A Relational Database Approach to Bayesian Network
Knowledge Discovery

Tzu-Tsung Wong / tzu-tsun(@iis.sinica.edu.tw
Chun-Nan Hsu / chunnan@iis.sinica.edu.tw
Chia-Che Ma / chiache@iis.sinica.edu.tw
Institute of Information Science, Academia Sinica
128 Academy Road, Section 2, Nankang, Taipei, Taiwan
Abstract
A Bayesian network is a powerful formalism for decision-making and knowledge
discovery. An approach to Bayesian network training for large scaled real-world
applications is important. Bayesian network training includes the following two steps.
Experts first select appropriate parameters consistent with their confidence to transform
the conditional probabilities into Dirichlet priors. Then the conditional posteriors for the
variables in the network can be obtained by Bayesian updating. In this paper, we
present a database scheme to store and manipulate a large Bayesian network as well as
training data sets in a relational database. This scheme facilitates Bayesian network
training and allows the system to take advantage of the benefits of relational data models.
Other features of this scheme are that it tolerates incomplete training data and is generally
applicable for Bayesian networks with arbitrary graph structures. Since RDBMS are
widely available, this scheme greatly simplifies the construction of a Bayesian network
based KDD system.

Keywords: Bayesian networks, Dirichlet distribution, normalization, relational databases

1 Introduction

A Bayesian network is a graphical representation of conditional probability distributions
for a set of variables, and can be used to build models for the problems with uncertainty.
Hence, Bayesian networks gradually become a popular tool for constructing knowledge
discovery and decision support systems (Heckerman et al., 1995). Especially, the
Bayesian network provides a systematic method for incorporating expert knowledge and

training data. This advantage increases the applicability of the Bayesian network.

The computation for the optimal solution of a problem in a large Bayesian network is
generally intractable. Thus, researchers have developed heuristic approaches to obtain
an acceptable, though not optimal, solution. In order to demonstrate the efficiency of
those methods, experimental results are often necessary (Heckerman et al., 1995;
Friedman et al., 1997; Kearns ef al., 1997; Friedman and Goldszmidt, 1997). An easy
and applicable method for building a Bayesian network with the capability of learning
can facilitate the implementation of experiments and increase the applicability of
Bayesian networks in realistic cases. So, we will attempt to propose a relational
database scheme that can be used to store and manipulate the data for various Bayesian

networks with discrete variables.

The data in a relational database are perceived by users as tables. Unlike either a
hierarchic or a network database, there does not exist any pre-specified data access path
for a relational database. This implies that the data manipulation in a relational database

is more flexible. In addition, it is easier to maintain the data integrity in a relational

database (Date, 1995). Since relational database management systems are popular and
provide some mechanism for query optimization, a relational database should be a proper
tool for handling the data of Bayesian networks. By using relational databases,
researchers can focus on the operations in the Bayesian network. Due to these

advantages, we adopt the relational database as a tool for building Bayesian networks.

As you will see, our relational database scheme facilitates Bayesian network training
and allows the system to take advantage of the benefits of relational data models. Other
features of this scheme are that it tolerates incomplete training data and is generally
applicable for Bayesian networks with arbitrary graph structures. Since RDBMS are
widely available, this scheme greatly simplifies the construction of a Bayesian network

based KDD system.

The remainder of this paper is organized as follows. In section 2, we will briefly
introduce Bayesian networks and relational databases. Under the assumption that all
variables in the Bayesian network are discrete, a relational database scheme for storing
the model data (the data for the Bayesian network and the training data) is proposed in
section 3. An illustrative example is presented in section 4. Finally, section 5

describes the conclusions and discusses the directions for future research.

2 Bayesian networks and relational databases
2.1 Bayesian networks

A Bayesian network has two components: a directed acyclic graph where the nodes
represent the variables in a domain of interest and the edges represent the conditional
independencies among the variables; and the conditional probability distribution of each
variable. Node (Variable) j is said to be a parent of node (variable) m if there is a
directed edge from j to m. Let m; be the set of the parents of node j, and let Q be the set
of the variables X; in the network. Then by the chain rule, the joint distribution of X =

(X, Xy ..., X)) can be represented as:

€]

p(x) = JHI p(x; [m;),
where |Q)| is the number of variables in Q. Thus, when the conditional distributions

p(xj|m) for j =1, 2, ..., |Q| are known, Bayes’ formula can be used to calculate any

probability of interest in the Bayesian network.

Random vector 6 = (0,, 0,, ..., 6,) has a k-variate Dirichlet distribution with

parameters o, > 0 for j =1, 2, ..., k+1 if it has density

') X o- o
f(e)z#gejl '1-6, —...—0,)%

MT(a;)”
j=1

for 0,+0,+..+0, < 1 and 0, 2 0 for j = 1, 2, ..., k, where o = o+, +...+0oy,,. This
distribution will be denoted D, (o, o, ..., o; o.;). Suppose that the number of possible

outcomes for a trial is k+1, and let D = {y,, v,, ..., ¥i.;} be a data set for the outcomes in

n trials, where y; is the number of trials turning to be outcome j. When the prior
distribution p(0) is a Dirichlet distribution D,(a;, o,, ..., o4 o, ;), and the likelihood
function L(D|0) follows a multinomial distribution, then the posterior distribution of 6
given D is also a Dirichlet distribution D, (o, +y,, o, ty,, «..h 04ty O +Ye,). Deriving
a posterior distribution from a prior distribution and a data set is called Bayesian

updating.

The expected value of 0; given D is E(0,D) = (ayty,)/(atn) for j = 1, 2, ..., k+1.
This expression can be rewritten as follows:

o.+Vy. o - .)
T % L D R0+ (- w)
o+n o+n o oa+n n n

E@, | D)=

where w = o/(atn). Note that E(0;) and y/n are the prior and the sample means of 0,
respectively. Hence, w and 1-w can be thought of as the weights of prior and sample
means, respectively, and the weights of the 0, are all identical. Thus, the posterior mean
of 0, is just the sum of the prior and sample means multiplied by their weights. This

result reveals an advantage of the Bayesian updating.

When the value of a is large, this implies that the estimates of the E(0,) are reliable
(Wong, 1998). If the training data are sparse (i.e., the value of n is small), the value of
w is close to one, and hence we can still have reliable conditional posteriors to evaluate
the probability of interest. On the contrary, if we have plenty of training data (i.e., the
value of n is much larger than o), then the value of w is close to zero, and the conditional
posteriors are primarily determined by the training data. So, Bayesian updating can

incorporate expert knowledge and training data to obtain a reliable result. Note that

when 0 is not Dirichlet distributed, the advantage for Bayesian updating is still true, but
we may not have a simple expression for E(0,[D) as when 0 is Dirichlet distributed.
Thus, the Bayesian updating for the Dirichlet distribution is an example instead of a

formal proof for the advantage.

Suppose that all variables in the Bayesian network are discrete. Let the number of
possible outcomes of node j be k+1, and let 6, for i = 1, 2, ..., k+1 be the conditional
probability for variable j to have outcome i given parent m. Then the joint distribution
of 6 = (0,, 0,, ..., 0,) is usually assumed to have a k-variate Dirichlet distribution D, (c,,
0, ..., 04 O4.,), since the Dirichlet distribution is conjugate to the multinomial sampling
(as discussed above). Suppose that a Bayesian network possesses the property of
parameter independence. Then the Bayesian updating of each conditional probability
distribution can be performed independently. In this case, the computation of Bayesian

updating of the Dirichlet prior is simple and fast.

Generally, the expected value E(0,,/D) is assumed to be the probability that variable
X, is turning to be outcome m given parent 7, in a Bayesian network after learning. The
complete training process in a Bayesian network includes two steps. The conditional
probability distribution of each variable is first transformed into a Dirichlet prior by
selecting appropriate parameters consistent with analysts’ confidence. The training data
are then used to update the Dirichlet priors to obtain Dirichlet posteriors. Let A be a
subset of Q that does not include variable X;, and let p(x;/A) be the probability of interest.

Then by Bayes’ formula, we have

p(x;.A) 2 p(x) x I p(x, [T,)

p(X ‘ A) = x;€Q\{x,A} _ x;€Q\{x,A} meQ

| - - .

] A h) X S I o(x_ |7
p(A) &, PX) CZL)

This implies that any probability of interest can be represented as a combination of the
expected values E(0,|D) obtained from the Dirichlet posteriors. Thus, there are

generally no restrictions for setting queries in a Bayesian network.

2.2 Relation databases

A relational database is a collection of tables. In general, there are some indices in a
table to speed up the performance of queries. One of those indices is called a primary
index that generally does not allow duplicated values. In building a relational database,
system analysts first use a data flow diagram to represent users’ requirements, and refine
those requirements to obtain an entity-relationship model for the system. Then the

entity-relationship model is used to construct the database by means of normalization.

Basically, a database with normalized tables has a simpler structure, and its data
manipulation is also simpler. There exist five types of normal form for tables.
Practically, a necessary condition for designing a relational database is that every table in
the database is in third normal form. Since both fourth and fifth normal forms can
increase the complexity of data manipulation, a table will be in either fourth or fifth

normal form only when necessary.

A table is in first normal form if there are no repeating groups in the table. For

example, there is a table for the information of the children of each employee in a

company. An employee may have several children. If each employee has only one
record in the table, then this table is not in first normal form. A table is in second
normal form if it is in first normal form and the primary index can determine the value of
any column that is not in the primary index. A table can violate second normal form
when its primary index includes more than one column. For instance, suppose that the
primary index of a table includes employee ID and department code. Then if this table
also has employee name, this table will not be in second normal form, since the employee

name can be determined by part of the primary index.

A table is in third normal form if it is in second normal form and the value of each
column that is not in the primary index cannot be determined by the value of some other
column that is not in the primary index neither. For instance, let the primary index of a
table be employee ID. Then if this table includes both department code and department
name, this table will not be in third normal form, since the department code which is not
in the primary index uniquely determine the department name. When a table is in first
normal form but not in second normal form, or in second normal form but not in third

normal form, please refer to Date (1995) for the methods of normalization.

3 Relational database scheme

In this section, we will present a relational database scheme that can be used to store the

model data of the Bayesian networks with arbitrary structures. In particular, this scheme

includes a data structure that can facilitate the Bayesian updating. This implies that the

scheme cannot only meet the requirement for the queries in the Bayesian networks, but
also has a mechanism for learning when the training data are available. As described in
Section 2.1, we need two elements to delineate a Bayesian network: a directed acyclic
graph and the conditional probability distributions among variables. The only entity in
the graph is the nodes (or variables), and the directed edges in the graph are self-
relationships among the variables. The conditional probabilities are attributes of the

variables. Hence, the entity-relationship diagram of a Bayesian network is simple.

Figure 1 shows the relational database scheme for Bayesian networks with discrete
variables. The content of each table is given in Figure 2. Each directed edge in Figure
1 indicates a one-to-many relationship. Tables Node, NodeContent, and Parent
represent the directed acyclic graph of a Bayesian network, while tables ProbMaster,
ProbDetail, Probability, and Parameter represent the conditional probabilities and keep

the information for Bayesian updating. The training data are stored in table Case.

Parent - Node E Case
ProbMaster >| ProbDetail NodeContent
Y
Y
.. Parameter
Probability

Figure 1. The relationship diagram for tables

TABLE Node (Node ID, Node name, Number of outcomes, Number of parents)
PRIMARY INDEX (Node ID);

TABLE NodeContent (Node ID, Outcome ID, Outcome content)
PRIMARY INDEX (Node ID, Outcome ID);

TABLE Parent (Node ID, Parent node ID)
PRIMARY INDEX (Node ID, Parent node ID);

TABLE Case (Case ID, Node ID, Outcome ID)
PRIMARY INDEX (Case ID, Node ID);

TABLE ProbMaster (Node ID, Combination ID, Alpha)
PRIMARY INDEX (Node ID, Combination ID);

TABLE ProbDetail (Node ID, Combination ID, Parent node ID, Parent outcome ID)
PRIMARY INDEX (Node ID, Combination ID, Parent node ID);

TABLE Probability (Node ID, Combination ID, Outcome ID, Probability)
PRIMARY INDEX (Node ID, Combination ID, Outcome ID);

TABLE Parameter (Node ID, Combination ID, Outcome ID, Prior, Posterior)

PRIMARY INDEX (Node ID, Combination ID, Outcome ID);

Figure 2. The content of each table in the database

Since all variables are discrete, we can assign each possible outcome of a variable a

unique outcome ID located in table NodeContent for data manipulation. The numbers

of possible outcomes of the variables in a Bayesian network can be different. Thus, the

data structure for storing possible outcomes must be normalized to satisfy the

requirement of third normal form. Table Parent, which represents the self-relationship

among variables in the entity-relationship diagram, has the data structure for edges.

9

Since the number of variables in a Bayesian network can vary, each case in the training
data is split into several records according to the number of variables. This way, table
Case can store the training data regardless of the number of variables in the Bayesian
network. Note that we can also use table Case to store the training data even if the

training data include missing variable values.

Similar to tables Node and NodeContent for the nodes, we need tables ProbMaster
and Probability for the conditional probabilities. In practice, we will generally have the
conditional probabilities p(x;|m;) instead of the parameters in the Dirichlet priors. Hence,
we need to select the value for a to transform the conditional probabilities into a Dirichlet
prior. Table ProbMaster includes column ‘Alpha’ for this purpose. For example,
when p(x;=3|m;,) = 0.05 and o = 30, we will have o; = o-p(x;=3|m) = 1.5. Thus, when the
values of a and the conditional probabilities are known, we can set the values for column

‘Prior’ in table Parameter.

As mentioned above, we hope that this relational database scheme can be used for
arbitrary Bayesian networks with discrete variables. However, the number of parents of
a node can vary. Thus, we divide each possible parent outcome combination of a node
into several records in table ProbDetail according to the number of parents of the node.
Like the possible outcomes of each node, each possible parent outcome combination of a

node has a unique combination ID for data manipulation.

Suppose that we choose the combination IDs arbitrarily. Then when a whole case is

retrieved from the database for Bayesian updating, we will need to search the

10

combination ID in table ProbDetail for current case. Otherwise, we will not be able to
know which value of column ‘Posterior’ in table Parameter should be increased by one.
Since the number of possible parent outcome combinations of a node can be large, this
approach for Bayesian updating is likely to be time-consuming. Therefore, we develop

the following hashing function-like technique to determine the combination ID.

Let m,, be the set of the parents of node m. Assume without loss of generality that
the nodes in =, are in a pre-determined order. Furthermore, let n; be the number of
possible outcomes of the j® variable in m,, and for any possible parent outcome
combination of node m, let a; be the outcome ID of the j* variable in m,. Then each
possible parent outcome combination of node m can be represented as {a, j =1, ..., x|},
where |n,| is the number of variables in m,. Note that the value of a; can vary from 1 to
n. Define the combination ID s, for each parent outcome combination ¢ = {a, j =1, ...,

Im,.|} as:

||

The total number of possible parent outcome combinations of node m is I} n,. When

the parent outcome combination of node m is ¢ = {n,, j = 1, ..., |n,|}, we will have

I

S, = 21 n;, which is the largest combination ID for node m. It can be shown that each

parent outcome combination will have a unique combination ID in this transformation.

The above method for determining the combination ID can greatly increase the speed
of Bayesian updating, especially when the number of parent outcome combinations of
some node is very large. Recall that the variables in 7, are in a pre-determined order.

11

When we read a whole case from table Case for Bayesian updating, column ‘Outcome
ID” gives us the values of the a. Table Node will provide the values of the n,, Hence,
we are able to know the combination ID for each node in current case without expensive

string comparisons.

Example. Let nodes A, B, and C be parent nodes of node D, and let the numbers of
possible outcomes of these three nodes are 8, 10, and 14, respectively. Hence, we have
, = {A, B, C}, and n, = 8§, n, = 10, and n, = 14. The number of possible parent
outcome combinations of node D is 8x10x14 = 1120, and the number of records in table
ProbDetail for these parent outcome combinations is 1120x3 = 3360 (3 parents). If the
content of a case is {6, 5, 10, 3}, then we will need to access more than 3000 records in
table ProbDetail for comparisons in the worst case. By using the above method, the
combination ID of ¢ = {a, = 6, a, = 5, a, = 10} for node D is s, = (6-1) x10x14 + (5-1)
x14 + 10 = 766. Now, we can use the values of the node ID of node D, s_, and the
outcome ID of node D in current case as a compound primary index to access the record

in table Parameter for Bayesian updating.

Although there are |m,|(|m,|-1)/2 multiplications in the expression for s, we can

calculate the value of the combination ID for each node in a linear time. Note that the

|| ||
term (a, —l)gn . In the expression of s, can be rewritten as (a; , —1)xn, qulﬂn .

[l
If we perform the summation of s; in a reverse order, then the value TII n_ obtained in
q=i+1

| |7

calculating (a; —1) Hln . can be used to calculate the value of (a; , —1)I1n_ by only
q=1+ q=1

two multiplications. In this approach, there will be only 2|n |-3 multiplications for

12

calculating the value of s..

4 An illustration

Consider the problem of detecting credit-card fraud discussed in Heckerman (1995).
The Bayesian network in this problem has five variables: Fraud (F); Gas (G); Jewelry (J);
Age (A); and Sex (S), as shown in Figure 3. From Figure 3, we can see that the
conditional independencies of the variables are:

p(alf) = p(a)

p(sfa.f) = p(s)

p(glf.a.s) = p(glf)

p(jlf.a.s.2) = p(glf.a.s).
Hence, the joint distribution of X =(F, A, S, G, J) is

p(x) = p(f.a,s.2.j) = p(jlf.a.s.2)p(glf.a.8)p(s|f.a)p(alDp()

= p([f.a.s)p(gHp(s)p(a)p(D).

The data for the directed acyclic graph of this Bayesian network is shown in Figure 4.

Fraud Age Sex

Y Y

Gas Jewelry

Figure 3. The Bayesian network for detecting credit-card fraud

13

Node NodeContent

1 |Fraud 2 0 1 1 |Yes
2 |Age 3 0 1 2 |No
3 |Sex 2 0 2 1 <30
4 |Gas 2 1 2 2 130-50
5 |Jewelry 2 3 2 3 >»50
Parent 3 I Male
3 2 |Female
4 |1 4 |1 [Yes
> | 1 4 | 2 [No
> | 2 5 | 1 |Yes
> |3 5 | 2 |No

Figure 4. The data for the directed acyclic graph

Suppose that the conditional probabilities are given as follows:
p(F =yes) =0.00001
P(A<30)=0.25, p(B0<A<50)=0.40
p(S = male) = 0.5
p(G =yes|F = yes) = 0.2, p(G =yes|F =no) =0.01
p(J =yes|F =yes, A=* S =%*)=0.05
p(J = yes|F =no, A <30, S =male) =0.0001
p(J = yes|F =no, 30 <A <50, S = male) = 0.0004
p(J = yes|F =no, A> 50, S = male) = 0.0002
p(J =yes|F =no, A <30, S = female) = 0.0005
p(J =yes|F =no, 30 <A <50, S = female) = 0.0002

p(J =yes|F =no, A > 50, S = female) = 0.0001.

If the probability of interest is p(F = yes|A <30, S = male, G = no, J = no), then we have

14

p(F =yes| A <30,S = male,G =no,J =no)

_ p(F =yes,A <30,S = male,G =no,J =no)
p(A <30,S = male,G =no,J =no) '

The numerator can be evaluated as
p(F =yes, A <30,S =male,G =no,J = no)
=p(J=no|F =yes,A <30,S =male)p(G =no | F = yes)p(S = male)
P(A <30)p(F = yes)
=0.95x0.8x0.5%0.25%x0.00001 =9.5x 107,

and similarly for the denominator. Thus, any query in this Bayesian network can be

expressed as a combination of the conditional probabilities of the variables.

Suppose that the parameter vector corresponding to each variable in this Bayesian
network has a Dirichlet prior. If we choose a = 30 for the Dirichlet prior of Age, then
the parameter vector 6(A) will have a bivariate Dirichlet distribution D,(7.5, 12.0; 10.5).
Since node Age has no parent nodes, we will use node Jewelry to show the data structure
for the conditional probabilities. If we choose a = 10 for the Dirichlet prior of J given F
=“No”, A=“30-50", and S = “Male”, then O(J|F = no, 30 < A < 50, S = male) will have a
beta distribution with parameters 0.004 and 9.996. The data in tables ProbMaster,
ProbDetail, Probability, and Parameter for the conditional probabilities of J given F =
“No”, A=30-50", and S = “Male” are:

ProbMaster: (5, 9, 10);
ProbDetail: (5,9, 1, 2),(5,9,2,2),(5,9, 3, 1);
Probability: (5, 9, 1, 0.0004), (5, 9, 2, 0.9996);

Parameter: (5,9, 1, 0.004, 0.004), (5, 9, 2, 9.996, 9.996).

15

The data in each pair of parentheses represent a record in the table. Note that the value
of column ‘Posterior’ in table Parameter is set to be the value of column ‘Prior’ before

the Bayesian network training starts.

Suppose that the pre-determined order for the parents of node Jewelry is m, = {Fraud,
Age, Sex} consistent with the ascending order of their node IDs. Hence, we have n, = 2,
n, = 3, and n; = 2, and there are 12 possible parent outcome combinations of node
Jewelry. When the values of these three parent nodes are “No”, “30-50”, and “Male”,
respectively, the representation of this parent outcome combination is {2, 2, 1}; i.e., a; =
2,a,=2,and a;=1. The combination ID of ¢ = {2,2, 1} is s, = (2-1) x3x2 + (2-1) x2 +
1 =9. If the original format of the first case in the training data is (F = “No”, A = “30-
507, S =*“Male”, G = “No”, J = “Yes”), then the five records in table Case corresponding
to this case are

Case: (1, 1,2),(1,2,2),(1,3,1),(1,4,2), (1,5, 1).
By using the combination ID s,, we will be able to access the record (5, 9, 1, 0.004, 0.004)
in table Parameter for node Jewelry instantly, and the new values of this record after the

Bayesian updating are (5, 9, 1, 0.004, 1.004).

This example has been implemented in a personal computer. We select HUGIN as a
graphical user interface for drawing the Bayesian network and compile the text file from
the output of HUGIN to obtain the model data of the Bayesian network. All of the
model data are stored in a database created by Microsoft Access. After the Bayesian
updating, we use the posterior data to construct a new text file for HUGIN. Then users

can query any probability of interest from HUGIN. This process reveals that using our

16

approach to build a Bayesian network with the capability of learning is not difficult.
Figure 5 shows that the elapsed time of the Bayesian updating is a linear function of the
number of cases in the training data set. This experimental result is consistent with the

analytical discussion given in Section 3.

900
800
700
600
500
400
300

Elapsep time(seconds)

200
100

1 2 3 4 5 6 7 8 9 10

Number of cases in the training data set (x1,000)

Figure 5. Elapsed time of the Bayesian updating

5 Discussion

The data structure for handling the model data of a Bayesian network is important for the
performance of Bayesian updating. In this paper, we present a relational database

scheme for arbitrary Bayesian networks with discrete variables. This scheme not only

17

provides a mechanism for Bayesian updating, but also allows incomplete training data.
Since searching for a correct record in a table for Bayesian updating can be time-
consuming, we proposed a direct access method to resolve this problem. The tools that
we choose to build Bayesian networks are widely available, and the implementation of

our relational database scheme is not difficult.

Model selection is one of the most interesting problems in Bayesian networks. Our
future research will try to enhance the database scheme given in Section 3 for model
selection. In implementing a method for model selection, we generally need to evaluate
the model score for each possible Bayesian network. However, evaluating the model
score of each possible Bayesian network can be very complex, and the number of
possible Bayesian networks can be extremely large when the number of variables in a
system is large. Most of the methods for model selection start with an arbitrarily chosen
network and improve the network according to some rules (Spirtes and Meek, 1995;
Friedman et al., 1997; Kearns ef al., 1997). Thus, developing a database scheme and
identifying necessary operations that can increase the performance for those methods is

critical.

References

Date, C. J. (1995), An Introduction to Database Systems, 6™ Edition, Addison-Wesley.
Friedman, N., Geiger, D., and M. Goldszmidt (1997), Bayesian Network Classifiers,

Machine Learning, 29, 131-163, 1997.

18

Friedman, N. and Goldszmidt, M. (1997), Sequential Update of Bayesian Network
Structure, Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence.

Heckerman, D. (1995), A Tutorial on Learning with Bayesian Networks, Microsofi
Research Technical Report MSR-TR-94-09, Microsoft Research, Redmond,
Washington.

Heckerman, D., Geiger, D., and Chickering, D. (1995), Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data, Machine Learning, 20, 197-243.

Kearns, M., Mansour, Y., Ng, A. Y., and Ron, D. (1997), An Experimental and Theoretical
Comparison of Model Selection Methods, Machine Learning, 27, 7-50.

Spirtes P. and Meek C. (1995), Learning Bayesian Networks with Discrete Variables from
Data, Proceedings of the First International Conference on Knowledge Discovery and
Data Mining, 294-299.

Wong , T. T. (1998), Generalized Dirichlet Distribution in Bayesian Analysis, Applied

Mathematics and Computation, 97, 165-181.

19

