Why A Statistics-based Face Recognition
System Should Base Its Recognition on the
Pure Face Portion: A Probabilistic

Decision-based Proof*

Li-Fen Chent Hong-Yuan Mark Liaof' Chin-Chuan Hanf
Ja-Chen Lint

tDepartment of Computer and Information Science,
National Chiao Tung University, Taiwan

IInstitute of Information Science, Academia Sinica, Taiwan

{corinna,liao }@iis.sinica.edu.tw

Abstract

Face recognition, by definition, should be a recognition process in which recognition
is based on the content of a face. The problem is: what is a “face”? Goudail et al.
[1] and Swets and Weng [2] have recently proposed state-of-the-art statistics-based face
recognition systems. However, they used “face” images that included hair, shoulders,
face and background. Our intuition tells us that only a recognition process based on a
“pure” face portion can be called face recognition. The mixture of irrelevant data may
result in an incorrect set of decision boundaries. In this paper, we propose a statistics-
based technique to quantitatively prove our assertion. For the purpose of evaluating

how the different portions of a face image will influence the recognition results, two
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hypothesis testing models are proposed. We then implement the two above mentioned
face recognition systems and use the proposed hypothesis testing models to evaluate the
systems. Experimental results reflected that the influence of the “real” face portion is
much less than that of the nonface portion. This outcome confirms quantitatively that a
statistics-based face recognition system should base its recognition solely on the “pure”

face portion.

1 Introduction

Face recognition has been a very hot research topic in recent years [3, 4, 5]. It covers a wide
variety of application domains, including security systems, personal identification, image and
film processing, and human-computer interaction. A complete face recognition system should
include two stages. The first stage is detecting the location and size of a “face”, which is
difficult and complicated because of the unknown position, orientation and scaling of faces in
an arbitrary image [6, 7, 8, 9, 10, 11, 12, 13]. The second stage of a face recognition system
involves recognizing the target faces obtained in the first stage. Recently, some successful
face recognition systems have been developed and reported in the literature [1, 2, 14, 15, 16,
17]. Among these works, the systems proposed by Goudail et al.[1] and Swets and Weng [2]
represent two state-of-the-art face recognition systems. However, Liao et al.[18] mentioned
that these two statistics-based systems used “incorrect” databases because their face image
covered face, hair, shoulders, and background, not solely face. It was pointed out in [18] that,
in these two systems, the “facial” portion does not play a key role during execution of “face”
recognition. From the psychological viewpoint, Hay and Young [19] also pointed out that
the internal facial features, such as the eyes, nose, and mouth, are very important for human
beings to see and to recognize familiar faces.

In recent years, some researchers have noticed this problem and tried to exclude those
irrelevant “nonface” portions while performing face recognition. In [14], Turk and Pentland
multiplied the input face image by a two-dimensional Gaussian window centered on the face
to diminish the effect caused by the nonface portion. For the same purpose, Sung et al.[8]

tried to eliminate the near-boundary pixels of a normalized face image by using a fixed-size



mask. Moghaddam and Pentland [9] and Lin et al.[16] both used probabilistics-based face
detectors to cut out the middle portion of a face image for correct recognition. In [18], Liao et
al. proposed a face-only database as the basis for face recognition. All the above mentioned
works tried to use the most “correct” information for the face recognition task. However, none
of them tried to use a quantitative measure to support their assertion. In a statistics-based
face recognition system, global information (pixel level) is used to determine the set of decision
boundaries and to perform recognition. Therefore, the mixture of irrelevant data may result
in an incorrect set of decision boundaries. The question is: can we measure, quantitatively,
the influence of the irrelevant data on the face recognition result? In this paper, we shall use
a statistics-based technique to solve the above mentioned problem.

In order to conduct the experiments, two different face databases were adopted. One was
a training database built under constrained environments. The other was a synthesized face
database which contained two sets of synthesized face images. Every synthesized face image
consisted of two parts: one was the middle face portion that includes the eyes, nose, and
mouth of a face image. The other portion was the complement of the middle face, called
the “nonface” portion, of another face image. Based on these two databases, the distances
between the distribution of the original training images and that of the synthesized images
could be calculated. For the purpose of evaluating how the different portions of a face image
will influence the recognition result, two hypothesis testing models were proposed. We then
implemented two state-of-the-art face recognition systems and used the proposed hypothesis
testing models to evaluate the systems. Experimental results obtained from both systems
show that the influence of the middle face portion on the recognition process is much less than
that of the nonface portion. This outcome is important because it proves, quantitatively or
statistically, that some of the previous statistics-based face recognition systems use “incorrect”
face databases.

The organization of this paper is as follows. In Section 2, two state-of-the-art face recog-
nition systems which will be examined in this paper are introduced. Descriptions of the two
proposed hypothesis testing models and experimental results are given in Sections 3 and 4,

respectively. Conclusions are drawn in Section 5.



2 Two state-of-the-art Face Recognition Systems

In this section, two state-of-the-art face recognition systems which were implemented and used
in the experiments will be introduced. In [1], Goudail et al. investigated the performance of a
technique for face recognition based on the computation of 25 local autocorrelation coefficients.
They used the set of transformed 25-dimensional database samples to determine the set of most
discriminating projection axes based on linear discriminant analysis (LDA) and then calculated
each sample’s projective feature vector. When an unknow image appeared, its corresponding
projective feature vector was calculated and compared with those of the database samples.
For database construction, they asked all the persons to wear dark company jackets and to sit
down in front of a uniform, black background. Although they kept the color of the background
and cloth dark, their “face” image was actually a combination of face, hair, shoulders, and
background. Basically, this kind of face image is “incorrect” in terms of “face” recognition.
Another state-of-the-art system was proposed by Swets and Weng [2]. In this work, they
applied the principal component analysis (PCA) technique to reduce the dimensionality of
the original images. They selected the top 15 principal axes and used them to derive a 15-
dimensional feature vector for every sample. These transformed samples were then used as
bases to execute LDA, and they reported a peak recognition rate of more than 90%. Again,
we find that their face image contained face, hair, shoulders, and background, not solely
face. Since both methods mentioned above are statistics-based, we believe that inclusion of
irrelevant “facial” portions, such as hair, shoulders, and background, will generate incorrect
decision boundaries for recognition. Therefore, in this paper, we shall prove our argument
through statistical methods. Since both of the above two face recognition systems adopted
linear discriminant analysis (LDA), which is based on Fisher’s criterion [20], to decide on the
projection axes for the recognition purpose, we shall briefly introduce the LDA approach in
the following paragraph.

Let the training set be comprised of K classes, where each class is for one person and

contains M sample face images. In LDA, one determines the mapping
vf = Aluk | (1)
where u” denotes the feature vector extracted from the mth face image of the kth class, and
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vk denotes the projective feature vector of u¥, under the transformation of the mapping matrix

A. This mapping simultaneously maximizes the between-class scatter while minimizing the

within-class scatter of all v%’s (where k = 1,...,K,m = 1,..., M) in the projective feature
vector space. Let o = Y™ v* and © = Y5 #*. The within-class scatter in the projective

feature space can be calculated as follows [21]:
K M
Sw=_ > (vy, — ") (vy, — )" (2)
k=1m=1
The between-class scatter in the same space can be calculated as follows:

K

Sp=> (v —v)(v* —v)". (3)

k=1

The way to find the required mapping A is to maximize the following quantity:
t’l“(S;lsb). (4)

An algorithm which solves the mapping matrix A can be found in [22]. A Euclidean
distance classifier is used to perform classification in the mapped space for these two face

recognition systems.

3 Hypothesis Testing Models

We mentioned in the previous section that inclusion of irrelevant “facial” portions, such as
hair, shoulders, and background, will mislead the face recognition process. In this section,
we shall propose two statistics-based hypothesis testing models to prove our assertion. Before
going further, we shall define some basic notations which will be used later.

Let X* = {axf m =1,..., M | ¥ is the feature vector extracted from the mth face image

of the kth person} denote the set of feature vectors of the M face images of class wy (person

k

o, 1s a d-dimensional column vector, and each class collects M different face images

k), where @
of a person. For simplicity, the M face images of every person are labelled and arranged in
order. Each class is then represented by a likelihood function. Without loss of generality,
assume that the class likelihood function, p(x|wg), of class wy is a normal distribution [23]:

1 1 T -1
p(x|wy) = mexp(—§(w —p) A (z— ), (5)



where « is a d-dimensional column vector, and g and A are the mean vector and covariance
matrix of p(x|wy), respectively. Here, we use the sample mean, ¥ = ﬁ SM k| and the

ms
sample covariance matrix, Ay = 17 L0_, (zf, — z¥)(zk, — z*)!, to represent the estimates of
p and A, respectively.

For each vector set X% of class we(k =1,...,K), two additional vector sets, Yf,C and Zf
(1=1,...,K,1# k), are extracted and associated with it. The number of elements in Y
or Zf (for a specific 1) is, respectively, equal to M, which is exactly the same as the number
of elements in X*. The formation of the elements in Y or ZF is as follows. Basically,
each element in Y is a d-dimensional feature vector extracted from a synthesized face image
which combines the middle face portion of an element in w; and the nonface portion of its
corresponding element in wg. On the other hand, each element in Zf is also a d-dimensional
feature vector. The difference between Y and Z¥ is that the latter is extracted from a
synthesized face image which combines the middle face portion of an element in w; and the
nonface portion of its corresponding element in w;. We have mentioned that the M elements
in X" (extracted from wy, k = 1,..., K) are arranged in order (from 1 to M). Therefore, the
synthesized face image sets as well as the feature sets extracted from them are all arranged in
order. In sum, for each vector set X* of class wy, (k = 1, ..., K), there are 2(K —1) synthesized
feature sets associated with it. In what follows, we shall provide some formal definitions of
the synthesized sets. Let w? denote the pth face image of class w, (p = 1,...,M). For
I=1,...,K, 1 #k, we have the 2(K — 1) feature sets which are associated with X*, defined

as follows:

Y, = {yk(m),m=1,..., M| y\(m) is a d-dimensional feature vector extracted from a
synthesized face image which combines the middle face portion of w;" and the

nonface portion of wj'}, and (6)

Z¥ = {2F(m),m=1,..., M| zF(m) is a d-dimensional feature vector extracted from a

synthesized face image which combines the middle face portion of w}* and the

nonface portion of wj"}. (7)
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Figure 1: Each rectangle in the left column represents one face image, and the circle area is the middle
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face portion. The middle entry of the left column shows that each synthesized face image corresponding to
vector yk (m) is obtained by combining the middle face portion of w® in class w; and the nonface portion of

its counterpart wj" in class wy.
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Figure 2: Examples of synthesized face images. (a) the mth face image in wy — wi*; (b) the mth face image
in w; — wi™; (c) the synthesized face image obtained by combining the middle face portion of wj* and the
nonface portion of wj’. The extracted feature vector corresponding to this synthesized face image is yi(m);
(d) the synthesized face image obtained by combining the middle face portion of w}* and the nonface portion

of w™. The extracted feature vector corresponding to this synthesized face image is zJ(m).



Figure 1 is a graphical illustration showing how Y% is extracted. Figure 2 is a typical
example illustrating how the synthesized face image is combined with the middle face portion
of an image in wy and the nonface portion of its corresponding image in wj.

Bichsel and Pentland [15] have shown, from the topological viewpoint, that when a face
undergoes changes in its eye width, nose length, and hair style, it is still recognized as a human
face. Therefore, it is reasonable to also represent the above mentioned two feature vector sets,
Yﬁc and Zf , as normal distribution functions. Now, since all the feature vector sets are repre-
sented by normal distributions, their distances can only be evaluated by using some specially
defined metrics. In the literature, the Bhattacharyya distance [24] is a well-known metric
which is defined for measuring the similarity between two arbitrary statistical distributions.
For two arbitrary distributions p(x|w;) and p(x|wy) of classes w; and ws, respectively, the

general form of the Bhattacharyya distance is defined as

D(wi,ws) = —In / (p(a|wn)p(a|ws)) 2de. (8)

When both w; and wy are normal distributions, the Bhattacharyya distance can be simplified

into a new form as follows:

A1ty
Dlrsin) = g0 = )" (5 oy = ) + gl )
where p,, p, and Ay, Ay are the mean vectors and covariance matrices of w; and wy, respec-
tively [23]. In what follows, we shall define two hypothesis testing models as the tools for
experiments. The Bhattacharyya distance will be used as a decision criterion for determining

acceptance or rejection of our hypotheses.

3.1 First Hypothesis Testing Model

In the first hypothesis testing, our goal was to prove that the influence of the nonface portions
of face images on the recognition result is larger than that of the middle face portions of face
images; that is, the nonface portion of a face image dominates the recognition result.

In what follows, we shall define a metric based on the above mentioned Bhattacharyya

distance. The metric to be defined for a specific class k is a real-number set, D¥. The



definition of D is as follows:
Df ={d(l),l=1,..., K;l £ k| di()) = D(X*Y}) - D(X',Y})}, (10)

where D(e) represents the Bhattacharyya distance between two distributions as defined in
Equation (9).

For a specific class k, there are in total K — 1 elements contained in D¥. The physical
meaning of every constituent of Df, i.e., d¥(l) (I = 1,...,K;l # k), is a statistical measure
that can evaluate the importance, quantitatively, between the middle face portion and the
nonface portion. Figure 3 illustrates how df (1) is calculated in a graphical illustrative manner.
Figure 3(a) shows how the first term that defines d%(l) is calculated. The top row of Figure
3(a) contains two rectangles, each of which includes a circle region. The rectangle region
together with the circle region inside represents a face image. The left hand side combination
contains 2 k’s. This means that the middle face portion (the circle region) and the nonface
portion (the rectangle region excluding the circle region) belong to the same person. The right
hand side combination, on the other hand, contains the nonface portion belonging to person k
and the middle face portion belonging to person [, respectively. The middle row of Figure 3(a)
shows the corresponding feature vectors extracted from the (pure) face image on the left hand
side and the synthesized face image on the right hand side, respectively. Both assemblages
of ¥ and yl(m) contain, respectively, M elements. The bottom rows of Figure 3(a) and
(b) represent, respectively, the difference of two distributions, which can be computed using
the Bhattacharyya distance as defined in Equation (9). In what follows, we shall report how
the degree of importance between the middle face portion and the nonface portion can be
determined based on the value of d%(l).

From Equation (10), it is obvious that when d§(l) > 0, this means that the distribution
of Y! is closer to that of X' than to that of X*. Otherwise, the distribution of Y is
closer to that of X* than to that of X', According to the definition of face recognition,
the recognition process should be dominated by the middle face portion. In other words, the
normal situation should result in a d¥(/) which has a value not less than zero. If, unfortunately,
the result turns out to be d¥(l) < 0, then this means that the nonface portion dominates the

face recognition process. We have mentioned that for a specific class k, there are in total
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Figure 3: In the top rows of (a) and (b), each rectangle region together with the circle region inside represent
a face image. The mark & or [ denotes the class to which that region belongs. The feature vectors in the middle
rows of (a) and (b) are extracted from the corresponding face images (pure or synthesized). The assemblages
of all vectors (e.g. ¥ ) form normal distributions of corresponding vector sets (e.g. X*). The bottom rows of
(a) and (b) represent the difference of the two distributions, which can be computed using the Bhattacharyya

distance.

K — 1 possible synthesized face image sets. Therefore, we shall have K — 1 d¥(I) values (for
l=1,...,K,l # k). From the statistical viewpoint, if more than half of these d¥(I) values
are less than zero, then this means that the face recognition process regarding person k is
dominated by the nonface portion. The formal definition of the test values for person k is as

follows:

af o op(di(l) > 0;df(l) € DY) > 0.5,

Hf : p(di(l) > 0;di(l) € D}) < 0.5, (11)

where H* represents the null hypothesis, H¥ stands for the alternative hypothesis, and p(e)
here represents the probability decided under a predefined criterion e . According to the
definition of D¥, it contains K — 1 d¥(l) real values. Therefore, the rules defined in Equation
(11) will let the null hypothesis H¥ be accepted whenever the amount of d¥(I) which has a
value not less than zero is more than one half of K — 1; otherwise, the alternative hypothesis
HY will be accepted.

The rules described in Equation (11) are only for a specific class k. If they are extended

to the whole population, a global hypothesis test rule is required. The extension is trivial and
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can be written as follows:

H, : p(HYis accepted, k=1,...,K) > 0.5,

Hy, : p(HJ is accepted, k =1,...,K) < 0.5. (12)

The physical meaning of the rules described in Equation (12) is that when over half of the
population passes the null hypothesis, the global null hypothesis H; is accepted; otherwise,
the global alternative hypothesis will be accepted. When the latter occurs, this means that
the nonface portion of a face image dominates the face recognition process among the majority

of the whole population.

3.2 Second Hypothesis Testing Model

The objective of the second hypothesis testing model is to prove our assertion in an alternative
manner. In order to achieve this goal, we used the two previously defined synthesized face
image databases, Yf,C and Zf, to conduct the testing process. The metric to be defined here
is similar to D¥. That is, the metric defined for a specific feature set X" is a real-number set,

D%. The definition of DY is as follows:
Dy ={dy(1),l =1,....K,l # k| dy(1) = D(X",Y}) - D(X", Z])}. (13)

Again, for a specific feature set X* corresponding to wy, there are in total K — 1 elements
contained in D5. The main difference between D% and DY is that each d5(I) (I = 1,..., K,
| # k) in DE is a statistical measure that compares the distance between the distribution of
X" and that of Y. (extracted from a synthesized face image set which combines the middle
face portions of elements in w; and the nonface portions of their counterpart elements in wy)
with the distance between the distribution of X* and that of ZJ (extracted from another
synthesized face image set which combines the middle face portions of elements in wy and
the nonface portions of their counterpart elements in w;). Figure 4 illustrates how d&(l) is
calculated in a graphical illustrative manner. The representation of Figure 4 is the same as
that of Figure 3 except for the definition of the second term. In what follows, we shall show
why deciding either the middle face portion or the nonface portion is more important for face

recognition based on the value of d5(1).
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Figure 4: In the top rows of (a) and (b), each rectangular region together with the circle region inside
represents a face image. The mark & or [ denotes the class to which that region belongs. The feature vectors
in the middle rows of (a) and (b) are extracted from the corresponding face images (pure or synthesized). The
assemblages of all vectors (e.g. ¥ ) form normal distributions of corresponding vector sets (e.g. X k). The
bottom rows of (a) and (b) represent the difference of two distributions, which can be computed using the

Bhattacharyya distance.

From Equation (13), it is obvious that when d%(I) > 0, this means that the distribution of
X" is closer to that of Z} than to that of Y',. Otherwise, the distribution of X" is closer to
that of Y, than to that of Z¥. According to the definition of face recognition, a person should
be recognized solely based on his/her own face, no matter how he/she changes his/her hair
style or dresses. In other words, the middle face portion should dominate the distribution of
the face image set more than the nonface portion. That is, a normal face recognition process
should result in a d%(I) which has a value not less than zero. If unfortunately, the result turns
out to be d5(I) < 0, then it means that the nonface portion dominates the recognition process.

We have mentioned that for a specific class k, there are in total K — 1 paired synthesized
face image sets (corresponding to YﬁC and Zf, l=1,...,K,1# k). Therefore, we shall have
K — 1 d&(I) values. Again, if more than half of these d(I) values are less than zero, then this
means that the nonface portion dominates the face recognition process. The formal definition

of the rules for person k is as follows:

Ay - p(d5(l) > 0;d5(1) € D) > 0.5,

Hy : p(ds(l) > 0;d5(1) € D§) < 0.5, (14)
where HY represents the null hypothesis, and H5 stands for the alternative hypothesis. Ac-
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cording to the definition of D%, it is a set containing K — 1 d5(l) real values. Therefore,
the rules defined in Equation (14) will let the null hypothesis HY be accepted whenever the
number of d¥(I) which has a value not less than zero is more than one half of K — 1; otherwise,
the alternative hypothesis H¥ will be accepted.

The rules described in Equation (14) are for a specific class k. If they are extended to the

whole population, a global hypothesis test rule is required. The extension is as follows:

Hy, : p(HY is accepted, for k=1,...,K) > 0.5,

Hy, : p(HY is accepted, for k=1,...,K) < 0.5. (15)

The physical meaning of the rules described in Equation (15) is that when over half of the
population pass the null hypothesis, the global null hypothesis H, is accepted; otherwise, the
global alternative hypothesis will be accepted. When the latter is true, this means that the

nonface portion of a face image plays a major role in the face recognition process.

4 Experimental Results

In the experiments, the two above mentioned statistics-based state-of-the-art face recognition
systems [1, 2] were implemented and tested against the two proposed hypothesis testing mod-
els. The training database contained 90 persons (classes), and each class contained 30 different
face images of the same person. The 30 face images of each class were labelled and ordered
according to the orientations in which they were obtained. These orientations included ten
frontal views, ten frontal views with 15 degrees to the right, and ten frontal views with 15
degrees to the left. In the autocorrelation plus LDA approach proposed by Goudail et al. [1],
each projective feature vector obtained from a face image is 24-dimensional. As to the PCA
plus LDA approach proposed by Swets and Weng [2], each projective feature vector extracted
from a face image is 15-dimensional. Based on these feature vectors of training samples, the
two hypothesis models were tested. Since the projection axes derived through linear discrim-
inant analysis were ordered according to their discriminating capability, the first projection
axis was most discriminating and then the second projection axis. For the convenience of

visualization, all samples were projected onto the first two projection axes and are shown in
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Figures 5 and 6, respectively, for the first and second hypotheses models.

Figure 5 shows the three related distributions covered in D¥ (the first hypothesis model).
‘0’ and ‘x’ represent X* of person & and X' of person [, respectively, and ‘+’ represents Yﬁc,
whose element combines the middle face of person [ and the nonface portion of person k.
The distributions of X*, X' and Y all covered 30 elements (2-dimensional vectors). Each
distribution was enclosed by an ellipse, which was drawn based on the distribution’s scaled
variance on each dimension. Therefore, most of the feature vectors belonging to the same
class were enclosed in the same ellipse. The two most discriminating projection axes shown in
Figure 5(a) were determined using the autocorrelation plus LDA approach. It is obvious that
the distribution of Y} was closer to that of X*. This means that the nonface portions of the
set of face images dominated the distribution of the projective feature vector set. As to the
case of PCA plus LDA, which is shown in Figure 5(b), the above mentioned phenomenon was
even stronger. That is, the distribution of Y, was completely disjointed from that of X' and
almost completely overlapped that of X*. In sum, the experiments shown in Figure 5(a) and
(b) both confirmed that the nonface portion of a face image did dominate the distributions
of the 2-dimensional projective feature vectors. The experiments shown in Figure 6 are the
results associated with the second hypothesis test. From Equation (13), it is seen that the
three distributions covered in D are X", Yﬁt, and Zf. They are represented by ‘o’, ‘47,

7 respectively, in Figure 6. The result shown in Figure 6(a) was the outcome obtained

and
by applying the autocorrelation plus LDA approach. From this experiment, we find that the
distribution of X* was closer to that of Y}, than to that of ZF. As to the PCA plus LDA
approach (Figure 6(b)), the above mentioned phenomenon was, again, stronger. This means
that the distribution of Zf was completely disjointed from that of X*. Both experimental
results shown in Figure 6 also confirm that the real face portion (middle face) of a face image
“did not” play any (or only a small) role in the face recognition process.

Figures 7 and 8 showed the experimental results obtained by applying the first hypoth-
esis testing model. The data shown in Figure 7 are the results extracted by executing the
autocorrelation plus LDA approach. The data shown in Figure 8, on the other hand, are the
results extracted by performing the PCA plus LDA approach. In both cases, k£ was set to

1. That is, [ ranged from 2 to 90 in both sets of experiments. The ‘0’ sign shown in Figure
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7(a) represents the Bhattacharyya distance (vertical axis) between X* and Y, which is the
first term of d¥(l). The ‘+’ sign shown in Figure 7(a), on the other hand, represents the
Bhattacharyya distance (vertical axis, too) between X' and Y% and is the second term of
d¥(l). The results shown in Figure 7(a) reflect that from =2 to 90, the second term (‘+’) of
d¥(l) was always larger than its first term (‘0’). Therefore, we can say that for & = 1 (class
1), the probability that the first term of d§(I) (I =2,...,90) was larger than the second term
of d¥(I) is zero. Figure 7(b) shows, from class 1 to class 90, the individual probability that
the first term of d¥(l) (I = 2,...,90) was larger than the second term of d¥(l). From this
figure, it is obvious that most of the individual probabilities (ranging from 1 to 90) were zero.
Only a few individual probabilities had values very close to zeros (less than 0.05). Figure 8
shows the results obtained by performing the PCA plus LDA approach. The definition of the
‘0’ sign and that of the ‘+’ sign are the same as in Figure 7(a). One thing worth noticing is
that the PCA plus LDA approach had the ability to extract more “discriminating” projection
axes than the autocorrelation plus LDA approach did. Therefore, the phenomenon whereby
the nonface portion dominated the face recognition process was even more apparent in the
PCA plus LDA approach. This conclusion is confirmed by the individual probability values
shown in Figure 8(b). We can see that all the individual probabilities were equal to zero when
the PCA plus LDA approach was applied. From the individual probabilities shown in Figures
7(b) and 8(b), we can draw a conclusion that all the null hypotheses Hf’s (k =1,...,90) were
rejected, and that the probability of accepting HF (k= 1,...,90) was equal to zero.

As for testing of the second hypothesis model against the two state-of-the-art systems, the
results are reported in Figures 9 and 10, respectively. The results shown in Figure 9 were
obtained by performing the autocorrelation plus LDA approach. The ‘0’ sign and the ‘+’
sign represent, respectively, the Bhattacharyya distances between X* and Yﬁc and between
X" and Zf. Again, the experimental results show that the nonface portion dominated the
face recognition process. On the other hand, the experimental results shown in Figure 10
(the PCA plus LDA approach) also agreed with the above mentioned assertion. Following the
convention commonly adopted in the hypothesis testing process, the testing results for both
state-of-the-art systems [1, 2| are listed in Table 1. All the results shown in Table 1 confirm

that the nonface portions of all the testing images did play a discriminating role in the face
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recognition systems used in [1] and [2].

Face Recognition First Hypothesis Testing | Second Hypothesis Testing
Systems ng| 2 Accept ng| 2 Accept
autocorrelation + LDA | 0 | -9.49 H, 0 |-9.49 H,
PCA + LDA 0 |-9.49 H, 0 |-9.49 H,

Table 1: The experimental results for our two hypotheses models. ng is the number of successes and Z is

the test statistic.

5 Conclusions

In this paper, we have proposed a statistics-based technique to quantitatively prove that two
previously proposed face recognition systems used ”incorrect” databases. According to the
definition of face recognition, the recognition process should be dominated by the ” pure” face
portion. However, after implementing two state-of-the-art statistics-based face recognition
systems, we have shown, quantitatively, that the influence of the middle face portion on the
recognition process in their systems was much less than that of the nonface portion. That
is, the nonface portion of a face image dominated the recognition result. This outcome is
very important because it proves, quantitatively or statistically, that some of the previous
statistics-based face recognition systems have used “incorrect” face databases. Our suggestion
for future research is that a statistics-based face recognition system should base its recognition

solely on a face-only database.
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Figure 5: The distributions of 2-dimensional vectors associated with the first hypothesis model. Each node
represents the feature vector extracted from a face image, and there are 30 nodes for each person. ‘o’ and ‘x’
represent X * and X' of persons k and [, respectively. ‘+’ stands for YZ, which represents the synthesized image
by combining the middle face of person [ and the nonface portion of person k. The horizontal axis and vertical
axis in (a) and (b) are, respectively, the most discriminating and the second most discriminating projection
axes in the feature space. (a) shows the distributions of feature vectors extracted by the autocorrelation plus
LDA approach; (b) shows the distributions of feature vectors extracted by the PCA plus LDA approach. This
figure shows that ‘+’ (Y'}) was classified into class ‘o’ (X*).
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Figure 6: The distributions of 2-dimensional vectors associated with the second hypothesis model. Each
node represents the feature vector extracted from a face image, and there are 30 nodes for each person. ‘o’
represents X * of person k, ‘+’ stands for ch, which represents the synthesized face image by combining the
middle face portion of person | and the nonface portion of person k, and ‘*’ stands for Z ;“, which represents the
synthesized face image by combining the middle face portion of person k and the nonface portion of person I.
(a) shows the distributions of feature vectors extracted by the autocorrelation plus LDA approach; (b) shows

the distributions of feature vectors extracted by the PCA plus LDA approach. Both (a) and (b) confirm that

the nonface portion dominated the distribution of a face image set.
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Figure 7: The experimental results for D¥ using the autocorrelation plus LDA approach. ‘o’ is the distance
between X* and Y, and ‘+’ is the distance between X' and Y. (a) shows the values of the first term
(‘0’) and the second term (‘+’) of every df(l) in D¥, I = 2,...,90, where k = 1; (b) shows the individual
probabilities of p(d¥ (1) > 0;d¥(l) € D¥), k=1,...,90.
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Figure 8: The experimental results for D¥ using the PCA plus LDA approach. ‘o’ is the distance between
X% and Y, and ‘4’ is the distance between X' and Y. (a) shows the values of the first term (‘0’) and the
second term (‘+’) of every df(l) in D¥, | = 2,...,90, where k = 1; (b) shows the individual probabilities of
p(di(l) > 0;di(1) € DY), k=1,...,90.
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Figure 9: The experimental results for DX using the autocorrelation plus LDA approach. ‘o’ is the distance
between X* and Y, and ‘4’ is the distance between X* and ZF. (a) shows the values of the first term
(‘0’) and the second term (‘+’) of every d&(I) in D%, 1 = 2,...,90, where k = 1; (b) shows the individual
probabilities of p(dk (1) > 0;dk(l) € DY), k=1,...,90.
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Figure 10: The experimental results for D using the PCA plus LDA approach. ‘o’ is the distance between
X% and Y%, and ‘4’ is the distance between X* and ZJ. (a) shows the values of the first term (‘0’) and the
second term (‘+’) of every dk(l) in D%, 1 = 2,...,90, where k = 1; (b) shows the individual probabilities of
p(d5(1) > 0;d5(1) € D), k=1,...,90.
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