
Cleaning Policies in Mobile Computers Using Flash Memory1

Mei-Ling Chiang
†‡

 Paul C. H. Lee
‡
 Ruei-Chuan Chang

†‡

Department of Computer and Information Science
†

National Chiao Tung University,
Hsinchu, Taiwan, ROC

Institute of Information Science
‡

Academia Sinica, Taipei, ROC

Abstract

Flash memory shows promise for use in storage devices for mobile computers.

However, flash memory cannot be overwritten unless erased in advance. Erase

operations are slow that usually decrease system performance, and consume power.

For power conservation, better system performance, and longer flash memory lifetime,

system support for erasure management is necessary. In this report, a non-update-in-

place scheme is proposed to implement a flash memory server. A new cleaning policy is

used to reduce the number of erase operations and to evenly wear out flash memory.

The policy uses a fine-grained method to effectively cluster hot data and cold data in

order to reduce cleaning overhead. Performance evaluations show that erase operations

are significantly reduced and flash memory is evenly worn.

Keywords: Flash Memory, Cleaning Policy, Mobile Computer, and Embedded Systems

1. Introduction

Flash memory is nonvolatile that retains data even after power is turned off and consumes relatively

little power. It provides low latency and high throughput for read accesses. Besides, flash memory is

small, lightweight, and shock resistant. Because of these features, flash memory is promising for use

in storage devices for mobile computers, handheld computers, and personal digital assistants (PDAs)

[Ballard, 1994; Halfhill, 1993].

1 This work is a part of Ramos project for improving flash-memory utilization and reducing cleaning costs. This report
is also submitted to Journal of Systems and Software and is accepted for publications.

�

However, flash memory requires additional system support for erasure management because of the

hardware characteristics [Caceres et al., 1993; Diper and Levy, 1993; Douglis et al., 1994; Intel, 1994;

Intel, 1997; Kawaguchi et al., 1995; Wu and Zwaenepoel, 1994] shown in Table 1. Flash memory is

partitioned into segments2 defined by hardware manufacturers (e.g., 64 Kbytes or 128 Kbytes for

Intel Series 2+ Flash Memory Cards [Intel, 1994; Intel, 1997] and 512 bytes for SanDisk flash

memory cards [SanDisk, 1993]). Segments cannot be overwritten unless erased in advance. The erase

operations can only be performed on full segments and are slow that usually decrease system

performance and consume power. Power conservation is a critical issue for mobile computers.

Segments also have limited endurance (e.g., 1,000,000 erase cycles for the Intel Series 2+ Flash

Memory Cards). Therefore, erase operations must be avoided for power conservation, better system

performance, and longer flash memory lifetimes. Besides, data must be written evenly to all segments

to avoid wearing out specific segments to affect the usefulness of the entire flash memory, that is

usually named as even wearing or wear leveling.

Since segments must be erased in advance before updating, updating data in place is not efficient.

2 “Segment” is used here to represent hardware-defined erase block and “block” to represent software-defined block.

Read Cycle Time 150 ~ 250 ns

Write Cycle Time 6 ~ 9 us/byte

Block Write Time 0.4 ~ 0.6 sec

Block Erase Time 0.6 ~ 0.8 sec

Erase Block Size 64 Kbytes or 128 Kbytes

Erase Cycles Per Block 100,000 ~ 1,000,000

Table 1: Flash memory characteristics.

Write() In-place-update()

{ {

 If new write { Read all data in the segment into a system buffer;

 Allocate a free block; Update data in the system buffer;

 Write data into the free block; Erase the segment;

 } else Write back all data from system buffer to segment;

 In-place-update() }

}

Figure 1: Operations for updating data in place.

�

In flash memory that has large segments [Intel, 1994; Intel, 1997], all data in the segment to be

updated must first be copied to a system buffer and then updated. After the segment has been erased,

all data must be written back from the system buffer to the segment. Figure 1 shows the detailed

operations for in-place update. Therefore, if every update is performed in place, then performance is

poor since updating even one byte requires one slow erase and several write operations, and flash

memory blocks of hot spots would soon be worn out. However, storage systems cannot avoid data

updating. Besides, some systems or applications exhibit locality of accesses. For example, the access

behavior of a UNIX file system has such high locality that 67-78% of the writes are to metadata and

most of the metadata updates are synchronous [Ruemmler and Wilkes, 1993].

To avoid having to erase during every update, updates are not performed in place in many systems

[Kawaguchi et al., 1995; Torelli, 1995; Wu and Zwaenepoel, 1994]. Data are updated to empty

spaces in flash memory and obsolete data are left at the same place as garbage, which a software

cleaning process later reclaims. The operations of cleaning process involve three stages as shown in

Figure 2. The cleaning process first selects a victim segment and then identifies valid data that are not

obsolete in the victim segment. After valid data are migrated into another empty spaces in flash

memory, the segment is erased and available for rewriting. Updating data is efficient when cleaning

can be performed in the background. Figure 3 shows the detailed operations for non-in-place update

and cleaning process.

o b so le te b lo c k s

s e g m e n ts

s e g m e n ts

2 . C o p y o u t v a l id b lo c k s in t h e v ic t im
s e g m e n t to f re e f l a s h s p a c e

b e fo r e c le a n in g

c le a n in g

1 . S e le c t a v ic t im s e g m e n t t o c le a n

3 . E ra se th e v ic ti m s e g m e n t

u se d fr e e

Figure 2: Three-stage operations of cleaning process.

�

Cleaning policies determine when to clean, which segments to clean, and where to write data.

There are several cleaning policies in disk-based storage systems that use non-in-place update scheme

[Blackwell et al., 1995; Matthews et al., 1997; Rosenblum, 1992; Rosenblum and Ousterhout, 1992;

Seltzer et al., 1993; Wilkes et al., 1996]. They always write data sequentially as a log, or collect data

and write several segments as a whole. However, flash memory is free from seek penalty and

rotational latency, but has the hardware characteristics of limited endurance, bulk erase, and slow

erase. Therefore, cleaning policies dedicated to flash memory were either newly proposed [Wu and

Zwaenepoel, 1994] or modified from existing policies [Kawaguchi et al., 1995]. Their experimental

results showed that their policies were sensitive to data access behaviors and able to reduce large

number of erasures.

In this report, we propose a new cleaning policy, the Cost Age Times (CAT), to reduce the

number of erase operations performed and to evenly wear flash memory. CAT differs from previous

work in that CAT takes even wearing into account and selects segments for cleaning according to

cleaning cost, ages of data in segments, and the number of times the segment has been erased. CAT

also employs a fine-grained data clustering method to reduce cleaning overhead.

A Flash Memory Server (FMS) with various cleaning policies has been implemented to

demonstrate the advantage of CAT policy. Experimental results show that CAT policy significantly

Write()
{
 Allocate a free block; (data placement)
 If new write
 Write data into the free block;

else {
 /* perform the non-in-place-update */
 Mark the obsolete data as invalid;

 Write data into the free block;
 }
}

Cleaning()
{
 Select a victim segment for cleaning; (segment selection)
 Identify valid data in the victim segment;
 Copy out valid data to another clean flash memory spaces; (data redistribution)
 Erase the victim segment;
 Enqueue the victim segment to free segment lists that are available for rewriting;
}

Figure 3: Non-in-place update and cleaning operations.

�

reduced the number of erase operations and the overhead in cleaning, ensuring evenly wear flash

memory. Under high locality of references, CAT policy outperformed the greedy policy [Kawaguchi

et al., 1995; Rosenblum, 1992; Rosenblum and Ousterhout, 1992; Seltzer et al., 1993; Wu and

Zwaenepoel, 1994] by 54.93%, and outperformed the cost-benefit policy [Kawaguchi et al., 1995] by

28.91% in reducing the number of erase operations performed. Trace-driven simulation was also

performed to explore in detail the impact of data access patterns, utilization, flash memory size,

segment size, segment selection algorithms, and data redistribution methods on cleaning. We find that

data redistribution methods have the most significant impact on cleaning and have more impact than

segment selection algorithms, which is less discussed in previous research. The proposed fine-grained

data clustering outperformed the other methods by a large margin.

2. Issues of Flash Memory Cleaning Policies

We describe issues of cleaning policies in detail in Section 2.1 and describe the flash memory

cleaning cost used to measure the effectiveness of cleaning policies in Section 2.2.

2.1 Issues of Cleaning Policies

There are many policies that control the cleaning operations:

When When is cleaning started and stopped?

Which Which segment is selected for cleaning? One may select a segment with the largest amount

of garbage or select segments using information about segment data, such as age, update

times, etc. This is referred to as segment selection algorithm.

What What size a segment should use? Segment size affects cleaning performance since the

larger a segment is the more migration of live data in the segment to be cleaned.

How many How many segments should be cleaned at once? The more segments are cleaned at

once, the more the valid data can be reorganized. However, cleaning several segments at

once needs a large buffer to accommodate all valid data. This also delays availability of

clean segments for a long time. Blocks in cleaning segments may be deleted or modified

soon after cleaning; this results in useless migration.

How and where How should valid data in the cleaned segment be written out? Where is the data

written out? This is referred to as data redistribution. There are various ways to reorganize

valid data, such as enhancing the locality of future reads by grouping blocks of similar age

�

together into new segments or grouping related files together into the same segment, etc.

Where Where are data allocated in flash memory? This is referred to as data placement. One may

vary the allocation according to different types of data.

Therefore, we divide cleaning policies into three problem areas: segment selection, data redistribution,

and data placement.

2.2 Cleaning Costs

The goal of cleaning policy is to minimize cleaning cost. The cleaning costs include erasure cost and

the migration cost for copying valid data to free spaces in other segments according to the formula:

Cleaning Cost Flash Memory = Number of Erase * (Erase Cost + Migrate Cost valid data).

The cost of each erasure is constant regardless of the amount of valid data in the segment being

cleaned, while migration cost is determined by the amount of valid data in the segment being cleaned.

The larger the amount of valid data is, the higher the migration cost. However, the cost to erase a

segment is much higher than to write a whole segment. The erasure cost dominates the migration cost

in terms of operation time and power consumption. Therefore, the number of erase operations

determines the cleaning costs. For better performance, longer flash memory lifetime, and power

conservation, the primary goal is to minimize the number of erase operations. The second goal is to

minimize the number of blocks copied during cleaning. This is different from the goal of cleaning

policies in disk-based and RAM-based systems, which have no extra erase operations at all.

3. Flash Memory Cleaning Policies

The existing cleaning policies are introduced in Section 3.1 and the proposed CAT policy is presented

in Section 3.2.

3.1 Existing Cleaning Policies

There are several segment selection algorithms. The greedy policy always selects segments with the

largest amount of garbage for cleaning, hoping to reclaim as much space as possible with the least

cleaning work. The cost-benefit policy [Kawaguchi et al., 1995] chooses to clean segments that

maximize the formula:
u

uage

2

)1(* , where u is segment utilization and (1-u) is the amount of free

space reclaimed. The age is the time since the most recent modification (i.e., the last block

�

invalidation) and is used as an estimate of how long the space is likely to stay free. The cost of

cleaning a segment is 2u (one u to read valid blocks and the other u to write them back). In cost-

benefit policy for disk, the cost is (1+u) as described in [Rosenblum, 1992; Rosenblum and

Ousterhout, 1992; Seltzer et al., 1993]. Though greedy policy works well for uniform access, it was

shown to perform poorly for high localities of reference [Kawaguchi et al., 1995; Rosenblum, 1992;

Rosenblum and Ousterhout, 1992; Seltzer et al., 1993; Wu and Zwaenepoel, 1994]. Cost-benefit

policy performs well for high localities of reference; it does not perform as well as greedy policy for

uniform access [Rosenblum, 1992; Rosenblum and Ousterhout, 1992; Seltzer et al., 1993].

There are several methods to redistribute valid data in the cleaned segment. These methods

assume hot data are recently referenced data that have high possibility to be accessed and then quickly

become garbage. Therefore, they all try to gather hot data together to form the largest amount of

garbage to reduce cleaning cost. The age sort used in Log-Structured File System (LFS) [Rosenblum,

1992; Rosenblum and Ousterhout, 1992; Seltzer et al., 1993] sorts valid data blocks by age before

writing them out to enforce the gathering of hot data. For the better effect, several segments are

cleaned at once. The separate segment cleaning proposed in Flash Based File System [Kawaguchi et

al., 1995] uses separate segments in cleaning: one for cleaning not-cold segments and writing new

data, the other for cleaning cold segments. The cold segment is defined as the cleaned segment in

which utilization is less than the average utilization of file system. The separate segment cleaning was

shown to perform better than when only one segment is used in cleaning, since hot data are less likely

to mix with cold data.

3.2 The Proposed CAT Policy

The principle of CAT policy is to cluster data according to data type. Since a flash segment is

relatively large, data blocks in a segment can be classified as three types according to their stability as

shown in Table 2: read-only, cold, and hot. Read-only data once created are never modified. Cold

data are modified infrequently, whereas hot data are modified frequently. Upon cleaning, before a

segment is reclaimed, all valid data in the cleaned segment are migrated to empty spaces in flash

memory. Those valid data may be read-only, hot, or cold. There are three possible situations for the

valid data in the cleaned segment:

�

� Read-only data mix with writable data

If the cleaned segment contains read-only data, all read-only data are migrated to another new

segment in flash memory. If the new segment is selected for cleaning, then those read-only data

previously migrated will be migrated again. This situation is illustrated in Figure 4, in which

read-only data in the cleaned segments are migrated again and again. If all read-only data are

gathered and allocated in segments especially for read-only data, then segments gathered with

all read-only data will never be selected for cleaning. The result is that no read-only data will be

copied during cleaning process.

� Cold data mix with hot data

If the cleaned segment contains cold data and hot data, since cold data are updated less

frequently, cold data have high possibility to remain valid at the cleaning time and thus are

migrated during cleaning process. Figure 5 illustrates this situation. If hot data and cold data

are gathered separately so that segments are either full of all hot data or all cold data, then

Dynamic

Stable (slow-changing) Read-only Cold

Non-stable (fast-changing) X Hot

Table 2: Classification of data according to their stability.

B is fi lle d w ith n e w ly -w rit te n
 h o t d a ta

B is se lec ted to b e c le an e d

A is se le c te d to b e c le an ed

h o t d a ta a re u p d a ted

re a d -o n ly d a ta a re co p ied o u t

re a d -o n ly d a ta a re co p ied o u t
 a g a in

R R R RR RR R

H HHHH HR RR RR RR R HH

R RR RR RR R

R RR RR RR R

(1)

(2)

(3)

(4)

f la sh se g m e n t A

f la sh se g m e n t C

f la sh se g m e n t B

f la sh se g m e n t B

fre eH h o t d a taR re a d -o n ly d a tao b so le te

Figure 4: Repeatedly migrating read-only data when they are mixed with dynamic data.

�

segments containing all hot data will soon come to contain the largest amount of invalidated

blocks because hot data are updated frequently and soon become invalidated. Cleaning these

hot segments can minimize the migration cost since the least amount of valid data is copied and

the largest amount of garbage is reclaimed.

� Data have high locality of reference

If data in the cleaned segment exhibit high locality of reference, it is possible that these hot data

are valid at the cleaning time, while soon after being migrated to another empty flash segment,

these hot valid data are updated and become garbage. This situation results in useless

migration as illustrated in Figure 6. If this segment is given more time before being cleaned,

more garbage is accumulated.

Based on the above discussion, the principle of CAT policy is to cluster data according to their

stability using a fine-grained way, so that segments are full of all hot data or all cold data. Especially,

even wearing is considered. The basic schemes are as follows:

1. Read-only data and writable data are allocated in separate segments. No read-only data are

mixed with permutable data.

2. Hot data are clustered separately from cold data. When cleaning, cold valid data in the cleaned

segments are migrated to segments dedicated for cold data, while hot valid data are migrated to

hot segments. New-written data are treated as hot. The hot degree of a block is defined as the

h o t d a ta a re u p d a te d

A is s e le c te d to b e c le a n e d

(1)

(2)

(3)

C C C CC CC C

fla sh se g m e n t A

C CC CC CC C

fla sh se g m e n t B

C CCCH HC CH HH CC H HH

fla sh se g m e n t A

c o ld d a ta a re c o p ie d o u t

f re eH h o t d a taC c o ld d a tao b so le te

Figure 5: Migrating cold data when they are mixed with hot data.

�

number of times the block has been updated and decreases as the block’s age grows. A block is

defined as hot if its hot degree exceeds the average hot degree. Otherwise, the block is cold.

3. Evenly wearing out flash memory. When a segment is reaching its physical lifetime, we swap the

segment with maximum erase times and the segment with minimum erase times to avoid wearing

out specific segments.

4. The cleaner chooses to clean segments that minimize the formula:

Cleaning Cost Flash Memory * Age
1

* Number of Cleaning,

called the Cost Age Times (CAT) formula. The cleaning cost is defined as the cleaning cost of

every useful write to flash memory as
u

u1
, where u (utilization) is the percentage of valid data

in a segment. Every (1-u) write incurs the cleaning cost of writing out u valid data. The cleaning

cost is similar to Wu and Zwaenepoel’s definition of flash cleaning cost [Wu and Zwaenepoel,

1994], however, they did not consider erasure cost in evaluating alternate cleaning policies. The

age is defined as the elapsed time since the segment was created. Here, age is normalized by a

heuristic transformation function as shown in Figure 7 to avoid being too large to affect formula

value. However, the effectiveness of a transformation function depends largely on workloads.

The number of cleaning is defined as the number of times a segment has been erased.

The basic idea of CAT formula is to minimize cleaning costs, but gives segments just cleaned

more time to accumulate garbage for reclamation to avoid useless migration. In addition, to

re m a in in g h o t v a lid d a ta
a r e c o p ie d

(1)

(2)

(3)

H H H HH HH H

fla sh se g m e n t A

H HH HH HH H

fla sh se g m e n t B

A is se lec te d to b e c le an ed

h o t d a ta a r e u pd a ted
so o n

fla sh se g m e n t B

fre eH h o t d a tao b so le te

Figure 6: Useless migration when hot data are updated soon after being migrated.

��

avoid concentrating cleaning activities on a few segments, the segments erased the fewest

number of times are given more chances to be selected for cleaning.

In comparison, greedy policy considers only cleaning cost whereas cost-benefit policy considers

both cleaning cost and age of the data. The CAT formula considers cleaning cost, age of the data,

and number of cleaning.

4. Flash Memory Server

We have implemented a Flash Memory Server (FMS) for flash memory [Chiang et al., 1997]. The

FMS serves as the platform for us to build various cleaning policies on it in order to evaluate the

cleaning effectiveness. The FMS manages flash memory as fixed-size blocks. The data layout on flash

memory is shown in Figure 8 in which each segment has a segment header to describe segment

information, such as the number of times a segment has been erased, per-block information array, etc.

The per-block information describes information about every block in the segment, such as the

number of times the block has been updated, flags to indicate whether a block is obsolete, etc. The

segment summary header records information about flash memory. A lookup table as shown in

Figure 9 is used to record segment information used by cleaner to speed up the selection of segments

to be cleaned. When the number of free segments is below a certain threshold, cleaner begins to

reclaim spaces occupied by obsolete data. One segment is cleaned at a time.

0 10 2 0 45 90 1 80 3 60 s ec .

7

6

5

4

3

2

1

A g e le vel

Figure 7: Age transformation function.

��

Erase count Timestamp Used flag Cleaning flag Valid blocks count First free block no.

.
Segment

no. i

.

Figure 9: Lookup table to speed up cleaning.

S e g m e n t
S u m m a r y
H e a d er

. . .

n o . o f s eg m e n ts
n o . o f b l o ck s

S e g m e n t H e a d e r

n o . o f e r as e o p era t io n s
t im es ta m p

in - u se d f la g
c lea n in g f lag

.

.

.

.

p e r -b lo ck in fo rm a tio n

p e r -b lo ck in fo rm a tio n

p e r -b lo ck in fo rm a tio n

l o g ic a l b lo c k n o .
t im e s t a m p

u p d a te - t im e s

i n -u s e d f la g

i n v a l id f la g
...

s eg m e n t s eg m e n t . .. I n d e x
s e g m e n t

P e r- B lo c k In f o rm a t io n

Figure 8: Data layout on flash memory.

segm en t b lock
 no . no.

... ...

logica l
b loc k
no . i

j k

T ra n sla tion tab le

jth segm en t
segm ent
head er

k th per-b lo ck inform ation k th data blo ck

flash m em o ry

... ...

Figure 10: Translation table and address translation.

��

FMS uses the non-in-place-update scheme to manage data in flash memory to avoid having to erase

during every update. Therefore, every data block is associated with a unique constant logical block

number. As data blocks are updated, their physical locations in flash memory change. So a

translation table as shown in Figure 10 is maintained to record blocks’ physical locations in order to

speed up address translation from logical block numbers to physical addresses in flash memory.

Initially, the translation table and the lookup table are constructed in main memory from segment

headers on flash memory during the startup time of the FMS.

Read-only data and writable data are allocated to separate segments. During cleaning, hot valid

blocks in cleaned segments are distributed to hot segments while cold valid blocks are distributed to

cold segments. The FMS records segments currently used for writing in index segment as a triple as

(read-only, hot, cold). The index segment is laid out as an appended log.

5. Experimental Results and Analysis

We have implemented our Flash Memory Server (FMS) with various cleaning policies on Linux

Slackware96 in GNU C++. The FMS manages data in 4 Kbyte fixed-sized blocks. We used a 24

Mbyte Intel Series 2+ Flash Memory Card. All measurements were performed both on Intel 486

DX33 and Pentium 133 to show that slow erase is the primary bottleneck as CPU gets faster. Table 3

summaries the experimental environment. Three cleaning policies were measured: Greedy represents

the greedy policy with no separation of hot and cold blocks; Cost-benefit represents the cost-benefit

policy with separate segment cleaning for hot and cold segments; and CAT represents the CAT policy

with fine-grained separation of hot and cold blocks. These policies have different segment selection

Pentium 133 MHz Intel 486 DX33

PC Card Interface Controller:

Intel PCIC Vadem VG-468 Omega Micro 82C365G

Flash memory:

Intel Series 2+ 24Mbyte Flash Memory Card (segment size:128 Kbytes)

RAM: 32 Mbytes

Hardware

HD: Seagate ST31230N 1.0 G

Operating

system

Linux Slackware 96

Kernel version: 2.0.0, PCMCIA package version: 2.9.5

Table 3: Experimental environment.

��

algorithms and data redistribution methods.

Since at low utilization cleaning overhead does not significantly affect performance [Kawaguchi et

al., 1995], in order to evaluate cleaning effectiveness, we initialized the flash memory by writing

blocks sequentially to fill it to 90% of flash memory spaces. The created benchmarks then updated the

initial data according to the required access patterns, such as sequential, random, and locality

accesses. The workload of locality of reference was created based on the hot-and-cold workload used

in the evaluation of Sprite LFS cleaning policies [Rosenblum, 1992; Rosenblum and Ousterhout,

1992]. A total of 192 Mbyte data were written to the flash memory in 4 Kbyte units. All

measurements were run on a freshly start of the system, averaging four runs.

We found that CAT policy significantly reduced the number of erase operations performed and

blocks copied, as described in Section 5.1. Flash memory was also more evenly worn. As the locality

of reference and flash memory utilization increased, CAT policy outperformed the other policies by a

large margin, as shown in Section 5.2 and 5.3.

5.1 Performance of Various Cleaning Policies

Table 4 shows the performance results. For sequential access, each policy performed equally well and

no blocks were copied, since sequential updates cause invalidation of each block in the cleaned

segment. For random access, Greedy policy performed best and the policies for locality (Cost-benefit

and CAT) performed similarly. CAT policy incurred only 1.94% more erase operations than Greedy

policy. The average throughput of CAT policy was slightly less than Greedy policy and Cost-benefit

policy because CAT policy incurred more processing overhead.

For high locality of reference in which 90% of the write accesses went to 10% of the initial data,

CAT policy performed best, incurring 54.93% fewer erase operations than Greedy policy, and

28.91% fewer than Cost-benefit policy. This is because Greedy policy does not distinguish hot data

from cold data and so it is possible that data get mixed. The performance advantage over Cost-benefit

policy is because CAT policy uses a more fine-grained way to cluster hot data and cold data. CAT

policy operates at block granularity whereas Cost-benefit policy operates at segment granularity.

Therefore, CAT policy had the highest average throughput, 95.16% higher than Greedy policy and

26.54% higher than Cost-benefit policy. CAT policy incurred 64.59% fewer blocks copied than

Greedy policy and 38.28% fewer than Cost-benefit policy. This result suggests that CAT policy can

be applied to other storage systems, such as LFS [Rosenblum, 1992; Rosenblum and Ousterhout,

1992] that concerns only to reduce the number of blocks copied in cleaning.

��

To explore each policy’s degree of wear leveling, a utility was created to read the number of erase

operations performed on each flash segment. We then used the standard deviation of these numbers

as degree of wear leveling. The smaller the standard deviation, the more evenly the flash memory was

worn. As shown in Table 4, all policies had the same degree of even wearing for sequential access.

CAT policy performed best for random access and locality of access, though it incurred slightly more

erase operations than the other policies for random access. This is because only CAT policy considers

even wearing when selecting segments to clean. The segments seldom erased are given more chances

Greedy Cost-benefit CAT
E B T D E B T D E B T D

Sequential 1567 0 21077 2.63 1568 0 20659 2.64 1568 0 19593 2.64

Random 7103 171624 6419 4.03 7252 176230 4515 3.38 7290 177414 4275 3.01

Locality 8827 225068 3340 11.85 5596 124888 4372 8.3 3978 74726 6671 5.38

(a) Intel 486.

Greedy Cost-benefit CAT
E B T D E B T D E B T D

Sequential 1567 0 134441 2.63 1568 0 134334 2.64 1568 0 133950 2.64

Random 7103 171624 27989 4.03 7265 176634 27118 3.51 7241 175891 25055 2.96

Locality 8827 225068 22680 11.08 5733 129142 34980 9.20 4138 79705 44263 5.97

(b) Pentium 133.

Table 4: Performance of various cleaning policies. ‘E’ is the number of erasures. ‘B’ is the number

of blocks copied. ‘T’ is the average throughput (Kbytes/s). ‘D’ is the degree of even wearing.

�

����

�����

�����

�����

�����

���
���

����
	
�

���
��

��
����

���
���
���
	
�

���
��

��
���
��	

��

���
�

���
���

����
���

��

��
����

���
���
����

���
�

��
���
���
���

�

���
���

����
���
���

��
����

���
���
����

���
��

��
���
���
���
��

��������	
��������
�	���

��
��
��
��
��
�	

�
��

�
��

��
��
��
��

���������	

������	

�

�����

�����

�����

�����

������

������

������

���
���

����
	
�

���
��

��
����

���
���
���
	
�

���
��

��
���
��	

��
���
�

���
���

����
���

��

��
����

���
���
����

���
�

��
���
���
���

�

���
���

����
���
���

��
����

���
���
���
���
���

��
���
���
���
��

��������	
��������
�	���

��
��
��
��
��
�	

�
��

�
��

��
��
��
��

���������	

������	

(a) Intel 486 DX 33. (b) Pentium 133.

Figure 11: Breakdown of elapsed time.

��

to be selected.

Figure 11 shows the breakdown of elapsed time: as CPU gets faster, a much greater percentage of

time is spent on cleaning. On Intel 486, the FMS spent averaging only 13.34% of time cleaning for

sequential access, 78.43% of time for random access, and 71.91% of time for high locality of

reference, as shown in Figure 11(a). On Pentium 133, the FMS spent averaging 72.06% of time

cleaning for sequential access, 94.42% of time for random access, and 92.90% of time for high

locality of reference, as shown in Figure 11(b). The results show that the slow erase is the primary

bottleneck as CPU gets faster. Though fine-grained data clustering needs more processing time, CAT

policy significantly increases throughput by eliminating a large number of erase operations and blocks

copied.

5.2 Impact of Locality of Reference

Figure 12 shows the results of varying localities of reference. Throughout this report, we used the

notation for locality of reference as “x/y” that x% of all accesses go to y% of the data while (1-x)%

go to the remaining (1-y)% of data. CAT policy performed best when locality was above 60/40. As

the locality was increased, the performance of CAT policy increased rapidly whereas the Greedy

policy deteriorated severely. The performance gap widened dramatically as well. This is because CAT

policy uses fine-grained methods to separate data, so cold data are less likely to mix with hot data

when contrasted with the other policies. This effect is more prominent under high locality of reference.

When locality was 95/5, the number of erase operations performed by CAT policy was 69.16% less

than Greedy policy and 33.22% less than Cost-benefit policy, as shown in Figure 12(a). The number

of blocks copied by CAT policy was 83.55% less than the Greedy policy and 52.97% less than Cost-

benefit policy, as shown in Figure 12(b). The throughput was 201.11% higher than Greedy policy and

36.98% higher than Cost-benefit policy, as shown in Figure 12(c). CAT also performed best in the

d e g r e e o f w e a r l e v e l in g f o r v a r i o u s l o c a l i t i e s , a s s h o w n in F ig u r e 1 2 (d) .

5.3 Impact of Flash Memory Utilization

This experiment measured the cleaning effectiveness of various policies for varying utilization. In

each test, the flash memory was filled with the desired percentage of data first, and then 192 Mbytes

of data were overwritten to the initial data in 4 Kbyte units. Figure 13 shows that performance

decreased as utilization increased since less free space was left and more cleaning had to be done. For

sequential access and random access, all policies performed similarly. However, for high locality of

reference, Greedy policy degraded dramatically as utilization increased while CAT policy degraded

��

much more gradually. CAT policy performed best for various degree of utilization, especially in high

locality of reference.

6. Simulation Studies

In order not to be restricted to specify flash memory, simulation was performed to get more general

results in this section. Furthermore, in order to examine cleaning issues in a controlled way and to

explore in detail the impact of data access patterns, utilization, flash memory size, segment size,

segment selection algorithms, and data redistribution methods on cleaning, we used trace-driven

simulation to identify the most critical factors. The simulator and workloads are introduced in Section

6.1. Section 6.2 describes the validation of simulator. Section 6.3 presents the results.

�

����

����

����

����

����

����

����

	���

���

�����

������� ������� ������� 	������
������
�����

����������	�
�	�
����

��
�
��
��
�	
��
�

��
��
��
�

��
��

���������	
������
����������	
��������
���
���	���
���	
������
���
���	���
����	
��������
������	
������

�������	
��������

�

�����

������

������

������

������

������� ������� 	����
� ������� ������� ������

����������	�
�	�
����

��
�
��
��
�	
��

�
��
�
��
��
��

���������	
������
����������	
��������
���
���	���
���	
������
���
���	���
����	
��������
������	
������
�������	
��������

(a) Number of erasing operations performed. (b) Number of blocks copied.

�

�����

�����

�����

�����

�����

�����

�����

��	
	�� ��	
	�� ��	
	�� ��	
	�� ��	
	�� ��	
	�

����������	�
�	�
����

��
��
��
��
��
�	

�
��

�
��

��
��
��
��

����������	
�������

���
���	���
����	
�������

�������	
�������

�

�

��

��

��

��

������� ������� 	����
� ������� ������� ������

����������	�
�	�
����

��
��
��
��
��
��
�	
�

��
��
	�

����������	
�������

���
���	���
����	
�������

�������	
�������

(c) Average throughput. (d) Degree of even wearing.

Figure 12: Varying locality of reference.

��

6.1 Simulator and Workloads

The simulator and workloads are described in Section 6.1.1 and 6.1.2, respectively.

6.1.1 Simulator

The simulator comprises about 20 K lines of C++ codes to completely simulate the FMS server

except that the simulator stores data in a large memory array instead of in flash memory. The

simulator is sufficiently flexible to accept the following parameters:

Flash size Flash memory size.

Flash segment size The size of an erase unit.

Flash block size The block size that the server maintains.

Flash utilization The amount of initial data preallocated in flash memory at the

start of simulation.

Segment selection algorithm Algorithms to select segments for cleaning.

Data placement method A flag to control whether read-only data are allocated

separately from writable data.

Data redistribution method Parameters to control how data in the segment to be cleaned

are distributed.

�

����

����

����

����

����

����

����

	���

���

�����

�� �� �� 	�
�

���������	
���������	�����
����

��
�
��
���
	��
�

��
��
��
�

��
��

����������	
������
���������������
����������������
���������������	
������
��������������������
���������������������
�������	
������
������������
�������������

�

�����

������

������

������

������

�� �� �� �� ��

���������	
���������	�����
����

��
�
��
���
	��

�
��
�
��
��
��

����������	
������
���������������
����������������
���������������	
������
��������������������
���������������������
�������	
������
������������
�������������

(a) Number of erasing operations performed. (b) Number of blocks copied.
Figure 13: Varying flash memory utilization.

��

This simulator provides three segment selection algorithms and six data redistribution methods, as

shown in Table 5. The total is 18 combinations. The three segment selection algorithms are greedy

[Kawaguchi et al., 1995; Rosenblum, 1992; Rosenblum and Ousterhout, 1992; Seltzer et al., 1993;

Wu and Zwaenepoel, 1994], cost-benefit [Kawaguchi et al., 1995], and CAT. The data redistribution

methods are divided into two classes: one segment cleaning and separate segment cleaning. The one

segment cleaning uses one segment for both data writing and cleaning. The separate segment cleaning

treats hot data and cold data differently. During cleaning, hot valid data in the cleaned segment are

distributed into hot segments, while cold valid data are distributed into cold segments. The following

six data redistribution methods are examined:

M1. One segment cleaning with sequential writing

Valid data in the cleaned segment are copied out to empty flash spaces in the same order

as they appear in the cleaned segment.

M2. One segment cleaning with age sorting

Valid blocks in the cleaned segment are sorted by their age before being copied out to

empty flash spaces. The age is the elapsed time since the block was last updated. The

youngest data are thought of as the hottest. Age sorting is used in LFS [Rosenblum,

1992; Rosenblum and Ousterhout, 1992; Seltzer et al., 1993].

M3. One segment cleaning with times sorting

Valid blocks in the cleaned segment are sorted by their hot degree before being copied

out to empty flash spaces. The hot degree of a block is determined by the number of

times the block has been updated but decreases as the block’s age grows.

M4. Separate segment cleaning with segment-based separation for hot and cold segments

Segment Selection AlgorithmsData redistribution methods
Greedy Cost-benefit CAT

Sequential writing M1 M1 M1

Age sorting M2 M2 M2

One
Segment
Cleaning Times sorting M3 M3 M3

Segment based M4 M4 M4

Block based M5 M5 M5
Separate
Segment
Cleaning Fine-grained M6 M6 M6

Table 5: Various cleaning policies used in simulation.

��

Two segments are used in which one is for cleaning cold segments and one is for data

writing and cleaning not cold segments. If the utilization of a cleaned segment is less than

the average utilization, then the valid data blocks in the cleaned segment are defined as

cold. This method is used in [Kawaguchi et al., 1995].

M5. Separate segment cleaning with block-based separation for hot and cold blocks

Two segments are used in which one is for cleaning cold blocks and one is for data

writing and cleaning hot blocks. A block is defined as hot if the number of times it has

been updated exceeds the average.

M6. Separate segment cleaning with fine-grained separation for hot and cold blocks

This method is similar to M5 but a block is defined as hot if its hot degree is larger than

the average hot degree. The hot degree of a block is determined by the number of times

the block has been updated but decreases as the block’s age grows.

6.1.2 Workload

The HP I/O traces [Ruemmler and Wilkes, 1993] and generated workloads were used to drive the

simulator. The HP traces are disk-level traces of HP-UX workstation collected by Ruemmler and

Wilkes [Ruemmler and Wilkes, 1993] at Hewlett-Packard. We used only the traces from personal

workstation (hplajw), which was used primarily for electronic mail and document editing. Because

the usage behavior of personal computers is likely to be similar to mobile computers, hplajw traces

were often used in simulations of mobile computers [Douglis et al., 1994; Li, 1994; Li et al., 1994,

Marsh et al., 1994].

However, the disks (334 Mbytes) used in hplajw are much larger than flash memory. Therefore,

the traces were preprocessed to map flash memory spaces before simulation. The original traces

exhibit such high locality of reference that 71.2% of writes were to metadata [Ruemmler and Wilkes,

1993]. Locality is possibly affected by this mapping. Traces from root file system in hplajw were used

and contain 1364 Mbytes of references.

Because hplajw traces exhibit high locality of reference, we wanted to know whether CAT policy

performs well for other access patterns. A workload generator generated the workloads for

sequential, random, and locality accesses. The workload of locality of reference was created based on

the hot-and-cold workload used in the evaluation of Sprite LFS cleaning policies [Rosenblum, 1992;

Rosenblum and Ousterhout, 1992]. A total of 192 Mbytes of data were written in 4 Kbyte units. The

��

interarrival rate of requests was Poisson distribution. For simplicity, this simulator assumed each

request could be finished before the arrival of next request.

6.2 Simulator Validation

To validate the simulator, we performed the same experiments as in Section 5.1 both on the simulator

and on the FMS. The generated workloads were used. Table 6 shows that all simulated performance

data were within only a few percentage of actual performance. This suggests that our simulator is

quite accurate in examining the cleaning effectiveness.

6.3 Performance Results

In Section 6.3.1, we show that data redistribution is the most important factor affecting cleaning

effectiveness. The fine-grained separate segment cleaning performed best in reducing the cleaning

overhead. The CAT policy had the best degree of even wearing. Much impact, such as the flash

memory utilization, flash memory size, flash segment size, and locality of reference, was examined in

detail as described in Section 6.3.2, 6.3.3, 6.3.4, and 6.3.5, respectively.

6.3.1 Performance results for HP traces

The simulated flash memory was a 24 Mbyte Intel Series 2+ Flash Memory Card with 128 Kbyte

erase segment size. The server maintained data in 1 Kbyte blocks. We first wrote enough blocks in

sequence to fill the flash memory to 85% of flash memory spaces, and then hplajw traces were used in

the simulation.

Figure 14 shows that there were large performance gaps between one segment cleaning class (M1,

M2, and M3) and separate the segment cleaning class (M4, M5, and M6). When one segment

cleaning was used, there was no much performance difference among segment selection algorithms.

However, when separate segment cleaning was used, performance was greatly improved: 60.04% of

erase operations were reduced for Greedy policy, 64.99% for Cost-benefit policy, and 63.56% for

Sequential Random Locality
Number of

erasures

Number of

copied blocks

Number of

erasures

Number of

copied blocks

Number of

erasures

Number of

copied blocks

actual 1567 0 7103 171624 8827 225068Greedy
simulated 1567 0 7075 170735 8834 225283

actual 1568 0 7265 176634 5733 129142Cost-benefit
simulated 1568 0 7237 175769 5666 127049

actual 1568 0 7241 175891 4138 79705CAT
simulated 1568 0 7295 177562 3987 75005

Table 6: Validation for simulated performance.

��

CAT policy, as shown in Figure 14(a). 86.04% of blocks copied were reduced for Greedy policy,

93.44% for Cost-benefit policy, and 91.88% for CAT policy, as shown in Figure 14(b). For Cost-

benefit policy, M6 outperformed M4 by 5.55% in reducing the number of erase operations and

31.03% in reducing the number of blocks copied. For CAT policy, M6 outperformed M4 by 5.64% in

reducing the number of erase operations and 27.93% in reducing the number of blocks copied. This is

because fine-grained method is more effective than segment-based method in separating hot and cold

data. Furthermore, flash memory was more evenly worn for separate segment cleaning. As shown in

Figure 14(c), CAT policy had the best degree of even wearing. Greedy policy performed worst. M5

did not perform as well as M4 and M6. This result suggests that it is not appropriate to use only the

number of update times to represent the hot degree of a block. The age of data should be taken into

account.

We conclude that data redistribution methods have more impact on the cleaning effectiveness

than segment selection algorithms. Separate segment cleaning can largely reduce the number of erase

operations performed and the number of blocks copied. M6 is more effective than M4 in separating

hot and cold data. To achieve the best performance, an effective data redistribution method must be

used with an effective segment selection algorithm.

6.3.2 Impact of Flash Memory Utilization

To find out how performance varied for varying utilization, we wrote blocks in sequence to fill the

flash memory to various level of utilization before simulation, then hplajw traces were used. The flash

memory was 24 Mbytes with 128 Kbyte erase segments. Block size was 1 Kbytes. When only one

segment was cleaned at a time, M1, M2, and M3 had the same performances; therefore, only the

performance of M1 was displayed.

Figure 15 shows the results of varying utilization. For each policy, performance decreased as the

increase of utilization since less free space was left and more cleaning was needed. However, no

matter which segment selection algorithm was used, as utilization increased, the performance of one

segment cleaning decreased dramatically while separate segment cleaning decreased slightly. This is

because hot data and cold data were less likely to be mixed for M4 and M6. Greedy policy performed

worst. The amount of blocks copied was significantly reduced as well, as shown in Figure 15(b). The

results show that M6 is the most effective data redistribution method among different flash-memory

utilization.

��

6.3.3 Impact of Flash Memory Size

Though flash memory capacity is still small, we investigated the impact of flash memory size on

cleaning. The flash memory utilization was set to 85% and segment size was 128 Kbytes. The hplajw

traces were used. Figure 16 shows that as flash memory size increased, each policy performed better

since much more free space was left and less cleaning was needed. When separate segment cleaning

was used, each policy performed well for various flash memory sizes. M6 performed best for each

segment selection algorithm. However, the performance of M1 depended largely on flash memory

size no matter which segment selection algorithm was used. Therefore, large flash memory size is

required for policies to perform well when one segment cleaning is used.

�

����

�����

�����

�����

�����

�����

�����

�����

�� �� �� �� �� ��

�������������	
�����������

��
�
��
��
�	
��
�

��
��
��
�

��
��

������

���	
�����	

���

�

������

�������

�������

�������

�������

�������

�������

�� �� �� �� �� ��

�������������	
�����������

��
�
��
��
�	
��

�
��
�
��
��
��

������

���	
�����	

���

(a) Number of erasing operations performed. (b) Number of blocks copied.

�

��

���

���

���

���

�� �� �� �� �� ��

�������������	
�����������

��
��
��
��
��
��
�	
�

��
��
	�

������

���	
�����	

���

(c) Degree of even wearing.

Figure 14: Performance results for HP traces.

��

6.3.4 Impact of Erase Segment Size

Though the segment size in erasing is fixed by the hardware manufacturer, we measured the impact of

erase segment size. The flash memory was 40 Mbytes and utilization was 85%. The hplajw traces

were used. Figure 17 shows the results. The number of erase operations decreased at the same rate as

the increase of segment size, as shown in Figure 17(a). This is because more space was reclaimed at

once for rewriting as segment size was enlarged. Among all data redistribution methods, M6 incurred

the least amount of erase operations. Among all segment selection algorithms, CAT policy performed

best. However, as segment size became larger, more valid blocks in the cleaned segment must be

copied as shown in Figure 17(b). The performance of M1 degraded dramatically while M4 and M6

�

�����

�����

�����

�����

�����

�����

�����

�� �� �� �� 	�

���������	
���������	�����
����

��
�
��
���
	��
�

��
��
��
�

��
�� ���������	

����������

����������

��������������	

���������������

���������������

�����	

������

������

�

�������

�������

�������

�������

�������

�������

�������

�� �� �� �� 	�

���������	
���������	�����
����

��
�
��
���
	��

�
��
�
��
��
��

���������	

����������

����������

��������������	

���������������

���������������

�����	

������

������

(a) Number of erasing operations performed. (b) Number of blocks copied.

Figure 15: Varying flash memory utilization.

�����

�����

�����

�����

�����

�����

�����

�� �� �� ��� �	�

���������	
��������������

��
�
��
���
	��
�

��
��
��
�

��
��

���������	

����������

����������

��������������	

���������������

���������������

�����	

������

������

�

������

�������

�������

�������

�������

�������

�������

�� �� �� ��� �	�

���������	
��������������

��
�
��
���
	��

�
��
�
��
��
��

���������	

����������

����������

��������������	

���������������

���������������

�����	

������

������

(a) Number of erasing operations performed. (b) Number of blocks copied.

Figure 16: Varying flash memory size.

��

degraded gradually. The results show that M6 is the most effective data redistribution method for

various erase segment sizes.

6.3.5 Impact of Locality of Reference

We investigated the impact of locality of reference for various data redistribution methods. Therefore,

generated workloads were used in this simulation. The flash memory was 24 Mbytes with 128 Kbyte

segment size. The utilization was 90%. Figure 18 shows that as the increase of locality, performance

gaps among data redistribution methods widened. For each segment selection algorithm, the

performance of M1 decreased dramatically, while the performances of M4 and M6 increased rapidly.

M4 and M6 performed better than M1 when locality was above 60/40. M6 outperformed M1 by

�

����

����

����

����

����

����

����

	���

���

�����

����� ����� ����� 	����
����
���

����������	�
	��
������

��
�
��
���
	��
�

��
��
��
�

��
��

���������	

����������

����������

��������������	

���������������

���������������

�����	

������

������

�

�����

������

������

������

������

����� ����� ���	�
���� ����� ����

����������	�
	��
������

��
�
��
���
	��

�
��
�
��
��
��

���������	

����������

����������

��������������	

���������������

���������������

�����	

������

������

(a) Number of erasing operations performed. (b) Number of blocks copied.
Figure 18: Varying localities of reference.

�

�����

������

������

������

������

������

������

� �� �� �� ��� ��� ���

���������	�
��������������

��
�
��
���
	��
�

��
��
��
�

��
��

���������	

����������

����������

��������������	

���������������

���������������

�����	

������

������

�

������

�������

�������

�������

�������

�������

�� �� ��� ��� ���

���������	�
��������������

��
�
��
���
	��

�
��
�
��
��
��

���������	
 ����������

����������
 ��������������	

���������������
 ���������������

�����	
 ������

������

(a) Number of erasing operations performed. (b) Number of blocks copied.

Figure 17: Varying flash segment size.

��

0.98% to 39.52% in reducing the number of erase operations performed for Greedy policy, 6.02% to

66.93% for Cost-benefit policy, and 5.63% to 69.85% for CAT policy. M6 outperformed M4 by

1.37% to 20.48% in reducing the number of erase operations performed for Greedy policy, 4.96% to

32.70% for Cost-benefit policy, and 5.04% to 41.62% for CAT policy. The number of blocks copied

was significantly reduced as well. The results show that when the locality is above 60/40, M6 is the

most effective method to separate hot and cold data, so that cleaning cost is the lowest. Among all,

CAT policy with M6 performed best.

7. Related Work

Cleaning policies have long been discussed in log-based disk storage systems [Blackwell et al., 1995;

Jonge et al., 1993; Matthews et al., 1997, Rosenblum, 1992; Rosenblum and Ousterhout, 1992;

Seltzer et al., 1993; Wilkes et al., 1996]. Rosenblum [Rosenblum, 1992] suggested that the Log-

Structured File System (LFS) [Rosenblum, 1992; Rosenblum and Ousterhout, 1992] can be applied

to flash memory, which writes data as appended log instead of updating data in place. The greedy

policy was shown to perform poorly under high localities of reference, so the cost-benefit policy was

proposed in LFS. However, writing several large segments as a whole to reduce seek time and

rotational latency is not necessary for a flash memory-based storage system. LFS also needs a large

buffer to accommodate data blocks from several segments. This large buffer may not be affordable

for a low-end resource-limited mobile computer. Their age sort scheme used to separate hot and cold

data has limited effect when only one segment is cleaned at a time. Besides, even wearing is not an

issue in LFS.

In HP AutoRAID [Wilkes et al., 1996], a two-level disk array structure, the hole plugging method

is used in garbage collection. In hole plugging, valid data in the cleaned segment are overwritten to

the other segments’ holes (invalidated space which obsolete data occupy). J. N. Matthews et al.

[Matthews et al., 1997] proposed an adaptive cleaning to combine the hole plugging into traditional

LFS cleaning to adapt to changes in disk utilization. However, the holes in flash memory cannot be

overwritten unless erased first.

Microsoft’s Flash File System [Torelli, 1995], which uses a linked-list structure and supports the

DOS FAT system, uses the greedy policy in garbage collection. Linux PCMCIA [Anderson, 1995]

flash memory driver [Hinds, 1997a; Hinds, 1997b] also uses the greedy policy, but it sometimes

chooses to clean the segments that are erased the fewest number of times for even wearing. However,

greedy policy was shown to incur large number of erasures for high localities of reference

��

[Kawaguchi et al., 1995; Wu and Zwaenepoel, 1994].

eNVy [Wu and Zwaenepoel, 1994], a storage system for flash memory, provides transparent

update-in-place scheme by using copy-on-write and page remapping techniques to avoid updating

data in place. Their hybrid cleaning combines FIFO and locality gathering in cleaning segments.

However, the locality gathering requires additional movement for valid data blocks in segments,

which results in additional data blocks being copied and erasure. So its cleaning overhead is large.

Additionally, eNVy considers only flash memory write cost in evaluating the effectiveness of cleaning

policies. In fact, it is the erasure cost that dominates the total cleaning cost. In contrast, our work

focuses on reducing the number of erase operations while evenly wearing out flash memory.

Kawaguchi et al. [Kawaguchi et al., 1995] adopts a log approach similar to LFS to design a flash

memory based file system for UNIX. They used the cost-benefit policy modified from LFS with

different cost. However, their results showed that cost-benefit policy incurred more erasures than

greedy policy for high localities of reference. They found cold blocks and hot blocks were mixed in

Issues
Flash Memory Server

(FMS)
Flash-Memory

Based File System
ENVy Linux PCMCIA

Package
Microsoft FFS

When
Starts when # free segments <

low-water mark
Stops when #free segments >

high-water mark

Gradually falling
threshold which
decreases as # of free
segments decreases

No free flash space No free flash space No free flash
space

Which

Greedy
CAT:

u/(1-u) * 1/age *
cleaning times

Greedy
Cost-benefit:
age * (1-u) / 2u

Greedy Revised Greedy
(uses Greedy most of
time, sometimes selects
segments erased the
fewest times)

Greedy

What size
(segment)

As manufacturer defines As manufacturer
defines

A segment contains several erase
blocks

As manufacturer
defines

As manufacturer
define

How many
(segments
cleaned at
once)

1 1 1 1 1

Where &
how

* Separate segment data
allocation for read-only and
writable data.
* Separate segment cleaning
with fine-grained separation
for hot and cold blocks.
(the hot degree is based on
update-times/age)

* Separate segment
cleaning with
separation for hot and
cold segments.

* Locality gathering
- Migrating data between
neighbor segments
(hot data are moved towards the
bottom and cold data are moved
up to the top)
(lower utilization of hot
segments, increase utilization of
cold segments)
-Locality preservation
Data are flushed back to the
same segment where they come
from.

* Hybrid cleaning
- Flash memory is divided into
partitions, locality gathering is
used between partitions, and
FIFO is used within partition.

* One segment cleaning
with sequential writing.

* One segment
cleaning with
sequential
writing.

Table 7: Comparison of various cleaning policies.

��

segments when only one segment was used in cleaning. The separate segment cleaning which

separates cold segments and hot segments was thus proposed to clean segments. Their work did not

implement wear leveling.

Kawaguchi’s work motivates us that using an effective data redistribution method is more

important. To obtain better cleaning effectiveness, good segment selection algorithms should be used

with effective data redistribution methods. We design a new data redistribution method that uses a

fine-grained method to separate cold and hot data. The method is similar to Kawaguchi’s work but

operates at the granularity of blocks. To further contribute to the separation of different types of

blocks, read-only data and writable data are separately allocated. Furthermore, our policy takes

wear-leveling into account, which selects segment based on cleaning cost, age of the data, and the

number of times the segment has been erased. An even-wearing method is also proposed. As

contrasted with the above, our work considers all the cleaning issues including segment selection,

data redistribution, data placement, and even wearing. Table 7 summarizes the comparison.

8. Conclusions

Flash memory shows promise for use as storage for mobile computers, embedded systems, and

consumer electronics. However, system support for erasure management is required to overcome the

hardware limitations. In this report a new cleaning policy, the CAT policy, is proposed to reduce

erasure cost and to evenly wear flash memory. The CAT policy employs a fine-grained method to

cluster hot, cold, and read-only data into separate segments for reducing cleaning overhead. It

provides even wearing by selecting segments for cleaning according to utilization, age of the data,

and the number of erase operations performed on segments.

We have implemented a Flash Memory Server (FMS) with various cleaning policies to

demonstrate the advantages of CAT policy. Performance evaluations show that CAT policy

significantly reduces a large number of erase operations and evenly wears flash memory. Under high

locality of reference, CAT policy outperformed greedy policy by 54.93% and outperformed cost-

benefit policy by 28.91% in reducing the number of erase operations performed. The result is

extended flash memory lifetime and reduced cleaning overhead.

CAT policy also outperformed greedy policy by 64.59% in reducing the number of blocks copied

and outperformed cost-benefit by 38.28%. This result suggests that CAT policy can also be applied

to other media storage systems such as RAM or disks that concerns only to reduce the number of

blocks copied to improve cleaning performance. For example, the separate segment cleaning with

��

fine-grained separation for hot and cold blocks scheme can be applied to LFS before segment data in

buffers are written out to disk.

Trace-driven simulation was assisted to examine cleaning issues in detail. We found that data

redistribution methods are the most important factor affecting cleaning effectiveness. Improving data

redistribution methods is more effective than improving segment selection algorithms. Separate

segment cleaning with fine-grained separation for hot and cold data shows its strength in cleaning

effectiveness.

Future work can be summarized as follows. We will use real applications to extensively examine

the effectiveness of the proposed cleaning policy on our FMS server. We will then do performance

tuning of the FMS server and integrate it into ROSS [Chiang et al., 1997], a RAM-based Object

Storage Server designed for PDAs, to enable ROSS to store data in flash storage.

Acknowledgments

We thank John Wilkes at Hewlett Packard Laboratories for his efforts in making their HP I/O traces

available to us. We would also like to thank David Hinds for his valuable comments and help on our

work.

References

Anderson, D., PCMCIA System Architecture, MindShare, Inc. Addison-Wesley Publishing Company,
1995.

Ballard, N., State of PDAs and Other Pen-Based Systems, Pen Computing Magazine, pp. 14-19,
Aug. (1994).

Baker, M., Asami, S., Deprit, E., Ousterhout, J., and Seltzer, M., Non-Volatile Memory for Fast,
Reliable File Systems, Proceedings of the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. (1992).

Blackwell, T., Harris, J., and Seltzer, M., Heuristic Cleaning Algorithms in Log-Structured File
Systems, Proceedings of the 1995 USENIX Technical Conference, Jan. (1995).

Caceres, R., Douglis, F., Li, K., and Marsh, B., Operating System Implications of Solid-State Mobile
Computers, Fourth Workshop on Workstation Operating Systems, Oct. (1993).

Chiang, M. L., Lee, Paul C. H., Lo, S. Y. and Chang, R. C., Design and Implementation of a
Memory-Based Object Server for Hand-held Computers, Journal of Information Science and
Engineering, vol. 13 (1997).

Chiang, M. L., Lee, Paul C. H., and Chang, R. C., Managing Flash Memory in Personal
Communication Devices, Proceedings of the 1997 International Symposium on Consumer
Electronics (ISCE’97), Dec. 2-4 (1997).

Dipert, B. and Levy, M., Designing with Flash Memory, Annabooks, 1993.

��

Douglis, F., Caceres, R., Kaashoek, F., Li, K., Marsh, B. and Tauber, J. A., Storage Alternatives for
Mobile Computers, Proceedings of the 1st Symposium on Operating Systems Design and
Implementation (1994).

Halfhill, T. R., PDAs Arrive But Aren’t Quite Here Yet, BYTE, Vol. 18, No. 11, pp. 66-86 (1993).

Hinds, D., Linux PCMCIA HOWTO, http://hyper.stanford.edu/~dhinds/pcmcia/doc/PCMCIA-
HOWTO.html (1997).

Hinds, D., Linux PCMCIA Programmer’s Guide,
http://hyper.stanford.edu/~dhinds/pcmcia/doc/PCMCIA-PROG.html (1997).

Intel, Flash Memory, 1994.

Intel Corp., Series 2+ Flash Memory Card Family Datasheet,
http://www.intel.com/design/flcard/datashts (1997).

Jonge, W. D., Kaashoek, M. F., and Hsieh, W. C., Logical Disk: A Simple New Approach to
Improving File System Performance, Technical Report MIT/LCS/TR-566, Massachusetts Institute of
Technology, 1993.

Kawaguchi, A., Nishioka, S., and Motoda, H., A Flash-Memory Based File System, Proceedings of
the 1995 USENIX Technical Conference, Jan. (1995).

Li, K., Towards a low power file system, Technical Report UCB/CSD 94/814, Masters Thesis,
University of California, Berkeley, CA, May 1994.

Li, K., Kumpf, R., Horton, P., and Anderson, T., A Quantitative Analysis of Disk Drive Power
Management in Portable Computers, Proceedings of the 1994 Winter USENIX (1994).

Marsh, B., Douglis, F., and Krishnan, P., Flash Memory File Caching for Mobile Computers,
Proceedings of the 27 Hawaii International Conference on System Sciences (1994).

Matthews, J. N., Roselli, D., Costello, A. M., Wang, R. Y. and Anderson, T. E., Improving the
Performance of Log-Structured File Systems with Adaptive Methods, Proceedings of the Sixteenth
ACM Symposium on Operating System Principles, Oct. 5-8 (1997).

Rosenblum, M., The Design and Implementation of a Log-Structured File System, Ph.D. Thesis,
University of California, Berkeley, Jun. 1992.

Rosenblum, M. and Ousterhout, J. K., The Design and Implementation of a Log-Structured File
System, ACM Transactions on Computer Systems, Vol. 10, No. 1 (1992).

Ruemmler, C. and Wilkes, J., UNIX Disk Access Patterns, Proceedings of the 1993 Winter USENIX
(1993).

SanDisk Corporation, SanDisk SDP Series OEM Manual, 1993.

Seltzer, M., Bostic, K., McKusick, M. K., and Staelin, C., An Implementation of a Log-Structured
File System for UNIX, Proceedings of the 1993 Winter USENIX (1993).

Torelli, P., The Microsoft Flash File System, Dr. Dobb’s Journal, Feb. (1995).

Wilkes, J., Golding, R., Staelin, C., and Sullivan, T., The HP AutoRAID Hierarchical Storage System,
ACM Transactions on Computer Systems, 14(1), Feb. (1996).

��

Wu, M., and Zwaenepoel, W., eNVy: A Non-Volatile, Main Memory Storage System, Proceedings
of the 6th International Conference on Architectural Support for Programming Languages and
Operating Systems (1994).

