
Prototyping Sparse Fortran �� Array Intrinsics

with Standard ML Module System�

Tyng�Ruey Chuang

Institute of Information Science

Academia Sinica

Nankang� Taipei ������ Taiwan

trc�iis�sinica�edu�tw

Abstract

We report work�in�progress of using the Standard ML module system to prototype sparse For�

tran �� array intrinsic functions� We illustrate type�related issues in a high�level� source�to�source

mapping of Fortran �� array intrinsics to Standard ML� The prototype sparse library is parameter�

ized by array compression schemes� Various issues involved in using Standard ML as a prototyping

language are also discussed�

� Motivation

Implementations of high�level programming languages often rely on run�time library to support built�in

language features� For example� garbage collection routines are needed at run�time for languages sup�

porting automatic memory management� and process scheduler for languages support multithreaded

execution� These run�time libraries are often written using high�level languages themselves� A major

bene�t of using high�level languages for writing library code is that it allows rapid experimentations

of various design decisions� Sometimes the library is implemented in the source language� in which

case the library may become directly accessible to user programs� and may allow user�de�ned cus�

tomization or even replacement of the library� Though now one must make sure that the interface to

the user�customized library is type�safe� The module system of Standard ML� which allows parame�

terized and type�checked generation of library units �i�e�� structures� by using its functor facility� is an

excellent choice when experimenting with library design� even when Standard ML is not the source

nor the implementation language of the library�

We report in the paper experience in using Standard ML as a prototyping language for library

design� Our source language is Fortran �	� a language supports high�level array computation� Our

aim is to implement in Fortran �	 a library to support sparse array computation� �Dense� array

computation in Fortran �	 is well supported by array intrinsics �i�e�� language built�in procedures�

�This paper is available on�line as technical report TR�IIS������� from the Institute of Information Science� Academia

Sinica� via http���www�iis�sinica�edu�tw�






details in Section ��� Our goal can be thought of providing a customization of the array intrinsics�

but only for sparse arrays� That is� interface to both the original dense array intrinsics and our sparse

array intrinsics will be kept the same� and equally accessible to the programmers�

Sparse array computation is a challenging topic because e�cient computation depends greatly on

the data representations of the sparse arrays �i�e�� on how they are compressed�� which again depends

on the sparsity structures �i�e�� the distributions of nonzero elements� of the arrays ���� Sparsity

information� however� may not be available at compiletime� Even if an array�s sparsity structure is

available at compiletime� its structure may change over time during execution� which makes it more

di�cult for selecting good compression schemes� In parallel sparse array computation� in addition to

compression schemes� one also faces the problem of selecting proper distribution schemes�

For programmers� it will be easier if the languages they use provide run�time support of automatic

selection of data representations for sparse arrays� However� current high�level array languages either

do not support sparse arrays �as in APL and Fortran �	�� or only provide �xed compression schemes

�as in MATLAB �����

� Fortran �� Arrays and Array Intrinsics

Fortran �	 is a much improved language over Fortran ��� It provides rich intrinsic procedures to

support whole array operations� These intrinsic procedures for arrays are called array intrinsics� Array

intrinsics encourage a style of parallel programming known as data parallelism� High Performance

Fortran� which is based on Fortran �	� provides further facility for customizable data distribution

�i�e�� array partition� and processor allocation� and is perhaps the only parallel programming language

supported by major computer manufacturers �as well as independent software vendors�� Fortran �	

has been gradually accepted to the numerical computing community� as exempli�ed by the appearance

of the books like Numerical Recipes in Fortran �� ����

Each array in Fortran �	 has a shape� referring to both its rank �the number of dimensions� and

extents �the lengths along each dimension�� The shape of an array is speci�ed by a rank�one integer

array whose elements are the extents along each dimension� The size of an array is the total number of

elements in the array� The rank of an array cannot be larger than �� Array elements are homogeneous

and can be of intrinsic data types �such as integer� real� complex� logical� and character� or

derived data types �i�e�� user�de�ned data types��

Array operations are well supported in Fortran �	 because the language provides the following

language features�

Better array notations� For a n� n real array a declared by

real� dimension �n� n� �� a

Then the notation a��� �� refers to its �rst row� and a��� n� its last column� Further�

a���n��� ��n��� is the sub�array whose elements each has both an odd row index and an

even column index in a� These are called array sections and can appear at either sides of an

assignment�

�



Elemental intrinsic operations� Most Fortran �	 intrinsic functions �such as abs� �� etc�� are

elemental� meaning that the argument can be an array of arbitrary shape as well as a scalar

value� For example� the assignment a 	 a � a doubles the value of each element in array a�

Note that it is required the two array operands to the � function are of the same shape� That

is� they must be conformable� Storage for arrays can be be allocated either at compile�time or

run�time� The life�time of run�time allocated arrays can be controlled by programmers by using

storage management procedures allocate and deallocate �which are similar to malloc and

free in C��

Most Fortran �	 intrinsic functions are generic as well� For example� � can be used for integer

number addition and real number addition� In Fortran �	� one can create new� user�de�ned�

generic functions by overloading existing function names or operators� However� Fortran �	

provides no easy facility to de�ne new� user�de�ned� elemental functions� This is one of the

reasons why we use Standard ML to prototype sparse array intrinsics� Standard ML provides a

parameterized module facility from which elemental functions can be easily built up�

Transformational array intrinsics� Fortran �	 provides several powerful array transformation pro�

cedures� such as the following�

merge returns an conformable array whose elements are selected from two source arrays based

on a boolean mask array�

spread returns an array whose rank is one greater than the input array by duplicating the input

array along some given dimension�

pack packs an array of arbitrary shape into an rank�one array using a mask array�

unpack unpacks an rank�one array into an array of arbitrary shape using a mask array�

reshape maintains the Fortran order �i�e�� column major� of the elements in the input array

but puts them in an array of di�erent shape�

cshift returns the result of circularly shifting every one�dimensional sections of the input array�

eoshift returns the result of end�of shifting every one�dimensional sections of the input array�

sum� product� � � � are reduction operations�

etc�

These intrinsics can be used to write concise array expressions� As an example �taken from �����

the calculation

wi �
nX

j��

jxi � xj j� i � 
� � � � � n

can be realized as

real� dimension �n� �� x� w

real� dimension �n� n� �� a






a 	 spread�x� dim	��ncopies	n� � spread�x� dim	�� ncopies	n�

w 	 sum�abs�a�� dim	��

�



of which the �rst expression can be illustrated by

ai�j � xi � xj �

�
BBBB�

x� x� x� � � �

x� x� x� � � �

x� x� x� � � �
���

���
���

� � �

�
CCCCA

�

�
BBBB�

x� x� x� � � �

x� x� x� � � �

x� x� x� � � �
���

���
���

� � �

�
CCCCA

Detailed descriptions of Fortran �	 array intrinsics can be found in standard reference �such as �
��

and are omitted here�

� Standard ML as a Prototyping Language

Fortran �	 does supports modular programming development� Its module facility allows one to de�ne

the interface of an abstract data type without revealing its implementation� Program units can be

type�checked at link�time to assure type�safe linkage of imported modules� �Though not necessary

every Fortran �	 compiler performs this check� Still� this is a big improvement over C� so to speak��

User�de�ned functions�procedures can be overloaded to maintain ad hoc polymorphism�

Fortran �	 further supports pointers �again� safer than C�� recursive user�de�ned data types�

recursive functions and procedures� passing functions�procedures as arguments �but not returning as

results�� dynamic storage allocation�deallocation� Combining these language features with its module

facility� one can develop very sophisticated user library in Fortran �	�

We are in the process of building in Fortran �	 a library to support sparse array intrinsics ���� By

sparse array intrinsics� we mean that sparse arrays are used in the same ways as �dense� arrays in

Fortran �	� That is� convenient notations can be used� elemental intrinsic functions can be applied to

sparse arrays� and transformational array intrinsics applies to sparse arrays as well� Being a library�

there are certain restrictions on the level of convenience it can achieve� Still� we are able to provide a

library that supports the following style of sparse array programming�

type �sparse�d�real� �� x� w

type �sparse�d�real� �� a

call bound �x� n�

call bound �w� n�

call bound �a� n� n�






a 	 spread�x� dim	��ncopies	n� � spread�x� dim	�� ncopies	n�

w 	 sum�abs�a�� dim	��

where we take the example in Section � and rewrite it using our sparse library� Notice that functions

spread� sum� abs� � have been overloaded to support sparse arrays� Also notice that storage alloca�

tion �call bound� have to be performed manually �since Fortran �	 does not support initialization

constructors��

However� we gradually �nd out that Fortran �	 is not a good language for building sparse array

intrinsic library� The main two reasons are the following�

�



� Although Fortran �	 is a typed language� it is not suitable for programming about types� For

a sparse array intrinsic library to fully function� it has to support arrays of every ranks� as well

as every applicable intrinsic data types� This means that for the � function� one has to de�ne

�
 di�erent addition functions �� ranks� � intrinsic data types � integer� real� complex� and

overload � to the �
 functions� �Let�s call this process the elementalization of the � operator��

Most of the code in the �
 functions looks the same� Since Fortran �	 is a monomorphic language�

one really cannot do much here�

� Fortran �	 does not have automatic storage management� Managing storage for the various

compression schemes of sparse arrays becomes tiresome� One major goal of the sparse library is to

experiment di�erent kinds of data representations of sparse arrays� and the interactions between

them and the various transformational array intrinsics �reshape� cshift� etc��� The burden of

manual management of storage� and the bugs so introduced� prevents quick experimentations of

new compression schemes�

Standard ML� on the other hand� has a polymorphic type system and supports automatic memory

management� These two features along �lls the above two gaps in the Fortran �	 language� and allow

one to quickly devise new ways of constructing sparse array routines� The parameterized module

facility in Standard ML further helps us prototype the sparse library� Functors in Standard ML allow

one to specify the construction of a structure �library code� based on the signature �library interface�

of other structures or functors� The construction can be applied as needed but the speci�cation can

be checked for type correctness in advance� This allows one to automatically generate type�safe sparse

library code based on existing sparse library code�

Take the example of elementalization of the � operator above� One can achieve this easily in

Standard ML by the following� One �rst de�nes a signature INTRINSIC for intrinsic data type a

signature ELEMENTAL�INTRINSIC for elementalized intrinsic data type� a signature BLOCK for whole

array operations� One then specify a functor Elemental that accept structures of INTRINSIC and

BLOCK signatures and produce a structure of signature ELEMENTAL�INTRINSIC� Finally the various

di�erent addition functions can be produced� automatically� by applying the Elemental functor to

various combinations of INTRINSIC and BLOCK structures� The following is a sample code segment�

signature INTRINSIC 	

sig

type t

val � � t � t � t

val � � t � t � t

val ABS � t � t






end

signature ELEMENTAL�INTRINSIC 	

sig

type t

�



type �a array

val � � t array � t array � t array

val � � t array � t array � t array

val ABS � t array � t array






end

signature BLOCK 	

sig

type �a array

val map�� ��a � �b� � �a array � �b array

val map�� ��a � �b � �c� � �a array � �b array � �c array

val map�� ��a � �b � �c � �d� � �a array � �b array � �c array � �d array

val fold� �a � ��a � �a � �a� � �a array � �a






end

functor Elemental �structure B� BLOCK� structure I� INTRINSIC��� ELEMENTAL�INTRINSIC

where type t 	 I
t

and type �a array 	 �a B
array

	

struct

type t 	 I
t

type �a array 	 �a B
array

val op � 	 fn �A� B� 	� B
map� �I
�� A� B�

val op � 	 fn �A� B� 	� B
map� �I
�� A� B�

fun ABS A 	 B
map� �I
ABS� A�






end

One thing that is supported in Fortran �	 but lacking in Standard ML is the mechanism to simul�

taneously overload the � operator at the top�level to the various addition functions in the resulting

structures� But one can argue that overloading is just syntactic sugaring� and is less important than

automatic code generation in library design� More examples of parameterized library code generation

is described in the next section�

� Mapping Fortran �� Arrays to Standard ML

Our objectives in using Standard ML to prototype a sparse array library is to allow quick experimen�

tations of various data representation schemes for sparse arrays� and to observe their e�ects on the

�



implementation of various Fortran �	 array intrinsics �especially for the higher�rank� transformational

array intrinsics�� We are not aiming at a perfect imitation of the full Fortran �	 array intrinsics in

Standard ML� The �rst priority is to design Standard ML functors that are parameterized by various

design decisions in the construction of a sparse library� The other priority is to model type�related

properties of Fortran �	 arrays in the prototype� We want to use the prototype to express Fortran

�	�style array computation in Standard ML� and to check the array expression �now in Standard ML�

at di�erent stages �compile�time or run�time� for conformance to various Fortran �	 rules about array

properties�

Let us address the type�related properties �rst� For example� Fortran �	 check the rank of an

array expression at compile�time� so we want the prototype to check this property at compile�time as

well� It causes a compile�time error to add a rank�one array to a rank�two array in Fortran �	� so the

corresponding array addition expression in Standard ML will cause a static elaboration error� Fortran

�	� however� checks whether or not the two arrays are of the same shapes �and same size� only at run�

time� Therefore� the prototype should implement this check at run�time too� Syntactic sugaring� such

as operator overloading and automatic type coercion� however� will not be addressed in the prototype

and will need explicit resolutions using long identi�ers �i�e�� structure�name
operator�name� and

type�conversion functions�

Since the rank of an array is an elaboration�time property in the Standard ML prototype� it is

only nature to designate � structures for arrays with one structure for arrays of each rank� For now�

we can call the � structures R�� R�� � � � � R�� Note that it is necessary to refer to Rk�� inside Rk because

the type of subscript operation in Rk will refer to the array type in Rk��� The � structures can have

di�erent signatures� but that will lead to code explosion since each of the functors that accept array

structures will need seven di�erent versions just to be type�checked� With a little twist� we use a single

signature for the � structures� and generate the � structures by successively iterative applications of

an array�constructing functor� This part of the prototype code looks like the following�

signature BLOCKS 	

sig

structure B� BLOCK

include BLOCK

val � � �a B
array � int � �a array

val � � �a array � int � �a B
array

end

functor Block �� �� BLOCK �� Fake scalars as arrays� ��

where type �a array 	 �a �� But let the SML type checker know�� ��

	

struct

type �a array 	 �a

fun map� �f� A� 	 f A

fun map� �f� A� B� 	 f �A� B�

�



fun map� �f� A� B� C� 	 f �A� B� C�

fun fold �e� f� A� 	 A






end

functor Blocks �structure Base� BLOCK� structure Indexable� VECTOR��� BLOCKS

where type �a B
array 	 �a Base
array

	

struct

structure B 	 Base

type �a array 	 �a B
array Indexable
vector

fun � �a� n� 	 R
tabulate �n� fn i 	� a�

fun � �A� i� 	 R
sub �A� i�

infix � �

fun map� �f� A� 	 R
tabulate �R
length A� fn i 	� B
map� �f� A�i��






end

structure R� 	 Block ��

structure R� 	 Blocks �structure Base	R�� structure Indexable 	 


�






structure R� 	 Blocks �structure Base	R�� structure Indexable 	 


�

A little complication can occur because the ranks of the resulting arrays of some Fortran �	 array

intrinsic function may actually depend on the sizes of its argument arrays� For example� for any

array A of size �� reshape �A� ���� ���� will return a rank�two array of shape ���� ���� �Note�

���� ��� is the Fortran �	 notation for a constant� rank�one integer array of elements � and ��� While

reshape �A� ������ will return a rank�one array� Recall that size is not a static property of a Fortran

�	 array� Fortran �	 solves this problem by requiring those argument arrays to be of constant sizes

�e�g�� ���� ��� has constant size �� and ����� has constant size 
�� hence allows static rank�checking

of the array expression� However� it is di�cult to specify and check the constant size requirement in

our Standard ML prototype because the prototype is a library� not a compiler�

Our workaround is to provide � di�erent reshape functions� with one for each possible size of the

second argument�

val reshape�� �a array � int � �a R�
array

val reshape�� �a array � �int � int� � �a R�
array

val reshape�� �a array � �int � int � int� � �a R�
array

val reshape�� �a array � �int � int � int � int� � �a R�
array

val reshape�� �a array � �int � int � int � int � int� � �a R�
array

val reshape�� �a array � �int � int � int � int � int � int� � �a R�
array

val reshape�� �a array � �int � int � int � int � int � int � int� � �a R�
array

Note that the second array argument is now realized as a tuple in the prototype�

�



Now let us return to the issues of using parameterized Standard ML functors to model design

decisions when building a sparse library� Perhaps the most important decision is about how the arrays

are compressed� Currently we are only experimenting various compression schemes for vectors �i�e��

rank�one arrays� and progressively compress an array� rank after rank� �This rules out the possibility

of compressing higher�rank arrays by k�way search trees with whole array indices as keys� for example��

However� in our design� the compression at each rank may not be the same� All compression schemes

are currently speci�ed by the VECTOR signature �as from the SML�NJ Basis Library�� but need

di�erent implementations� The part of the code looks like�

signature F��ARRAY 	

sig

structure R�� ARRAYS

structure R�� ARRAYS

structure R�� ARRAYS

structure R�� ARRAYS

structure R�� ARRAYS

structure R�� ARRAYS

structure R�� ARRAYS

sharing type R�
B
array 	 R�
array

and type R�
B
array 	 R�
array

and type R�
B
array 	 R�
array

and type R�
B
array 	 R�
array

and type R�
B
array 	 R�
array

and type R�
B
array 	 R�
array






val � � �a � int � �a R�
array �� array constructor ��

val �� � �a � �int � int� � �a R�
array �� array constructor ��






val ������� � �a � �int � int � int �int � int � int � int� � �a R�
array

val � � �a R�
array � int � �a �� array indexing ��

val �� � �a R�
array � �int � int� � �a �� array indexing ��






val ������� � �a R�
array � �int � int � int �int � int � int � int� � �a

end




 


 




functor F��Array �structure Indexable�� VECTOR�

structure Indexable�� VECTOR�

structure Indexable�� VECTOR�

structure Indexable�� VECTOR�

structure Indexable�� VECTOR�

structure Indexable�� VECTOR�

�



structure Indexable�� VECTOR�

structure Integer� INTRINSIC where type t 	 int�

structure Real� INTRINSIC where type t 	 real�

structure Logical� INTRINSIC where type t 	 bool�

functor Block� fBLOCK�

functor Blocks� fBLOCKS�

functor Elemental� fELEMENTAL�

functor Arrays� fARRAYS� �� F��ARRAY

where type �a R�
B
array 	 �a

	

struct

local

structure B� 	 Block ��

structure B� 	 Blocks �structure Base	B�� structure Indexable 	 Indexable��

structure B� 	 Blocks �structure Base	B�� structure Indexable 	 Indexable��






structure B� 	 Blocks �structure Base	B�� structure Indexable 	 Indexable��

in

structure R� 	 Arrays �structure Blocks 	 B�� structure Integer 	 Integer�

structure Real 	 Real� structure Logical 	 Logical�

functor Elemental 	 Elemental�

structure R� 	 Arrays �structure Blocks 	 B�� structure Integer 	 Integer�

structure Real 	 Real� structure Logical 	 Logical�

functor Elemental 	 Elemental�






structure R� 	 Arrays �structure Blocks 	 B�� structure Integer 	 Integer�

structure Real 	 Real� structure Logical 	 Logical�

functor Elemental 	 Elemental�






infix � � �� ��� ���� ����� ������ �������

infix � � �� ��� ���� ����� ������ �������

val op � 	 R�
�

fun op �� �x� �a�b�� 	 R�
� �x � b� a�






fun op ������� �x� �a�b�c�d�e�f�g�� 	 R�
� �x ������ �b�c�d�e�f�g�� a�

val op � 	 R�
�

fun op �� �A� �a�b�� 	 R�
� �A�a� � b






fun op ������� �A� �a�b�c�d�e�f�g�� 	 R�
� �A�a� ������ �b�c�d�e�f�g�

end

end

In the above� signature ARRAYS is similar to BLOCKS but with more detailed speci�cation� and Arrays a

functor that produces a structure of ARRAYS signature� Notice the series of sharing type constraints


	



in signature F��ARRAY� and the additional where type assurance for the resulting F��ARRAY signature

for functor F��Array� Chaining the � array structures in this way assures that arrays of di�erent ranks

admit certain kinds of interoperability between them �i�e�� the lower�rank sub�arrays of a higher�rank

array have the same implementations of lower�rank arrays��

Also notice in the above that block Bk always use compression scheme Indexablek� This need

not be the case� We can have fBigi compressed using a permutation of the compression schemes

fIndexableigi� However� in order to specify this we need a functor that is parameterized by values

from a set of constants� and allows conditional elaboration in the functor body� �A permutation is an

array of constants 
� �� � � � � n� though not necessarily in the exact order�� The current Standard ML

module system does not support this�

� On�going and Related Work

We discuss here several pragmatic issues when using Standard ML as a prototyping language� In this

paper� Standard ML is a prototyping language in the sense that an expression in the source language

�Fortran �	 in this case� has a corresponding expression in Standard ML� and the operational semantics

of the source expression can be observed by evaluating the corresponding Standard ML expression� In

our usage of Standard ML as a prototype language� the smaller the semantic di�erence between the

source language and Standard ML� the easier the prototyping process� Our e�ort is greatly helped by

the facts that both Fortran �	 and Standard ML are strict and statically typed languages� and that

Fortran �	 array expressions are often written in a functional style�

One problem with this style of prototyping is that� though operational semantics of the two ex�

pressions have a direct mapping� their performance characteristics may be quite di�erent� This e�ects

one�s judgment of whether or not one has reached a good prototype because performance of its coun�

terpart in the source language may be much slower�faster than the prototype� A similar problem

occurs when one wants to provide an implementation as described in the prototype using the source

language� How should the translation be done� Manual mapping is tedious and error�prone� Worst

yet� manual translation may be di�cult since the prototyping language �Standard ML� often is of

much �higher�level than the source language �Fortran �	�� In general� one may have to develop an

automatic translator from the prototyping language to the source language� This task can be greatly

reduced if the prototyping language has an �open implementation such that user�de�ned functions

can be hooked to the compiler�interpreter� We are evaluating the feasibility of using the �visible

compiler of Standard ML of New Jersey� Version 
	�� to help the translation back to Fortran �	�

Chen and Cowie used Standard ML to prototype Fortran �	 compilers for massively parallel

machines ���� However� our perspective of a prototyping process is quite di�erent from theirs� They

basically used Standard ML as a high�level implementation language for compiling a program from the

source language �Fortran �	� to a program in the target language �assembly code�� We use Standard

ML as both the implementation language and target language� and the �compilation process is a high�

level source�to�source translation to be performed by the users� The eventual goal of our prototype�

which is not yet completed� will be to produce a library in the source language� In short� we design

libraries while they implement compilers�

Leroy implemented a Standard ML�like module system as a functor parameterized by the base







language and its associated type�checking functions ���� The implementation is in Caml �Special

Light�� a Standard ML�like language� One can say that he provided a prototype for a Standard ML�

like module system in Caml� while we provided a prototype for sparse� Fortran �	�like array intrinsics

in Standard ML� The two e�orts share a similar perspective of the prototyping process and both use

Standard ML�like languages�

References

�
� Jeanne C� Adams� Walter S� Brainerd� Jeanne T� Martin� Brain T� Smith� and Jerrold L� Wagener�

Fortran �� Handbook� Intertext Publications�McGrawHill Inc�� 
����

��� Aart J� C� Bik and Harry A� G� Wijsho�� Automatic data structure selection and transformation

for sparse matrix computations� IEEE Transations on Parallel and Distributed Systems� �����
	�


��� February 
����

��� Marina Chen and James Cowie� Prototyping fortran��	 compilers for massively parallel machines�

In Proceedings of the ACM SIGPLAN ��� Conference on Programming Language Design and

Implementation� pages ��
	�� San Francisco� California� USA� June 
���� ACM Press�

��� TyngRuey Chuang� RongGuey Chang� and Jenq Kuen Lee� Sampling and analytical techniques

for data distribution of parallel sparse computation� In Eighth SIAM Conference on Parallel

Processing for Scienti�c Computing� Minneapolis� Minnestota� USA� March 
���� � pages� SIAM

Press�

��� John R� Gilbert� Cleve Moler� and Robert Schreiber� Sparse matrices in MATLAB� Design and

implementation� SIAM Journal on Matrix Analysis and Applications� 
��
���������� January


����

��� Xavier Leroy� A modular module system� Research Report ����� INRIA� France� April 
����

��� William H� Press� Saul A� Teukolsky� William T� Vetterling� and Brian P� Flannery� Numerical

recipes in Fortran ��� The Art of Parallel Scienti�c Computing� Cambridge University Press� 
����


�


