme�

��

proceeding up to the root if possible�

� A running example of computing the �D heat equation

To provide the reader with the intuition helpful to the understanding of the method used in determining

data and computation decomposition� we will use a speci�c example� solving the �D heat equation

on a linear processor array with N PEs� Consider the program in Figure ��a�� which solves a �D

heat equation using the alternating direction implicit �ADI� method� which reduces two�dimensional

problems to a succession of one�dimensional problems� The domain of the partial di�erential equation

ut � b�uxx � b�uyy is the unit square� We used the Peaceman�Rachford algorithm to formulate the

numerical solution of the partial di�erential equation as a second�order approximation by solving two

sets of tridiagonal systems of linear equations� The variables of the �rst set of tridiagonal systems

correspond to elements from each column of an intermediate matrix� and the variables of the second

set of tridiagonal systems correspond to elements from each row of a target matrix �
� Using the

Thomas algorithm� we reduce a tridiagonal system of linear equations to three sets of �rst�order

recurrence equations�

In the program� lines � and � de�ne two functions� line � de�nes the size of the arrays used in the

program� lines through � de�ne scalar variables� lines � through �� set initial values for u�i� j�� and

lines �� through �� form the computation kernel� in which lines � through �� perform a column sweep

and lines �� through �	 perform a row sweep�

We perform Step � by applying loop �ssion to the source program� Figure ��b� shows the structure

of Do�loops included in statements from lines �� through �� and Figure ��c� shows the corresponding

data dependence graph among statements� where sk �letter �s� followed by integer k� denotes the

statement in line number k� Due to a dependence cycle from s� to s�� and from s�� to s��� column

sweep and row sweep cannot be executed in parallel� In order to �nd precise data dependence vectors�

we apply loop �ssion �loop distribution�� and the original program is transformed into a sequence of

nested loops � as shown in Figure ��d��

We now continue with the example� The ��D arrays p and q are privatization arrays� which are

recomputed in each loop iteration for loop control index i� and are in fact ��D arrays in a sequential

program� However� in order to avoid unnecessary dependencies� we apply array expansion to p and

��

{* 2D heat equation: u_{t} = B1 * u_{xx} + B2 * u_{yy}. The program is based on the ADI method.

#define eval_fun(t, x, y) = exp(1.68 * t) * sin(1.2 * (x - y)) * cosh(x + 2 * y)1
2
3

4
5
6
7
8

{* Set u(i, j) initial value at time t = 0.0. *}
9
10
11 u(i, j) = eval_fun(0.0, i * DX, j * DY)
12 ENDDO ENDDO

{* Perform NT iterations. *}
13 DO t = 1, NT

14
15
16
17
18
19
20

p(i, 0) = 0.0

p(i, j) = -c / (a * p(i, j-1) + b)
q(i, j) = (-d * u(j, i-1) + (1.0 + 2 * d) * u(j, i)

-f * u(j, i+1) - a * q(i, j-1)) / (a * p(i, j-1) + b)

(a)

22
23
24
25 ENDDO ENDDO

{*
26
27 u(i, 0) = eval_fun(t * DT, i * DX, 0.0)
28
29
30
31
32

33
34
35
36
37 ENDDO ENDDO

ENDDO

38 ENDDO

p(i, 0) = 0.0
q(i, 0) = u(i, 0)

p(i, j) = -f / (d * p(i, j-1) + e)

u(i, j) = p(i, j) * u(i, j+1) + q(i, j)

21 ENDDO

s15

s16

s17

s19

s20

s22

s24

s27

s28

s29

s31

s32

s34

s36

s15

s16

s17

s24

s22

s20

s19

s27

s28

s29

s31

s32

s34

s36

s15

s16

s17

s19

s20

s22

s24

s27

s28

s29

s31

s32

s34

s36

(b) (c) (d)

Loop 2

Loop 4

Loop 6

Loop 8

Loop 1

Loop 3

Loop 5

Loop 7

p1

p2

q1

q2

u1

u2

p1

p2

q1

q2

u1

u2

p= (0, 1)

p= (0, 1)
q= (0, 1)

q = (0, 1)
u

u = (0, 1)

= (0, -1)

= (1, 0)
p= (0, 1)

p= (0, 1)
q= (0, 1)

q = (0, 1)
u
r = (1, 0)

u
r = (0, 1)

r

r
= (1, 0) = (0, -1)

= (1, 0)

(e)

(f)

d

s

d

s

d

s

d

s

d

s

d

s

d

s

d

s

B1 = 2.0, mu1 = B1 * DT / (DX * DX)
B2 = 1.0, mu2 = B2 * DT / (DY * DY)
a = -mu1 / 2.0, b = 1.0 + mu1, c = a
d = -mu2 / 2.0, e = 1.0 + mu2, f = d

DOUBLE u([0 : Nx+1], [0 : Ny+1]), v([0 : Nx+1], [0 : Ny+1]),
p([0 : max{Nx, Ny}], [0 : max{Nx, Ny}+1]), q([0 : max{Nx, Ny}], [0 : max{Nx, Ny}+1])

DY = 1.0 / (Ny+1). The time interval is 0.0 <= t <= 1.0. The time step is DT = 1.0 / NT. *}
The domain is a unit square: 0.0 <= x, y <= 1.0. The spatial distances between grid points are DX = 1.0 / (Nx+1),

#define boundary(t, i, j, DT, DX, DY) = {* compute boundary value for the temporary matrix v(i, j), where i = 0 or Nx+1. *}

DX = 1.0 / (Nx+1), DY = 1.0 / (Ny+1), DT = 1.0 / NT

DO i = 1, Nx
DO j = 0, Ny+1

{* Column sweep, solve Ny tridiagonal linear systems. *}
DO i = 1, Ny

v(0, i) = boundary(t, 0, i, DT, DX, DY)

q(i, 0) = v(0, i)
DO j = 1, Nx

v(Nx+1, i) = boundary(t, Nx+1, i, DT, DX, DY)
DO j = Nx, 1, -1

v(j, i) = p(i, j) * v(j+1, i) + q(i, j)

Row sweep, solve Nx tridiagonal linear systems. *}
DO i = 1, Nx

DO j = 1, Ny

q(i, j) = (-a * v(i-1, j) + (1.0 + 2 * a) * v(i, j)
-c * v(i+1, j) - d * q(i, j-1)) / (d * p(i, j-1) + e)

u(i, Ny+1) = eval_fun(t * DT, i * DX, 1.0)
DO j = Ny, 1, -1

v1

v2

v

v

v1

v2

v

v

Figure � �a� A version of �D heat equation program� �b� structure of Do�loops including statements
from lines �� to ��� �c� data dependence relations among statements� �d� an equivalent program after
loop �ssion� �e� component a�nity graph of lines from � to ��� �f� component a�nity graph of lines
from �� to �	�

��

q for the analysis phase� If under an iteration space mapping transformation� p and q do not induce

dependence relations among PEs during the execution� then p and q can later be recovered as the

original two ��D arrays� But if p and q do induce dependence relations among PEs and tiling techniques

are used� then p and q need to be maintained as two dimensional�

We now perform Step � to determine axis alignment for each program fragment� Figure ��e�

shows the component a�nity graph of the column sweep �lines � through ��� and the corresponding

temporal and spatial vectors� v� �p�� q�� and u�� respectively� denotes the �rst dimension and v�

�p�� q�� and u�� respectively� denotes the second dimension of array v �p� q� and u� respectively��

Note that Loops � through can share a static data distribution scheme because axis alignments

constraints are satis�ed� The bold� dashed line partitions the array dimensions into two groups using

the component alignment algorithm� so that array dimensions in each group are aligned with each

other� For instance� the �rst dimension of v is aligned with the second dimension of both p and q and

with the �rst dimension of u� the second dimension of v is aligned with the �rst dimension of both p

and q and with the second dimension of u�

From Loop � in Figure ��d�� we obtain temporal and spatial vectors� dp � ��� ��� sp � ��� ���

dq � ��� ��� sq � ��� ��� dru � ��� ��� and sru � ��� ��� from Loop � we obtain dv � ������ and

sv � ��� ��� �The second component of dv is negative because the loop control index j is decreasing��

Figure ��f� shows the component a�nity graph of the row sweep �lines �� through �	� and the

corresponding temporal and spatial vectors� Note that Loops � to � can also share a static data

distribution scheme because axis alignments constraints are satis�ed� From Loop � in Figure ��d�� we

obtain temporal and spatial vectors� dp � ��� ��� sp � ��� ��� dq � ��� ��� sq � ��� ��� drv � ��� ��� and

srv � ��� ��� from Loop �� we can obtain du � ������ and su � ��� ���

�� Di�erent data distributions for column sweep and row sweep

We �rst consider the column sweep� and perform for it Steps � and � In Step � we determine data

distributions for the arrays� In the column sweep v is a generated�and�used array� u is a read�only

array �although u will be generated and used in the row sweep�� and p and q are privatization arrays

�through array expansion�� v is the dominant data array and it is updated in Loop � Therefore we

consider all the temporal vectors and the spatial vectors arising from this Do�loop� There is one such

��

temporal dependence vector dv � ������ and one such spatial dependence vector sv � ��� ��� Because

of the spatial dependence vector sv � ��� ��� we assign an �!� to the �rst dimension of v� and write

v��� �� indicating that we prefer not to distribute the �rst dimension of v�

Since the subscripts of the second dimension of v involve only the outermost loop control index

variable i� the iteration space mapping vector iv corresponding to the second dimension of v is ��� ���

As iv � dv � ��� �� � ������ � �� the temporal dependence vector dv will not induce communication

for iv � ��� ��� Since the iteration space is rectangular� we choose block distribution for the second

dimension of v� Therefore� following the alignment relations listed in Figure ��e�� we have the following

data distributions �where� as before� ��� means �not distributed���

v��� block�� p�block���� q�block���� u��� block�� ��

We now perform Step � examining the actual computation� Consider the communication cost if

we use data distributions listed in ��� First� iterations in either Loop � or Loop � do not induce any

dependence relations� and therefore can be executed concurrently in both Do�loops� Second� in Loop �

u is the dominant data array� Since u is distributed along the second dimension� whose subscripts

involve only the outermost loop control index variable i� the iteration space mapping vector iv for

Loop � is ��� �� as illustrated in Figure ���c�� As iv � dp � �� iv � dq � �� and iv � dru � ��� �� � ��� �� � ��

communications between neighboring PEs will be needed only for accessing the read�only array u�

To maintain consistent memory access� some parts of u will be replicated� so that each PE has all

the elements of u it needs� See Figure ���a� for illustration� where the term overlap region is used to

indicate such replication� Third� as discussed above� there is no communication while executing Loop �

Figure ���b� shows data layout of array v and Figure ���d� shows temporal dependence vectors among

iterations in Loop � Note that Loops � through can be fused� because the iterations assigned to

each PE �whether under the owner computes or owner stores rule with respect to the dominant data

array in each nested Do�loop� can be executed in sequence without any dependence synchronization

between neighboring PEs� once the PE has received the read�only data from neighboring PEs�

We now consider the row sweep� The discussion is very similar to that for the column sweep

�though with a di�erent result� and therefore we present it brie�y� We perform Step � �rst� u is

a generated�and�used array� v is a read�only array �although v has been generated and used in the

column sweep�� and p and q are privatization arrays� u is the dominant data array� and it is updated

��

u00 u01 u02 u03 u02 u03 u04 u05 u04 u05 u06 u07
u10 u11 u12 u13 u12 u13 u14 u15 u14 u15 u16 u17
u20 u21 u22 u23 u22 u23 u24 u25 u24 u25 u26 u27
u30 u31 u32 u33 u32 u33 u34 u35 u34 u35 u36 u37
u40 u41 u42 u43 u42 u43 u44 u45 u44 u45 u46 u47
u50 u51 u52 u53 u52 u53 u56 u55 u54 u55 u56 u57
u60 u61 u62 u63 u62 u63 u64 u65 u64 u65 u66 u67
u70 u71 u72 u73 u72 u73 u74 u75 u74 u75 u76 u77

PE0 PE1 PE2

region
overlap

PE2PE1PE0

(a) (b)

j

PE0

PE1

PE2

i

j

PE0

PE1

PE2

i

(c) (d)

j

i

j

i

PE0 PE1 PE2 PE0 PE1 PE2(e) (f)

time 1

time 2

time 3

time 4 time 5

time 1

time 2

time 3

time 4time 5

v00
v10
v20
v30
v40
v50
v60
v70

v01
v11
v21
v31
v41
v51
v61
v71

v02
v12
v22
v32
v42
v52
v62
v72

v03
v13
v23
v33
v43
v53
v63
v73

v04
v14
v24
v34
v44
v54
v64
v74

v05
v15
v25
v35
v45
v55
v65
v75

v06
v16
v26
v36
v46
v56
v66
v76

v07
v17
v27
v37
v47
v57
v67
v77

space hyperplanes i = c with the corresponding

space hyperplanes j = c with the corresponding

tiling hyperplanes i = c with the
corresponding tiling vector (1, 0)

iteration space mapping vector iv = (1, 0)

iteration space mapping vector iv = (0, 1)

Figure �� Data layout based on the schema in formula �� when Nx � Ny � � and there are three PEs�
�a� Data layout and the overlap region of array u� �b� data layout of array v� and temporal dependence
among iterations in �c� Loop �� �d� Loop � �e� Loop �� and �f� Loop ��

��

j

PE0

PE1

PE2

i

j

PE0

PE1

PE2

i

(c) (d)

(a)

PE0

PE1

PE2

(b)

u70 u71 u72 u73 u74 u75 u76 u77
u60 u61 u62 u63 u64 u65 u66 u67
u50 u51 u52 u53 u56 u55 u56 u57

u00 u01 u02
u10 u11 u12

u03 u04
u13 u14

u05 u06 u07
u15 u16 u17

u20 u21 u22 u23 u24 u25 u26 u27

u30 u31 u32 u33 u34 u35 u36 u37
u40 u41 u42 u43 u44 u45 u46 u47

overlap region

v00
v10
v20
v30

v20
v30
v40
v50

v40
v50
v60
v70

v01
v11
v21
v31

v02
v12
v22
v32

v03
v13
v23
v33

v04
v14
v24
v34

v05
v15
v25
v35

v06
v16
v26
v36

v07
v17
v27
v37

v21
v31
v41
v51

v22
v32
v42
v52

v23
v33
v43
v53

v24
v34
v44
v54

v25
v35
v45
v55

v26
v36

v56
v46

v27
v37
v47
v57

v41
v51
v61
v71

v42
v52
v62
v72

v43
v53
v63
v73

v44
v54
v64
v74

v45
v55
v65
v75

v46
v56
v66
v76

v47
v57
v67
v77

space hyperplanes i = c with the corresponding
iteration space mapping vector iv = (1, 0)

Figure �� Data layout based on the schema in formula ��� when Nx � Ny � � and there are three PEs�
�a� Data layout and the overlap region of array v� �b� data layout of array u� and temporal dependence
among iterations in �c� Loop �� and �d� Loop ��

in Loop �� In this Do�loop� there is one temporal dependence vector du � ������ and one spatial

dependence vector su � ��� ��� Because of su� we get u� � ���

The iteration space mapping vector iv corresponding to the �rst dimension of u is ��� ��� As

iv � du � ��� �� � ������ � �� du will not induce communication for iv � ��� ��� Choosing block

distribution for the �rst dimension of u and accounting for alignment relations listed in Figure ��f��

we have the following data distributions for the row sweep�

v�block���� p�block���� q�block���� u�block���� ���

We now perform Step and consider the communication overhead for data distributions listed

in ���� First� iterations in either Loop � or Loop 	 do not induce any dependence relations and

therefore they can be executed concurrently in both Do�loops� Second� in Loop � v is the dominant

data array� Since v is distributed along the �rst dimension� whose subscripts only involve the outermost

�

loop control index variable i� the iteration space mapping vector iv for Loop � is ��� �� as illustrated

in Figure ���c�� As iv �dp � �� iv �dq � �� and iv �drv � ��� �� � ��� �� � �� communication is needed only

for accessing the read�only array v� and as depicted in Figure ���a�� we can use an overlap region to

maintain a consistent memory access of remote read�only data received from neighboring PEs� Third�

there is no communication while executing Loop �� Figure ���b� shows data layout of array u and

Figure ���d� shows temporal dependence vectors among iterations in Loop �� Loops � to � can be

fused�

It is not surprising that the optimal data distribution for the column sweep is di�erent from the

optimal data distribution for the row sweep� If we adopt the data distributions listed in �� and ���

for computing the column sweep and the row sweep� respectively� then we need to transpose array v

from data distribution scheme listed in �� to that of listed in ��� and to transpose array u from data

distribution scheme listed in ��� to that of listed in ��� As a transpose operation is an expensive data

re�organization operation� it is important to try and use a single �static� data distribution to compute

both the column sweep and the row sweep with small communication overhead� We discovered that if

all the temporal dependence vectors are regular� tiling techniques can help do that�

�� Using tiling techniques to reduce communication overhead

Suppose that we choose the static data distribution listed in �� for both the column sweep and the

row sweep� �The symmetric case when we choose the static data distribution scheme listed in ��� will

lead to a �symmetric� result�� We deal with Step � We have shown that the data distribution in �� is

suitable for computing the column sweep �Loop � through Loop �� We now study the communication

overhead for computing the row sweep �Loop � through Loop ��� First� iterations in either Loop �

or Loop 	 do not induce dependence relations� and therefore can be executed concurrently in both

Do�loops�

Second� in Loop �� v is the dominant data array� Since array v is distributed along the second

dimension� whose subscripts only involve the innermost loop control index variable j� the iteration space

mapping vector iv for Loop � is ��� ��� Because iv � dp � ��� �� � ��� �� � �� iv � dq � ��� �� � ��� �� � ��

and iv � drv � ��� �� � ��� �� � �� the temporal dependences of p and q will induce communication

between neighboring PEs� To avoid sending many small messages between neighboring PEs� we tile

��

the iteration space� The tiles have to satisfy the atomic computation constraint� that the dependence

relations among tiles do not induce a cycle� After tiling� each PE executes sequentially all the iterations

in a tile� then the PE sends�receives boundary data to�from neighboring PEs� The next tile can be

executed by the PE using coarse grain pipelining�

Here we tile the iteration space using two sets of tiling hyperplanes� The �rst is the set of iteration

space mapping hyperplanes represented by j � c� which corresponds to iteration space mapping vector

iv � ��� ��� The second is represented by i � c� which corresponds to the vector ��� ��� See Figure ���e��

We will discuss in detail how to select tiling hyperplanes and tile sizes in Section ��

Third� in Loop �� u is the dominant data array� Since array u is distributed along the second

dimension� whose subscripts only involve the innermost loop control index variable j� the iteration

space mapping vector iv for Loop � is ��� ��� As iv �du � ��� �� � ������ � ��� communication between

neighboring PEs is due to the temporal dependence of u� This case is similar to that of Loop �� except

that the innermost loop control index j is decreasing� Thus� here also we can use tiling� as depicted in

Figure ���f��

We have discussed how to use both dynamic and static data distributions for computing consecutive

column and row sweeps� In general� the choice of whether to use dynamic or static data distribution

possibly augmented with tiling� depends on various parameters� such as the problem size� data redis�

tribution costs� number of PEs� communication cost� and the structure of the temporal dependence

vectors �regular temporal vectors are good for tiling�� This will be discussed further in the paper�

providing both theoretical and experimental results�

� Determining data and computation decompositions together

This section describes the algorithm for Step � �data and computation decompositions� of the method

outlined in Section �� We assume that the program has been partitioned into program fragments as

indicated in Step � of the proposed method in Section �� The algorithm is run independently for

each program fragment� so we assume a single program fragment in the following description� We will

decide on data distribution for all generated�and�used arrays ��relevant� arrays� in the sequel��

We consider a program fragment consisting of one or more nested Do�loops� We want to �nd

data distribution for one of the highest�dimensional generated�and�used arrays �excluding privatiza�

��

tion arrays�� in which g dimensions of the data array are to be distributed� That is� in the most

computationally�intensive nested Do�loop� where the target data array variables are generated or are

used� we want to �nd g iteration space mapping vectors� which correspond to g dimensions of the target

data array� such that all the iterations can be mapped into the g�D grid with the execution requiring as

little communication as possible� Then according to alignment relations� data distributions for other

aligned data arrays can be determined� If there are still some data arrays� whose data distributions are

not yet determined� we determine the data distribution for one of the highest�dimensional generated�

and�used data arrays from the remaining data arrays until data distributions for all data arrays are

determined�

The core of the algorithm is to specify which dimensions of each data array are to be distributed�

We will use four symbols �	�� ���� �
p

�� and ���� Each position of the k�tuple vector specifying the

distribution status of each dimension of a k�D data array will contain exactly one of them in each stage

of the algorithm� So for instance� for a ��D array A� we could have A���p� 	� ����� The meaning of

the symbols is as follows� �	� indicates that we have not yet made any decision on how to handle the

dimension� ��� indicates that we tentatively decided not to distribute on the dimension� �
p

� indicates

that we have decided to distribute on the dimension� and ��� indicates that we have decided not to

distribute on the dimension� For every data array we are considering� we will start� of course� with

all dimensions marked with 	 s� During the execution of the algorithm� �	� can be replaced by ����

�
p

�� or ���� and ��� can be replaced by �
p

� or ���� When the algorithm terminates� all dimensions

have �
p

� or ���� We leave the special case of deciding whether a speci�c dimension of a data array

should be replicated among PEs or should be stored within only a PE to a following optimization

phase� which is beyond the scope of this paper�

Excluding all privatization arrays� we rank generated�and�used data arrays in decreasing order� We

use a heuristic based on dimensionality of arrays and the frequency in which their values are generated

and used in the Do�loops� Also for each generated�and�used data array we rank all the Do�loops in

which it participates in a decreasing order based on how computationally intensive they are�

Until data distributions for all relevant arrays have been determined� we repeatedly pick the high�

est ranked generated�and�used data array� which we did not consider before and for which its data

distribution has not been completely determined� say A� and execute the steps listed below�

�	

We �nd the following notation helpful� g �as before� will stand for the dimensionality of the

PE grid� jAj will stand for the dimensionality �not the determinant"� of A� jpj will denote the

number of
p

 s appearing in the dimensions of A� etc� Thus for A���p� 	� ����� we have j�j � � and

j	j � jpj � j�j � �� Of course� j	j � j�j � jpj � j�j � jAj at every stage of the algorithm�

Substep ��

Action� We replace some 	 s by � s as follows� We �nd all spatial dependence�use vectors of A�

For each such vector� if its ith component is non�zero� we put an ��� in the ith dimension of A�

Explanation� The condition implies that di�erent elements �positions� of A in the ith dimension

will appear in the same iteration� Therefore� it is desirable to attempt not to distribute on the ith

dimension of A�

Substep ��

Action� We replace some � s by � s as follows� Pick the most computationally�intensive Do�loop in

which A is generated or used and that has not been considered before while A was being considered� If

there exist two distinct level�j and level�j� loop control index variables and each appears in dimension i

of di�erent occurrences of A in the Do�loop� we put a ��� in the ith dimension of A�

Explanation� The condition implies that some temporal dependence vector or temporal use vector

is irregular� Therefore� we decide not to distribute on the ith dimension of A�

Substep ��

In the general case� all four symbols can appear in the dimensions of A �though the �rst time we

reach this step� only 	 s� � s� and � s appear�� Due to the relative complexity of this step� we present

examples immediately following the description of the algorithm� If jpj � g� we are done as we have

made �nal decisions for all dimensions of A� Otherwise� we are not done and of course� jpj � g�

We de�ne two candidate sets of elementary vectors� S and S�� where S
 S� � 	� S will contain all

elementary vectors of length n� where n is the depth of the Do�loop� satisfying the following condition�

For each ej in S� some dimension of A has been marked with an �	�� and all the occurrences of A in the

Do�loop refer to the level�j loop control index variable in that dimension� Note that� if some occurrence

of A in the Do�loop refers to another level�j� loop control index variable also in that dimension� then

that dimension has been marked with ��� in Substep �� S� will contain all the elementary vectors of

��

length n which are not in S� satisfying the following condition� For each ej in S�� some dimension of

A has been marked with an ���� and all the occurrences of A in the Do�loop refer to the level�j loop

control index variable in that dimension�

We will consider four cases depending on the value of g with respect to the values of jpj � j	j and

jpj � j	j � j�j� The simplest cases are � and � but we will proceed in the order based on the relative

value of g� Before that� we �nd all temporal dependence vectors and temporal use vectors for all data

arrays generated or used in this Do�loop�

Case �� g � jpj� j	j� We select additional g�jpj elementary vectors from S for iteration distribution

�and corresponding data distribution of A�� We will select them so as to heuristically minimize their

interference with temporal dependence vectors and temporal use vectors�

For each vector in S� we de�ne a rank of length two� The �rst component is the number of temporal

dependence vectors to which the vector is not orthogonal� the second component is the number of

temporal use vectors to which the vector is not orthogonal� We order the ranks �of the vectors� in an

increasing lexicographical order and for convenience� number them �� �� �� � � �� We group the vectors

into sets based on equality of ranks� S�� S�� S�� � � �� Thus a vector is in Si if and only if its rank is i�

Let jSij be the cardinality of Si�

Let r � � be minimal such that
Pr

i�� jSij � g � jpj� If
Pr

i�� jSij � g � jpj� we remove from S the

vectors not in �r
i��Si and add them to S�� We put

p
 s in dimensions of A corresponding to vectors in

S� put � s in dimensions of A corresponding to vectors in S�� and we are done� To obey the alignment

constraints� other data arrays will inherit
p

 s and � s information�

Otherwise� if
Pr

i�� jSij � g � jpj� we �rst remove from S the vectors not in �r
i��Si and add them

to S�� Second� we put � s in dimensions of A corresponding to vectors in S�� Third� we remove from

S the vectors in Sr� and put
p

 s in dimensions of A corresponding to vectors in S� Note that the

corresponding jSrj dimensions of the jSrj vectors in Sr have been marked with 	 s� It remains to decide

which g � jpj dimensions of A� from those corresponding to vectors in Sr� should be selected�

If data array variables of A are generated or used in other nested Do�loops that have not yet

been considered� we repeat Step � with Sr playing the role of S� Otherwise� if there are additional

generated�and�used data arrays� whose data distributions have not yet been completely determined�

we repeat Step �� If there are still remaining dimensions whose distributions need to be determined�

��

we arbitrarily put
p

 s in the g�jpj dimensions corresponding to vectors in S� put � s in the remaining

dimensions� and we are done�

Explanation� There are correspondences between iteration space mapping vectors and distributed

dimensions of the dominant data array in each nested Do�loop� In order to comply with temporal

dependence relations� iteration space mapping vectors should be in the null space of the space generated

by temporal dependence vectors� Since temporal dependence vectors force the execution in sequence

and temporal use vectors may be removed by replicating the corresponding read�only data� it follows

that temporal dependence vectors are �more important� than temporal use vectors�

Case �� g � jpj� j	j� In addition to the original jpj dimensions� which are marked with
p

 s� we put

p
 s in all of the j	j dimensions which originally are marked with 	 s� We also put � s in all of the j�j

dimensions which originally are marked with � s� To obey the alignment constraints� other data arrays

will inherit
p

 s and � s information�

Case �� jpj � j	j � g � jpj � j	j � j�j� We take all the vectors from S and select g � jpj � j	j
vectors from S� for iteration distribution� To select the appropriate vectors from S�� we use a heuristic

similar to the one used in Case �� For each vector ei in S�� we de�ne a rank of length three� The �rst

component is related to the optimal choice of a tile size�which will be explained later �in Inequality ���

in Section ��� At this point� we need to know that it is better to have the �exibility to choose arbitrary

tile sizes� As described later� if Inequality ��� is not satis�ed� tile sizes are restricted if the vector ei

is chosen as an iteration space mapping vector� Therefore� the �rst component of the rank is � if ei

satis�es Inequality ���� otherwise� it is �� If the �rst component of the rank is �� it is better not to

select ei as an iteration space mapping vector� or defer this selection as late as possible� The �rst

component of the rank will be used for such �deferral��

The second component is the number of temporal dependence vectors to which it is not orthogonal�

the third component is the number of temporal use vectors to which it is not orthogonal� We order

the ranks �of the vectors� in an increasing lexicographical order and for convenience� number them ��

�� �� � � �� Choosing g�jpj� j	j vectors from S� is similar to that of choosing vectors from S in Case ��

We add these g�jpj� j	j vectors into S� then we put
p

 s in dimensions of A corresponding to vectors

in S� put � s in dimensions of A corresponding to vectors in S�� and we are done�

Case �� jpj� j	j� j�j � g� We put
p

 s in dimensions of A corresponding to vectors in both S and S��

��

Data array A then is either �xed along �g � jpj � j	j � j�j� dimensions of the PE grid or is replicated

on those dimensions� We leave these special cases to a following optimization phase� which is beyond

the scope of this paper�

Substep �� �! Block sizes of data distributions are determined� !�

Based on the now�determined data distribution of A and on the alignment relations� data distri�

bution of some of the other data arrays is determined� For those dimensions i which are marked with

�
p

�� we have to decide block sizes for the corresponding cyclic�dbi� distributions� Block sizes are

chosen so that� ��� stride alignment constraints are satis�ed� ��� the computational load among the

PEs is balanced� and ��� communication is minimized� Currently� stride alignment constraints can be

satis�ed� but we still depend on table�look�up heuristics to select suitable block sizes which compromise

both load balance and communication overhead ��	
� Although for a speci�c class of problem� block

sizes can be determined based on �nding the optimal tile sizes as described in Section ���� �nding

optimal block sizes for general cases is still an open issue�

Explanation� Block sizes have to satisfy stride alignment constraints� otherwise� irregular commu�

nication is required� For example� if A�l� � is�� is �axis� aligned with C�l� � is��� A is distributed

by cyclic�b��� C is distributed by cyclic�b��� and b��s� � b��s�� then their stride alignments are

matched� For details of generating communication sets� interested readers can refer to ��	
� Next� if

the iteration space is not rectangular� in order to maintain load balance� small block sizes are preferred�

For example� if the iteration space is a pyramid �such as the iteration space of an LU decomposition�

or a triangle �such as the iteration space of a triangular linear system�� then a cyclic �cyclic����

distribution is preferred� However� if the iteration space is rectangular� in order to decrease commu�

nication cost due to the fetching of data from neighboring PEs� large block sizes are preferred� In

general� block sizes should be a compromise for improving load balance and decreasing communication

cost for the complete program fragment� for which a static data distribution scheme is adopted�

Examples� The target machine is a linear processor array� therefore� g � ��

Example of Case �� Consider the matrix multiplication algorithm as speci�ed in Figure 	��a�� The

corresponding component a�nity graph and temporal vectors are shown in Figure 	��b�� After applying

the component alignment algorithm to the component a�nity graph� we obtain a partition of nodes� C��

��

A�� and B� are in one group� C�� A�� and B� are in the other group� Array C is the only generated�and�

used data array and has no spatial vector� The subscripts of the �rst dimension of C only involve the

level�� loop control index variable i� therefore� e� is a candidate for the iteration space mapping vector�

The subscripts of the second dimension of C only involve the innermost loop control index variable j�

therefore� e� is another candidate� Thus� S � fe�� e�g and g � � � jSj � �� rank�e�� � rank�e�� � ���

��� We have to sacri�ce one candidate� The �nal iteration space mapping vector is arbitrarily chosen

as e� for �xing array A in local memory� Because the iteration space is rectangular� block distribution

is used� Since e� corresponds to the �rst dimension of C� according to the alignment relations� we have

the following data distributions� C�block���� A�block���� and B�block����

ENDDO ENDDO ENDDO
C(i, j) = C(i, j) + A(i, k) * B(k, j)

(a) (b) = (0,0,1)

C1 A1 B1

C2 A2 B2

Ad= (1,0,0)C d = (0,1,0)B
r rdDO k = 0, m-1

DO i = 0, m-1
DO j = 0, m-1

Figure 	� �a� A matrix multiplication algorithm� �b� the corresponding component a�nity graph�

Note that� in Figure 	��b�� since the dashed partition line goes across an edge �connecting B� and

A��� communication overhead cannot be avoided if we only allow to store one copy of data array B in

the PE array� But since array B is read�only� appropriately storing multiple copies of B can be used to

avoid the need for communication ��
� This discussion of when it is worthwhile to replicate read�only

data to reduce the communication cost is beyond the scope of this paper�

Example of Case �� Consider the program fragment of the column sweep of the �D heat equation in

Figure ��a� again� p and q are privatization arrays� u is a read�only array� thus� only v is a generated�

and�used array� Array v has a spatial dependence vector sv � ��� ��� Therefore� we prefer not to

distribute the �rst dimension of v� thus v��� 	�� Since the subscripts of the second dimension of v only

involve the outermost loop control index variable i� e� is a candidate of the iteration space mapping

vector� say S � fe�g� Since g � � � jSj� the �nal iteration space mapping vector is chosen as e�� and

the �nal data distribution scheme is determined as shown in Equation ���

Example of Case �� Consider the depth�two nested Do�loop in Figure ���a�� Suppose that data

distribution for array C has not been determined� and we proceed to do it now� Array C has two

spatial vectors ��� �� and ��� ��� therefore� we put two �!�s in both dimensions of C� thus� C��� ���

��

i

j
(c)

(a) DO i = 1, m
DO j = 1, m

ENDDO ENDDO
C(i, j) = C(i, j-1) + C(i-1, j) + C(i-1, j+1)

i

j

PE0 PE1 PE2

C10
C00 C01 C02 C03 C05 C06C04

C11 C12 C13 C14 C15 C16
C25C24C23C22C21C20 C26

C30 C31 C32 C33 C34 C35 C36
C40 C41 C42 C43 C44 C45 C46
C50 C51 C52 C53 C54 C55 C56
C60 C61 C62 C63 C64 C65 C66

(b)

(d)

tiling hyperplanes i + j = c with the
corresponding tiling vector (1, 1)

tiling hyperplanes i = c with the
corresponding tiling vector (1, 0)

tiling hyperplanes i = c with the
corresponding tiling vector (1, 0)

space hyperplanes j = c with the corresponding
iteration space mapping vector iv = (0, 1)

Figure �� �a� A Do�loop has three temporal dependence vectors� ��� ��� ��� ��� and ������� �b� array C
is distributed as C��� block�� �c� two tiling vectors are ��� �� and ��� ��� �d� an iteration space mapping
vector is ��� �� and a tiling vector is ��� ���

Thus� S � 	� S� � fe�� e�g� and jSj � � � g � � � jS � S�j � �� We have to remove one �!�

from C� Since C has three temporal dependence vectors� ��� ��� ��� ��� and ������� e� satis�es the

Inequality ��� in Section � and e� does not� rank�e�� � ��� �� �� and rank�e�� � ��� �� ��� The rank of e�

is lexicographically smaller than the rank of e�� Therefore� e� is chosen as the iteration space mapping

vector� Because the iteration space is rectangular� block distribution is used� Since subscripts of the

�rst dimension of C only involve the outermost loop control index variable i� array C is distributed

along its �rst dimension� say C�block����

	 Tiling the iteration space on distributed memory machines

This section discusses Step of the proposed method in Section �� On uniprocessor systems� tiling

�or strip�mining� is used to improve data locality to optimize cache coherence or data reuse within

the memory hierarchy ���� 	
� On multiprocessor systems� tiling� in addition� is used to support

coarse�grain pipelining so that data generated in one tile and used in neighboring tiles can be moved

as a group� reducing communication overhead�

��

Returning to our setting� we concentrate on one of the nested Do�loops �recall Figure ��d��� We

decide on data distribution �rst� and based on it on computation decomposition among PEs� We

can then partition the iterations assigned to each PE into sets� called tiles� Then we schedule tiles

globally obeying some constraints� First� a PE is executing iterations assigned to it tile by tile� possibly

waiting between consecutive tiles due to dependency constraints� Second� once a PE starts executing

a tile� it can complete it without waiting for other PEs� �This is the atomic computation constraint�

the dependence relations among tiles do not induce a cycle�� We want to de�ne tiles in a way that

minimizes the total execution time�

The main di�erence between previous work dealing with tiling of the iterations on shared memory

machines or on those machines used as peripheral parallel devices� such as systolic arrays� attached to a

host computer �� �� ��� �
 and ours� is the relative emphasis on data distribution vs� computation

decomposition� as seen next� The optimizations that can obtained using our approach cannot be

obtained using the previous methods�

��� Tiling on shared memory machines

We start by reviewing the well�known tiling approach used for shared memory machine� where data

movement is �relatively� very cheap� We also show by example that its utility is restricted in the

context of distributed memory machines�

A depth�n nested Do�loop can be represented by an iteration space and temporal dependence�use

relations among iterations� A tiling hyperplane can be represented by its normal vector� which we

called the corresponding tiling vector in Figure ���e� and Figure ���f�� While employing a shared

memory machine model� data distribution is ignored� For data locality reasons� it is better that there

are no constraints on tile size� so that cache coherence or data reuse can be optimized� A feasible set

of n independent families of parallel equidistant tiling hyperplanes� which are represented by n tiling

vectors� slice the iteration space into n�D parallelepiped tiles without any tile size constraint� if they

satisfy the following condition ���
� For each tiling vector� say h�

either h � dj � � for all temporal dependence vectors dj
or h � dj � � for all temporal dependence vectors dj �

���

Let D be the set of all temporal dependence�use vectors� If rank�D� � n� there exists communication�

free tiling of the iteration space� for example� with the basis of the null space of D serving as the corre�

�

sponding tiling vectors� If rank�D� � n� then the tiling vectors can be found as follows� Consider a set

of n� � linearly independent temporal vectors� d��� d
�

�� � � �� d
�

n�� and let h � null�d��� d
�

�� � � � � d
�

n��� �the

null space of the space generated by d��� d
�

�� � � �� d
�

n���� If h satis�es the constraint in Inequality ����

then h is a feasible tiling vector� By consider all such sets of n � � linearly independent temporal

vectors� we are guaranteed to �nd n linear independent tiling vectors �as rank�D� � n�� Furthermore�

there are no constraints on tile size �� �� �
� We will refer to this method as memory�oblivious tiling

method�

We consider now a one�dimensional distributed memory PE array� the Do�loop in Figure ���a��

and the data distribution as in Figure ���b� �data array C is distributed along its second dimension�

C��� block��� We will attempt to apply memory�oblivious tiling method to this example� There are

three temporal dependence vectors� D � f��� ��� ��� ��� ������g� The rank of D is �� the depth of the

nested Do�loop� so we will consider all sets consisting of one temporal vector� The null space of ��� �� is

��� ��� the null space of ��� �� is ��� ��� and the null space of ������ is ��� ��� ��� �� is not a feasible tiling

vector because ��� �� � f��� ��� ��� ��� ������g � f�� ����g� ��� �� and ��� �� are feasible tiling vectors as

depicted in Figure ���c� because ��� ���f��� ��� ��� ��� ������g � f�� �� �g and ��� ���f��� ��� ��� ��� ������g
� f�� �� �g� However� the resulting computation decomposition does not match the data distribution�

and therefore this tiling is not permitted� We next show� that feasible tiling exist if we search for it

going beyond memory�oblivious tiling method� An example of such tiling is depicted in Figure ���d��

with the explanation following�

��� Tiling on distributed memory machines

We consider a g�D PE grid and a nested Do�loop of depth n � g� to be executed on it� We assume

that subscripts of one occurrence of the dominant data array are identical to some loop control index

variables �possibly after a preprocessing step�� Assume that data distribution for data arrays in the

Do�loop has been determined� We can obtain g iteration space mapping vectors� which are elementary

vectors� These vectors are naturally also tiling vectors� We only need to determine the remaining n�g

tiling vectors� whose n � g corresponding tiling hyperplanes will slice the iterations assigned to each

PE�

To �nish the example of Figure �� since the data distribution of array C is C��� block� and the

��

subscripts of the second dimension of C only involve the innermost loop control index variable j� the

iteration space mapping vector is e� � ��� ��� as depicted in Figure ���d�� We can choose e� � ��� �� as

the second tiling vector and the tile size as � � block� where the block distribution is cyclic�block��

Note that� we use block to represent both the block distribution and the block size for convenience�

Then� all tiles still satisfy the atomic computation constraint�

In general� we have one of the two cases�

Case �� All the g iteration space mapping vectors satisfy Inequality ���� Then� the remaining n � g

tiling vectors� whose corresponding tiling hyperplanes will slice iterations assigned to each PE� also

can be chosen using the memory�oblivious tiling method� There are no constraints on tile sizes�

Case �� At least one of the g iteration space mapping vectors does not satisfy Inequality ���� We will

refer to such a vector as bad� Let ei be any bad vector� We want to choose a feasible tile size so that all

tiles can satisfy the atomic computation constraint� Without loss of generality� the level�i loop control

index is increasing� �If the level�i loop control index is decreasing� we �rst temporally reverse the sign

of the ith entry of all the temporal vectors� after �nding the tiling vectors� we reverse the sign of the

ith entry of all the tiling vectors�� Thus� the �rst non�zero entry of any temporal vector is positive� In

addition� i �� �� because all temporal vectors dj are lexicographically positive� and therefore e� � dj � �

for every dj � and Inequality ��� would be satis�ed�

Let dk be a temporal vector for which ei � dk � �� Let � be the position of the �rst non�zero

entry of dk� say dk��� Then e� is chosen as a tiling vector and the tile size along the �th dimension

must be at most dk��� Examining all such ei s and dk s� we get a full set of constraints on the sizes

of associated tiles� The remaining tiling vectors can be chosen based on the memory�oblivious tiling

method� with no constraints on the associated tile sizes� The constraints for tile sizes come from the

theoretical results of cycle shrinking ��	
� therefore� all tiles satisfy the atomic computation constraint�

For example� in a ��D iteration space� if there is only one temporal dependence vector ������� then

iterations within three consecutive rows have no dependence relations� Therefore� if the tile size along

the �rst dimension is chosen as �� this will not induce any dependence cycle among tiles�

��

PE0 PE1 PE2 PE0 ...

j

i

b
a

(c)

PE0 PE1 PE2 PE0 ...

j

i

(a)

b
a

j

i

PE1

PE0

PE2

b

j

i

PE1

PE0

PE2

b
a

(b)

(d) bu/v

PE0

iteration space mapping vector (0, 1)
corresponding to

corresponding to
iteration space mapping vector (1, 0)

iteration space mapping vector (0, 1)
corresponding to

iteration space mapping vector (1, 0)
corresponding tocorresponding to tiling vector (1, 0)

corresponding to tiling vector (1, 0)

corresponding to tiling vector (0, 1)

corresponding to tiling vector (u, v)

Figure �� Four cases of tiling two�dimensional rectangular iteration space�

��	 Optimizing tile sizes

To minimize total execution time� it may be useful to choose tile sizes which are smaller than those

forced by the constraints above� A small tile corresponds to a �ne�grain solution� incurring a large

number of small communication messages among PEs� A large tile corresponds to a coarse�grain

solution� incurring a long delay time among PEs due to dependent data� We are able to provide an

analytical method to determine tile shapes and sizes only for a rectangular ��D iteration space� which is

represented by � � i � X and � � j � Y � We assume that the distance between two parallel iteration

space mapping hyperplanes is b� with b large enough so that dependent data of an iteration is either

in the local memory of a PE or in its neighboring PEs� Our target machine is a linear processor array

with N PEs� Thus� the data distribution function of the distributed dimension of the corresponding

data array is cyclic�bs�� where s is the stride of the a�ne function in the corresponding subscript�

The value of b can be computed based on a near optimal tile size� Once b has been determined� then

the shape of a tile can be computed�

�	

We have the following four cases�

Case �� Iteration space mapping vector is ��� ��� the other tiling vector is ��� ��� and all the entries

in each temporal vector are non�negative as depicted in Figure ���a�� In this case� tiles are executed

columnwise� Let the tile size be Z � b� a� To avoid idle time� we require �X�a� � N � or a � �X�N��

Then the total execution time is�

T � �XY��ZN� � N � ���Ztf � ts � atc�� �	�

where tf is the execution time for performing an iteration� ts is the set up time for sending�receiving a

message� and tc is the communication time of transferring a word� Since in practice ts is much larger

than tc� we will ignore the term atc in Equation �	�� We will therefore minimize T � � �XY��ZN��N�
���Ztf � ts�� Then the optimal Z is �XY ts��N�N � ��tf��

���� �The function f�x� � ���x� ����x� 	�

is minimized when x � ���	���������� �� As T in fact decreases with a� we prefer for a to be small and

for b to be large� If the value of b has not been determined yet� we set b � Y�N if Z � Y�N � and

b � Z otherwise� Then a � minfZ�b�X�Ng�

Case �� Iteration space mapping vector is ��� ��� the other tiling vector is ��� ��� and all the entries in

each temporal vector are non�negative� as depicted in Figure ���b�� The derivation is similar to that of

in Case �� We get Z � �XY ts��N�N � ��tf��
���� If the value of b has not been determined yet� we set

b � X�N if Z � X�N � b � Z otherwise� Then a � minfZ�b� Y�Ng�

Case �� Iteration space mapping vector is ��� ��� the other tiling vector is ��� ��� and there exist

temporal vectors in which one entry is positive and the other is negative� as depicted in Figure ���c��

We assume that the tiles are scheduled by an optimal data �ow method� so that if more than one tile

is available for execution� the lexicographically smaller one is selected� Then� for the total execution

time�

T � �XY��ZN� � ��N � ����Ztf � ts � atc�� ���

Again we ignore the term atc and obtain a near optimal tile size Z � �XY ts���N�N � ��tf��
����

If the value of b has not been determined yet� then b � Y�N if Z � Y�N � b � Z otherwise� Then

a � minfZ�b� vg� where v is the smallest from all the positive entries appearing in the temporal vectors

which have both a positive �in the �rst position� and a negative �in the second position� entries�

Case �� Iteration space mapping vector is ��� ��� the other tiling vector is �u� v� when there exists a

temporal vector �kv� �ku�� where u and v are mutually prime positive integers� as depicted in Figure ��

��

�d�� In this case� the shape of a tile is a parallelogram and tiles are executed in a row�wise manner� As

usual� let b be the distance between two parallel iteration space mapping hyperplanes and let a be the

distance between two of the other parallel tiling hyperplanes� Then a can be calculated by assuming

that the line ux�vy � c passes through both �b� �� and ��� a�� Thus a � bu�v and the tile size is b�u�v�

where we assume that b is a multiple of v� To avoid idle time� we require �Y��bu�v� � u�v� � �N � or

b � �Y����N � u�v�u�v��� Then for the total execution time�

T � �X��bN��Y��bu�v� � u�v� � �N � ��u�v��Ztf � ts � b�u�v�tc�

� �XY��ZN� � �X��bN� � N � ��u�v��Ztf � ts � b�u�v�tc��

This case is di�erent from the �rst three cases� Since v � b � m � minf�Y����N � u�v�u�v���X�Ng�

we let Tv � �XY��ZN���X��vN��N ���u�v��Ztf � ts�utc�� whose optimal tile size Zv � �XY �ts�

utc���Ntf�X��vN� � N � ��u�v������ we let Tm � �XY��ZN� � �X��mN� � N � ��u�v��Ztf � ts �

m�u�v�tc�� whose optimal tile size Zm � �XY �ts � m�u�v�tc���Ntf�X��mN� � N � ��u�v������ and

we let a near optimal tile size Z � �Zv �Zm���� If the value of b has not been determined yet� then b

� minf�Zv�u����� �Y����N � u�v�u�v���X�Ng�

 Experimental studies

We validated the usefulness of our method by evaluating several implementations of two applications�

the two�dimensional heat equation and the two�dimensional Fast Fourier Transform� both on one�

dimensional PE arrays� The actual experiments were conducted on two machines� a ���node nCUBE�

� computer and a cluster of four UltraSPARC�II workstations both located at Academia Sinica� In

the nCUBE��� each node runs at a modest clock rate of �� MHz and has MB of RAM� The four

UltraSPARC�II workstations� each with �MB of RAM� run at the clock rate of ��� MHz� are connected

by a ��� Mbs Ethernet� and use SUNOS ����� with a MPI library �MPICH version ���� ��
��

�� Two�dimensional heat equation

Although optimal data distributions for column sweep and for row sweep are di�erent� all temporal

vectors are regular� Thus� even under a static data distribution� we can apply our tiling techniques to

improve the execution time� Figure �� shows the experiments on the nCUBE��� using three algorithms�

a dynamic data�layout algorithm �Aggregate� whose transpose operations are based on aggregate

��

operations ���
� with a transpose operation taking logN steps for N PEs� a dynamic data�layout

algorithm �Ad�hoc� in which for each transpose operation� each PE sends N � � messages to other

PEs� and a tiling algorithm �Tiling�� x y Pq means the execution on x PEs with data size �y � �y�

using the Pq algorithm� where Pq stands for one of the following� Ag �Aggregate�� Ad �Ad�hoc�� or Ti

�Tiling�� When the data size is �� � �� ��� � �� and �	 � �	� respectively� on �� PEs ��� PEs and

��PEs� respectively�� the maximum tile size � block is �� �� and ��� respectively�� Figure �� shows

the results on the cluster using �Ad�hoc� and �Tiling�� When the data size is �� � �� ��	 � �	 and

��
 � ��
� respectively� on PEs� the maximum tile size � block is � ���� and ���� respectively��

Both Figure �� and Figure �� show scalability and speed up� the execution time decreases when the

number of PEs increases and the execution time increases when the size of the problem increases�

� � �

�

���

���

���

���

���

���

���

	��

��

� � � �
 �� �� �� �� �
 �� �� �� �� �
 �� �� ���� 	�
� � ����

���� � 	���� �
� � �

�

���

���

���

���

���

���

���

	��

��

� � � �
 �� �� �� �� �
 �� �� �� �� �
 �� �� ���� 	�
� � ����

���� � 	���� �

� � �

�

��

���

���

���

���

���

���

���

���

���

� � � �
 �� �� �� �� �
 �� �� �� �� �
 �� �� ���� 	�
� � ����

���� � 	���� � � � �

�

��

���

���

���

���

���

� � � �� �� �� �
 �� �� �	 �� ���� 	�
� � ����

���� � 	���� �

8_10_Ag

8_10_Ad

8_10_Ti

16_10_Ag

16_10_Ti

16_10_Ad

32_10_Ti

32_10_Ag
32_10_Ad

16_10_Ag

16_10_Ti

16_10_Ad

16_9_Ti

16_9_Ag

16_9_Ad

16_8_Ti 16_8_Ag

16_8_Ad

8_10_Ag

8_10_Ad

8_10_Ti

8_9_Ag

8_9_Ad

8_9_Ti

8_8_Ti

8_8_Ag

8_8_Ad

32_10_Ag

32_10_Ad

32_9_Ti

32_8_Ti

32_9_Ag

32_9_Ad

32_8_Ag

32_8_Ad

Aggregate
Ad hoc
Tiling

32_10_Ti

Figure ��� Execution time of three algorithms for solving the �D heat equation on the nCUBE��� �a�
Data size is ��
 � ��
 on �� PEs� �� PEs� and � PEs� Data sizes are �� � ��� �	 � �	� and ��
 � ��
 on
�b� � PEs� �c� �� PEs� and �d� �� PEs�

The pure computation times for these three algorithms are basically the same� However� their

�

4_10_Ad

Ad hoc
Tiling

�

��

���

���

���

���

� � �� �� �� �� �� �� 	� ��
�
� �� ��� ���� � ����

���� � ������ �

4_10_Ad

4_10_Ti

4_9_Ad

4_9_Ti

4_8_Ad4_8_Ti

Ad hoc
Tiling

Figure ��� Execution time of two algorithms for solving the �D heat equation on the cluster� where
data sizes are �� � ��� �	 � �	� and ��
 � ��
�

communication times� which depend on the volume of data transferred� are quite di�erent� Suppose

that the data size is Nx � Ny partitioned among N PEs� with each containing NxNy�N data� For

�Aggregate�� a PE sends ��logN�NxNy���N� data to other PEs� the factor � is due to one transpose

for each of u and v� and each transpose operation takes logN steps on �the hypercube�based� nCUBE�

�� For �Ad�hoc�� a PE sends ��N ���NxNy�N
� data to other PEs� For �Tiling�� a PE only sends �Nx

or �Ny data to other PEs� where the factor � is due to solving three �rst�order recurrence equations

for each tridiagonal system� It seems that if a good tile size is chosen� �Tiling� is likely to perform

better than the other algorithms�

The experimentally obtained optimal tile sizes Z match well with those derived from the analytical

model in Section ���� Let block � Nx�N or Ny�N � For the nCUBE��� ts � ���
s� tc � ���
s�

tf � �	
s for executing an iteration of Loop � in Figure ��d�� and tf � �
s for executing an iteration

of Loop in Figure ��d�� Then for Loop �� Z�block � or �� which matches the experimental

results� The factor Z�block for Loop is � or 	� For the cluster� ts � ���
s� tc � ����
s� tf � ���
s

for executing an iteration of Loop �� and tf � ���
s for executing an iteration of Loop � Then for

Loop �� Z�block � ��� which matches the experimental studies� The factor Z�block for Loop is ��

It becomes clear now that when ts dominates tf � we have coarse�grained computation� otherwise� we

have a medium� or a �ne�grained computation� As the factor ts accounts for the communication and

the factor tf accounts for the speed of CPUs� this is the expected situation�

�

�� Two�dimensional Fast Fourier Transform

In this experimental study� we ran a �D Fast Fourier Transform �FFT� immediately followed by running

an inverse �D FFT using the row�column method for the complex matrix �AR� AI�� where AR is the

real part and AI is the imaginary part� The program contains four Do�loops� Loop � computes a ��D

FFT for each row� Loop � computes a ��D FFT for each column� Loop � computes an inverse ��D

FFT for each column� and Loop computes an inverse ��D FFT for each row� The size of the data

will be denoted by m�

In the row sweep� data in di�erent rows are independent� however� there is irregular data dependence

along the second dimension of AR and AI� Thus� the spatial dependence vectors of AR and AI are

sAR
� ��� �� and sAI

� ��� ��� respectively� By our method� the data distribution functions for AR and

AI will be AR�block��� and AI�block���� respectively� In the column sweep� data among di�erent

columns are independent� however� there is irregular data dependence along the �rst dimension of

AR and AI� Thus� the spatial dependence vectors of AR and AI are sAR
� ��� �� and sAI

� ��� ���

respectively� The data distribution functions for AR and AI will be AR��� block� and AI��� block��

respectively�

When static data distribution scheme which distributes AR and AI either row by row or column by

column is adopted� communication will be required to execute several �bit�reverse shu#e�exchange�

and �butter�y�pattern�� As temporal dependence vectors are irregular� we cannot use tiling� Thus�

each PE sends data of size �logN�m��N to other PEs� the factor is due to the �bit�reverse shu#e�

exchange� and �butter�y�pattern� data communications for both AR and AI� When a dynamic data

distribution scheme for the row sweep and for the column sweep is adopted� communication will be

required to execute four matrix transposes� with two transposes for both AR and AI� If a transpose

is implemented using aggregate operations� each PE sends a total of �logN�m����N� data to other

PEs� if a transpose is implemented using an ad hoc method� each PE sends a total of �N � ��m��N�

data to other PEs� Figure �� shows the results for the nCUBE�� for three algorithms� a static data

distribution �Static� and two dynamic data distributions �Aggregate and Ad�hoc�� x Dy Pq stands for

using x PEs to run dynamic data�layout algorithm Pq �which is Ag or Ad� as before�� x St stands for

the static data�layout� For this problem� dynamic data distribution is superior to the static one�

�

�

��

��

��

��

��

��

��

	�

�

���

��� ����

��� ��������

�
�

�
�

�
�

�
��

�
�

2_Dy_Ad

4_Dy_Ad

8_St

8_Dy_Ad

8_Dy_Ag2_St

2_Dy_Ag

16_St

4_St 16_Dy_Ad

16_Dy_Ag

32_St

4_Dy_Ag
32_Dy_Ad

32_Dy_Ag

Aggregate
Ad hoc

Static

Figure ��� Execution time of three algorithms for solving the �D FFT on the nCUBE���

� Conclusions

Experienced programmers write scienti�c application programs following a good programming style�

For example� while writing a program for the ��D heat equation� they write a column sweep then fol�

lowed by a row sweep� Therefore� data references exhibit localities and �xed patterns� Since optimizing

data distribution and maintaining locality are crucial for performance on DMPCs� we invented the con�

cept of the dominant array to account for this� A dominant array was one whose migration would

be very expensive and therefore minimized by appropriate data distribution� with other data arrays

aligned with it as appropriate and feasible� As in di�erent program fragments optimal data alignments

may be di�erent� we proposed an algorithm to decide whether consecutive program fragments should

share the same data alignment�

While determining a static data distribution scheme within one program fragment� which may

include several Do�loops� we proposed to use spatial dependence�use vectors�another concept we

invented�to help determine which dimensions of the dominant data array are better not to be dis�

tributed� Spatial dependence�use vectors independently represent a superset of irregular temporal

dependence�use relations� and thus they implicitly help determine mapping of data with irregular

data dependence relations into a �xed PE� We then used regular temporal dependence�use vectors to

�

determine whether the remaining dimensions of the dominant data array should be distributed or not�

For this� we examined one by one the Do�loops which involve the dominant data array� starting from

the most computationally�intensive Do�loop� We had found correspondences between iteration space

mapping vectors and distributed dimensions of the dominant data array in each nested Do�loop� which

allowed us to design algorithms for determining data and computation decompositions at the same

time�

After data distributions are determined� computation decomposition for each nested Do�loop is

determined based on either the owner computes rule or the owner stores rule with respect to the

dominant data array� If all temporal dependence relations across iteration partitions are regular� tiling

techniques are used to allow pipelining and overlapping the computation and communication time�

However� tiling the iteration space depends on data distributions� otherwise� communication costs

will be incurred due to data redistribution� We have proposed algorithms to determine tiling vectors

and constraints of tile sizes for arbitrary nested Do�loops and to determine optimal tile sizes for the

depth�two nested Do�loops�

References

�� MPICH� a portable implementation of MPI� Technical report� Argonne National Laboratory and University
of Chicago� �����

�� J� R� Allen and K� Kennedy� Automatic translation of Fortran programs to vector form� ACM Trans� on

Programming Languages and Systems� ������������� Oct� �����

�� J� Anderson� Automatic Computation and Data Decomposition for Multiprocessors� PhD thesis� Dept� of
EE and CS� Stanford Univ�� Stanford� CA� Mar� �����

�� P� Boulet� A� Darte� T� Risset� and Y� Robert� �Pen��ultimate tiling� Integration� the VLSI Journal�
��������� �����

�� D� Callahan and K� Kennedy� Compiling programs for distributed�memory multiprocessors� The Journal

of Supercomputing� ���������� �����

�� M� C� Chen� The generation of a class of multipliers� Synthesizing highly parallel algorithms in VLSI� IEEE
Trans� Comput�� C��������������� March �����

�� T� Chen and J� Sheu� Communication�free data allocation techniques for parallelizing compilers on multi�
computers� IEEE Trans� Parallel Distributed Syst�� ������������� Sep� �����

�� I� Couvertier�Reyes� Automatic Data and Computation Mapping for Distributed Memory Machines� PhD
thesis� Louisiana State University� Baton Rouge� Louisiana� May �����

�� F� Desprex� J� Dongarra� F� Rastello� and Y� Robert� Determining the idle time of a tiling� New results�
Journal of Information Science and Engineering� �������������� March �����

��� G� C� Fox� M� A� Johnson� G� A� Lyzenga� S� W� Otto� J� K� Salmon� and D� W� Walker� Solving Problems
on Concurrent Processors� Volume I� General Techniques and Regular Problems� Prentice Hall� Englewood
Cli�s� NJ� �����

��� M� Gupta and P� Banerjee� Demonstration of automatic data partitioning techniques for parallelizing
compilers on multicomputers� IEEE Trans� Parallel Distributed Syst�� ������������� Mar� �����

��� S� Hiranandani� K� Kennedy� and C�W� Tseng� Compiling Fortran D for MIMD distributed�memory ma�
chines� Communications of the ACM� ������������ Aug� �����

��� C� T� Ho� Optimal Communication Primitives and Graph Embeddings on Hypercubes� PhD thesis� Yale
Univ�� �����

��� E� Hodzic and W� Shang� On supernode transformation with minimized total running time� IEEE Trans�

Parallel Distributed Syst�� ������������� May �����

��� C� H� Huang and C� Lengauer� The derivation of systolic implementations of programs� Acta Informatica�
����������� �����

��� C� H� Huang and P� Sadayappan� Communication�free hyperplane partitioning of nested loops� Journal of
Parallel and Distributed Computing� ���������� �����

��� K� Hwang� Advanced Computer Architecture� Parallelism� Scalability� Programmability� McGraw�Hill� Inc��
New York� �����

��� F� Irigoin and R� Triolet� Supernode partitioning� In Proc� ACM SIGACT�SIGPLAN Symp� on Principles

of Programming Languages� pages �������� San Diego� California� January �����

��� K� Kennedy and U� Kremer� Automatic data layout for distributed�memory machines� ACM Trans� on

Programming Languages and Systems� �������������� July �����

��� C� Koelbel� D� Loveman� R� Schreiber� G� Steele� Jr�� and M� Zosel� The High Performance Fortran

Handbook� The MIT Press� Cambridge� MA� �����

��� U� Kremer� Automatic Data Layout for Distributed Memory Machines� PhD thesis� Rice University� Hous�
ton� Texas� October �����

��� H� T� Kung and C� E� Leiserson� Introduction to VLSI Systems� chapter ��� Algorithms for VLSI Processor
Arrays� Edited by C� Mead and L� Conway� Addison�Wesley� Reading� MA� �����

��� M� S� Lam� A Systolic Array Optimizing Compiler� PhD thesis� Carnegie Mellon University� Pittsburgh�
PA� May �����

��� P��Z� Lee� Parallel matrix multiplication algorithms on hypercube multicomputers� International Journal
of High Speed Computing� ������������� Sep� �����

��� P��Z� Lee� Techniques for compiling programs on distributed memory multicomputers� Parallel Computing�
����������������� �����

��� P��Z� Lee� E�cient algorithms for data distribution on distributed memory parallel computers� IEEE Trans�

Parallel Distributed Syst�� ������������� Aug� �����

��� P��Z� Lee and W� Y� Chen� Generating global name�space communication sets for array assignment state�
ments� Technical Report TR�IIS�������� Institute of Information Science� Academia Sinica� Taipei� Taiwan�
October ����� on available via WWW http���www�iis�sinica�edu�tw��leepe�PAPER�tr������ps�

��� P��Z� Lee and Z� M� Kedem� Synthesizing linear�array algorithms from nested For loop algorithms� IEEE
Trans� Comput�� C�������������� December �����

��� P��Z� Lee and Z� M� Kedem� Mapping nested loop algorithms into multi�dimensional systolic arrays� IEEE
Trans� Parallel Distributed Syst�� �������� Jan� �����

��� P��Z� Lee and Z� M� Kedem� On high�speed computing with a programmable linear array� The Journal of

Supercomputing� ������������� Sep� �����

��� J� Li and M� Chen� Compiling communication�e�cient problems for massively parallel machines� IEEE

Trans� Parallel Distributed Syst�� ������������� July �����

�

��� J� Li and M� Chen� The data alignment phase in compiling programs for distributed�memory machines�
Journal of Parallel and Distributed Computing� ����������� �����

��� K� S� McKinley� S� Carr� and C��W� Tseng� Improving data locality with loop transformations� ACM Trans�

on Programming Languages and Systems� �������������� July �����

��� D� I� Moldovan and J� A� B� Fortes� Partitioning and mapping algorithms into
xed size systolic arrays�
IEEE Trans� Comput�� C��������� Jan� �����

��� Q� Ning� V� Van Dongen� and G� R� Gao� Automatic data and computation decomposition for distributed
memory machines� Parallel Processing Letters� ������������� �����

��� D� J� Palermo� Compiler Techniques for Optimizing Communication and Data Distribution for Distributed�

Memory Multicomputers� PhD thesis� University of Illinois at Urbana�Champaign� Urbana� Illinois� �����

��� C� Polychronopoulos� Compiler optimizations for enhancing parallelism and their impact on architecture
design� IEEE Trans� Comput�� C���������������� August �����

��� J� Ramanujam and P� Sadayappan� Compile�time techniques for data distribution in distributed memory
machines� IEEE Trans� Parallel Distributed Syst�� ������������� Oct� �����

��� J� Ramanujam and P� Sadayappan� Tiling multidimensional iteration spaces for multicomputers� Journal
of Parallel and Distributed Computing� ����������� �����

��� H� B� Ribas� Automatic Generation of Systolic Programs From Nested Loops� PhD thesis� Carnegie Mellon
University� Pittsburgh� PA� June �����

��� A� Rogers and K� Pingali� Compiling for distributed memory architectures� IEEE Trans� Parallel Distributed

Syst�� ������������� Mar� �����

��� W� Shang and J� A� B� Fortes� On time mapping of uniform dependence algorithms into lower dimensional
processor arrays� IEEE Trans� Parallel Distributed Syst�� ������������� May �����

��� K��P� Shih� J��P� Sheu� and C��H� Huang� Statement�level communication�free partitioning techniques
for parallelizing compilers� In D� Sehr et al�� editor� Lecture Notes in Computer Science ���	� Ninth

International Workshop on Languages and Compilers for Parallel Computing� pages �������� San Jose�
California� Aug� ����� Springer�Verlag�

��� J� C� Strikwerda� Finite Di
erence Schemes and Partial Di
erential Equations� chapter ��� The Alternating
Direction Implicit �ADI� Method� pages �������� Wadsworth � Brooks�Cole Advanced Books � Software�
Paci
c Grove� CA� �����

��� P� S� Tseng� A Systolic Array Parallelizing Compiler� Kluwer Academic Publishers� Boston� MA� �����

��� M� E� Wolf and M� S� Lam� A loop transformation theory and an algorithm to maximize parallelism� IEEE
Trans� Parallel Distributed Syst�� ������������� Oct� �����

��� M� Wolfe� High Performance Compilers for Parallel Computing� Addison�Wesley� Redwood City� CA� �����

��� J� Xue� Communication�minimal tiling of uniform dependence loops� Journal of Parallel and Distributed

Computing� ��������� �����

��� H� Zima and B� Chapman� Compiling for distributed�memory systems� Proc� of the IEEE� ��������������
Feb� �����

Appendix� Determining axis alignment

For completeness� in the following� we describe how to construct component a�nity graphs and how

to determine axis alignment based on the component alignment algorithm� as presented in ���
� As

�

is shown in Step � of the proposed method in Section �� we will apply the loop �ssion technique so

that the original program is more suitable for parallel execution and we can execute nested Do�loops

in sequence�

For each nested Do�loop� we will construct a component a�nity graph� The composite component

a�nity graph for a sequence of consecutive nested Do�loops is the union of the graphs for individual

nested Do�loops� If an iterative Do�loop contains j nested Do�loops� the component a�nity graph

for this iterative Do�loop is identical to the composite graph of the j inner nested Do�loops� except

that the weight of each edge becomes m times of the original one� where m is the problem size of the

iterative Do�loop�

We now describe how given a nested Do�loop� we construct a component a�nity graph for it�

The graph is undirected and weighted� Its nodes represent dimensions �components� of arrays and its

edges specify a�nity relations between nodes� Edges are de�ned in two ways� First� if the subscripts

of the dimensions of the dominant data array in that nested Do�loop have a�nity relations with the

subscripts of the dimensions of other arrays generated or used in that nested Do�loop� then there

are edges between corresponding pairs of dimensions� We need these edges� because later iteration

partitioning due to computation decomposition is based on the data distribution of the dominant

data array� It is advantageous� to align other data arrays with this dominant data array� Second�

if two right�hand�side arrays correspond to the two operands of a binary operator� and if some pairs

of subscripts of dimensions of these two arrays have a�nity relations� then there are edges between

corresponding pairs of dimensions of these two arrays� It is advantageous for these two operands to be

aligned� We will use the higher ranked data array to represent an intermediate result of the operation

for considering alignments with the operands of other binary operations�

The weight of an edge is an estimate of the communication that is required if dimensions of two

arrays are distributed along di�erent dimensions of P � The component alignment problem is de�ned as

an optimal partitioning of the node set of the component a�nity graph into k disjointed subsets� where

k is the dimension of the highest dimensional data array� The objective is to minimize the total weight

of the edges across nodes in di�erent subsets� under the constraint that no two nodes corresponding

to the same array are in the same subset�

Although the component alignment problem is NP�hard� Li and Chen have proposed an e�cient

	

heuristic algorithm ���
� which we adopt� For completeness� in Figure ��� we present a very brief

version of the component alignment algorithm� for fuller details� see ���
� Array dimensions within

each of the above mentioned k disjointed subsets are then aligned together� Data distributions of these

array dimensions will share the same pattern� as discussed in Section ��

A heuristic component alignment algorithm�

Step �� construct a component a�nity graph from the source program�

Step �� choose a �high�dimensional� array with a highest dimensionality� thus� this array has the
maximum number of nodes in the graph� and let its corresponding nodes in the graph become
the initial basic set�

Step �� while the remaining graph is not empty� do

Step ��� choose an array with highest dimensionality from the remaining graph�

Step ��� apply the optimal matching procedure to a bipartite graph constructed from the
basic set and the nodes corresponding to components �dimensions� of the newly selected
array�

�! All disjointed subsets of matched nodes represent a partition� !�

Step ��� combine the matched nodes with the basic set as a new basic set�

Figure ��� Heuristic component alignment algorithm�

�

