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Abstract

Traffic smoothing for delivery of online VBR media streams is one of the most important problems in

designing multimedia systems. Given the available client buffer and the sliding smooth window,

conventional approaches try to minimize bandwidth allocated in each window. However, they can not

lead to the minimization of bandwidth allocated for transmitting the entire stream. Although a sliding-

window approach is introduced by Rexford et al. in 1997 to further reduce the bandwidth allocated, it is

time-consuming. To resolve these drawbacks, in this paper, an effective and efficient online traffic-

smoothing scheme is proposed. Different from conventional constant-sized approaches, our approach can

automatically decide the suitable sliding sizes to online smooth the burst VBR traffic. By examining

various media streams, our approach is shown to have higher bandwidth utilization (or called bandwidth-

occupancy in conventional approaches) and requires smaller bandwidth than conventional approaches.

Considering the online transmission of a Star War movie, our obtained result is over 13% smaller in the

required network bandwidth and over 4% smaller in the obtained network idle rate than conventional

approaches. In this paper, a feedback control method is introduced to resolve the latency- and quality-

tolerance applications. Besides, the relations between the characteristic of input traffic and the behavior

of obtained scheduling results are also discussed.
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1. Introduction

In a distributed multimedia system, VBR media streams in servers should be smoothed and

transmitted across network to clients by following a transmission schedule. To guarantee media QoS

(quality-of-service), the obtained transmission schedule should satisfy real-time requirements for jitter-

free playback. Besides, the allocated resources (such as network bandwidth) should be minimized and

fully utilized to support as many requests as possible. Generally, a network transmission schedule can be

categorized as either client-controlled [1] or server-controlled [2-9]. In a client-controlled transmission

scheme, the utilization of client buffer can be monitored with better knowledge about the client status.

However, the client still need to send feedback messages to servers. As the network is possibly congested,

this client-controlled scheme has the drawback of feedback overhead and the responses may be

dramatically delayed. In these years, server-controlled transmission schemes have received great

attentions for delivery of VBR media streams to guarantee deterministic network services. If the media

stream is pre-recorded, the entire traffic can be accurately characterized to allocate appropriate mount of

resources and minimize the specified cost functions (i.e. critical bandwidth, bandwidth changes or

bandwidth variability) [2-15]. The obtained smoothed traffic usually has smaller transmission overhead

than the original VBR traffic. Notably, if the VBR traffic were generated online, the characteristics of

online traffic would not be precisely analyzed offline as presented in [16, 21]. Although some prediction

methods are presented to estimate the sizes of future frames based on their previous frames [19-20], the

prediction may not be correct.

In 1997, the window-based traffic-smoothing approach was introduced for delivery of online media

streams. Given a suitable delay as the time window size (called delay window), media frames in this time

window are specified and have not been transmitted. As frame sizes in time windows are given, the

smoothing algorithms presented for pre-recorded VBR media streams can be applied to smooth the traffic

in this time window. In [21], the CBA (critical bandwidth allocation) method (which proposed in [6] to
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minimize the allocated bandwidth for a pre-recorded media stream) is directly applied in each time

window to smooth online burst traffics. They smooth the traffics between different time windows

independently. Note that, in traffic smoothing, the large-size frames are pre-transmitted ahead of their

playback time to reduce required bandwidth. Let’s consider a burst VBR media stream, in which, a

sequence of small-size frames (called window w1) is followed by an action-scene with large-size frames

(called window w2). This kind of burst traffic can be found in many VBR media streams. If the

conventional hopping-window scheme [21] is applied, as w1 and w2 are mutually exclusive, the large-size

frames in w2 could not be pre-transmitted to smooth this burst traffic. Although bandwidths allocated in

windows w1 and w2 are minimized, they do not lead to the minimization of bandwidth required for

transmitting the entire stream. Recently, the sliding-window approach with a constant sliding size [21] is

introduced to further reduce the peak bandwidth allocated by overlapping the considered time windows.

However, it is hard to decide the best window sliding size to smooth the peak bandwidth. Generally, if

the sliding size were large, the obtained improvements would be limited. Besides, it would be very time-

consuming if the sliding size were too small. Although the increasing of time window size may reduce

the required peak bandwidth, the delay time for media playback would be highly increased. This

assumption is not acceptable for some real-time applications.

To resolve these drawbacks, in this paper, a dynamic window-sliding scheme is proposed. Our

approach can automatically decide the suitable sliding size of time window to smooth VBR traffic. Thus,

the large-size frames would be pre-transmitted as early as possible to reduce the required bandwidth. In

this paper, we have examined our proposed approach by different real-world streams. Experiments show

that our proposed method is effective and efficient. Given the client buffer size and the delay window

size, our proposed approach requires smaller network bandwidth and can obtain higher network

utilization than the conventional approaches. Our required computation time is also smaller than that of

the one-frame sliding-window approach. If network congestion or buffer overflow is detected, we
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introduce a feedback control algorithm to decrease the encoding speed and the encoding quality to reduce

the required bandwidth. Otherwise, based on the transmission deadline computed by [2], the suitable

frames can be dropped or deferred for playback to fit the available bandwidth. This bounded bandwidth

allocation technique is very useful when considering a real-world application with the latency- and

quality-tolerance [10].

2. Delivery of Online VBR Media Streams

At client sites, media frames are played periodically. The related playback schedule can be

described by the cumulative sizes of media frames called cumulative playback function (CPF) [2-3].

Assume that a media stream is defined as V = { f0f1 ... fn-1; Tf} where fi is the i-th media frame size and Tf

is the period time for frame playback. n is the number of frames in this media stream. Assume that the

client starts playback at time 0. The cumulative playback function F(t) at time t is defined as follows.

F(t) = 0, if t < 0

= Fi, if i*Tf  t < (i+1)*Tf, where 0  i < (n-1)

= Fn, if (n-1)*Tf  t

Fi = Fi-1 + fi is the i-th cumulative media size (where 0  i < n and F-1 = 0). As F(t) is a stair function, we

can define F(i*Tf)
- and F(i*Tf)

+ as the lower and the upper corner values at time i*Tf. Assume that the

server starts transmission at time –d*Tf, d*Tf is called the delay time. Assume that the transmission rate ri

is applied to transmit the media stream between time (i*Tf) to time ((i+1)*Tf). A transmission schedule

can be identified by a sequence of transmission rates r-dr-d+1 ... r0r1 ... rn-2 or a sequence of transmission

segments <p, q, rp> where rp = rp+1 = ... = rq-1. The peak bandwidth allocated for media transmission is

defined as max{ ri : for all i }.
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Fig. 1. A jitter-free transmission schedule for the given client buffer size and initial delay. The

design goal of a good transmission schedule is to smooth the VBR traffic with the minimum

2.1. Jitter-Free Transmission Schedule

Based on the definition of CPF, we define the cumulative transmission function G(t) = G((i-1)*Tf) +

ri*Tf as the amount of data sent by the transmitter. Notably, a jitter-free transmission schedule should

ensure a complete data frame is transmitted before each display without buffer overflow and underflow.

As the consumed data F(t) is a stair function and the buffer size b is bounded, the cumulative data

transmitted before time t should not be larger than H(t) = min{ Fn, F(t) + b }. Besides, G(t) should not be

smaller than F(t) for continuous playback. The jitter-free transmission schedule G(t) should satisfy F(t)+

 G(t)  H(t)- as shown in Fig. 1. It can be easily proved that, for all i, fi  b. For different jitter-free

transmission schedules, their performances can be measured by the required resources and the obtained

resource utilization. Generally, the resources considered in a multimedia system could be the memory

buffer ands the network bandwidth. As shown in previous studies [2-9], large initial delay and client

buffer can act as a good reservoir to regulate the difference between transmission and playback rates.

However, in a real-world system, the available buffer size and the acceptable delay time are bounded and

highly dependent on the service provided. In [2], we present a linear-time transmission schedule

algorithm for delivery of pre-recorded VBR media stream. An O(nlogn) algorithm presented to offline
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compute the relation functions between the required resources is shown in [18]. Based on these relation

functions, the session set-up protocol is as simple as a request-reply with a constant time computation.

Although this approach has been proved optimal on the required resource and the obtained resource

utilization, it is not suitable for delivery of online generated media streams.

time

W d

D

Q

W

server

client

window size

Fig. 2. A simple example to demonstrate the differences between the pre-recorded media stream

and the online generated media stream. Notably, in a window-based problem model, the frames

outside the current window are already scheduled or not generated.

2.2. Online-Generated VBR Media Stream

In a distributed multimedia system, media data can be pre-recorded or online-generated. The pre-

recorded media data are generally stored in disks [24]. Based on the data layout, a disk retrieval

scheduler [22-23, 28] is applied to decide the retrieving time of data blocks. Then, a network

transmission schedule is designed to minimize the required resource to support as many requests as

possible. In a pre-recorded media stream, as all the frame sizes are specified, the transmission schedule

can be computed offline [2-9]. However, in an online generated media stream, the frame sizes are not

pre-specified before session setup. At any time t, the previous frames may be transmitted and the future

frames are not generated. The transmission schedule can only be decided by a time window of functions
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F(t) and H(t) [2-21]. Although some prediction methods are presented to estimate the sizes of upcoming

frames by the previous frames [19-20], the prediction may be not correct. Recently, the window-based

traffic model is applied to smooth the online media stream by introducing a small playback delay [21]. A

simple example to illustrate the differences between the pre-recorded media stream and the window-

based online media stream is shown in Fig. 2. In the window-based model with a window size W, the

media frames fifi+1 ... fi+W-1 are given for scheduling with W*Tf delay time. The initial delay for playback

is D = (d+W)*Tf where d is usually given as one. Notably, as frames before fi are already transmitted and

frames after fi+W-1 are not generated, only the frames in this window can be applied to smooth the VBR

traffic. We can simply treat the media frames in each time window as pre-recorded. Thus, the traffic

smoothing methods presented for the pre-recorded streams (such as CBA [6], MVBA�[5], LA [2] and

CRTT [9]) can be applied in these time windows. In conventional approaches [21], traffic smoothing for

different time windows are operated independent. Although the peak bandwidths allocated in each time

window are minimized, the peak bandwidth allocated for transmitting the entire media stream is not

minimized. A simple example to demonstrate this drawback is given in Fig. 3. Define that the window w

contains only small-size frames and the large-size frames are in the next window w+. If the traffics in w

and w+ are smoothed independently, the required bandwidth in w is minimized without considering the

allocated bandwidth in w- and the burst traffic in w+. Thus, the peak bandwidth allocated in w- would not

be specified in w to smooth the burst traffic in w+. Notably, if the bandwidth allocated in w- is considered

in w and w+, a better schedule can be obtained as shown in Fig. 3. Our proposed algorithm is based on

this concept to improve the required peak bandwidth and the obtained network idle rate.
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Fig. 3. A simple example to show the drawbacks of conventional window-based approaches.

Notably, although the bandwidth allocated in each local window is minimized, the peak bandwidth

allocated for transmitting the entire media stream is not minimized.

In [21], a sliding window-based approach is proposed to reshape the media traffic whenever  new

frames are generated (called SLWIN() where is the number of sliding frames). Given an acceptable

delay time D to decide a suitable window size W, SLWIN() first considers the window w0 with frames

f0f1 ... fW-1. At time W*Tf, the scheduling algorithm is executed and starts the transmission schedule. The

client receives frame f0 after d*Tf pre-loading time and starts the playback. At time (W+)*Tf, the frames

fWfW+1 ... fW+-1 are generated. The scheduling algorithm is executed again to shape the remainder traffic of

f0f1 ... fW-1 and these  new added frames. This -frame sliding-window approach should run the traffic

smoothing algorithm n/ times where n is the number of media frames. It is very time-consuming.

Sometimes, the over-determined bandwidth reduction may defeat the pre-transmission of media frames.

Although the required bandwidth in the current window is reduced, the peak bandwidth allocated for the

entire media stream is increased and the obtained resource utilization is low. It is necessary to design a

new algorithm to further minimize the peak bandwidth allocated for delivery of online media streams
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with low time complexity and high resource utilization.
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Fig. 4. Compares the peak bandwidth allocated by the conventional approaches and our proposed

approach. In our proposed approach, we can fully utilize the peak bandwidth allocated

3. Our Proposed Dynamic Window Sliding Approach

In this paper, an online traffic-smoothing method is proposed to automatically decide the suitable

size for window sliding. Different from the conventional approaches, our bandwidth minimization

procedures for different windows are operated dependently. In each window, the peak bandwidth

allocated in the previous window (called rmax) is considered as an input threshold parameter. The initial

value of rmax can be given as a suitable non-negative number, i.e. the average rate, for transmitting the

first window. Assume that the current window is fifi+1 ... fi+W-1 (W is the window size) and the media

frames fjfj+1 ... fi+W-1 are not transmitted as shown in Fig. 4. For the transmission segment <pi, pi+1, ri>, the

transmission starts from time ti*Tf and ends at time ti+1*Tf with the bandwidth (transmission rate) ri. In

this paper, we simply define the segment point pi as the lower corner of H(ti) (H(ti)
-) or the upper corner

of F(ti). It is not difficult to extend the segment points to any time points as shown in [6]. As shown in

Fig. 4, there are three transmission segments <p0, p1, r0>, <p1, p2, r1> and <p2, p3, r2>. Notably, in the

conventional approaches, r2 is usually much smaller than rmax as the bandwidths in these two window are

minimized independently. Thus, the large frames would not be pre-transmitted to reduce the peak
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bandwidth allocated in the next window. In our proposed approach, we try to construct a new

transmission schedule to further utilize the peak bandwidth allocated in the previous windows. Based on

this threshold parameter rmax, we do not only smooth the traffic but also pre-transmit the burst traffic as

early as possible to minimize the required bandwidth in the next window.

3.1. Proposed Algorithm to Minimize Required Bandwidth

Before describing the proposed algorithm, we first define (s, G(s)) as the start-point of the segment

and the increasing variable t is tested as the possible end-point of the segment. Assume that the media

frames in the current window are fifi+1 ... fi+W-1. In this paper, we define the functions RF(t) = (F(t) – G(s) -

Q) / (t-s) and RH(t) = (H(t)- – G(s) - Q) / (t-s) as the test rates that started from time s and ended at time t

for the curves F(x) and H(x), respectively. Q = F(j*Tf)
- - F(i*Tf) is the pre-transmitted traffic size by the

previous transmission schedule. The detail description of the proposed algorithm in each window is

shown as follows.

ALGORITHM: Online Traffic Smoothing

s = i*Tf, t = tH = tF = j*Tf, and G(s) = F(j*Tf)
- // Initial the segment points

rF = RF(s) and rH = RH(s) // Initialize the transmission rates

repeat

t’ = t + Tf

if (rH < RF(t’)) { // up-bounded by H(x)

output segment: < G(s), H(tH)-, rH >

rmax = max{ rmax, rH }, G(tH) = H(tH)-, Q=0, s = tH, t = s + Tf, rF = RF(s) and rH = RH(s)

} else if (rF > RH(t’)) { // low-bounded by F(x)

output segment: < G(s), F(tF), rF >

rmax = max{ rmax, rF }, G(tF) = F(tF), Q=0, s= tF, t = s + Tf, rF = RF(s) and rH = RH(s)
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} else if (t’ = i+W-1) { // final open area

if (rH < rmax) {

output segment: < G(s), H(tH)-, rH >

G(tH) = H(tH)-, Q=0, s = tH, t = s + Tf, rF = RF(s) and rH = RH(s)

} else { // up-bounded by rmax

rmax = max{ rmax, rF }, tF = (F(i+W-1)–G(s)) / (rmax*Tf) *Tf

output segment: < G(s), F(i+W-1), rmax >

s = t’

}

} else { // try the next frame

t = t’

if (rH  RH(t)) { rH = RH(t), tH =t }

if (rF  RF(t)) { rF = RF(t), tF =t }

}

until (s = i+W-1)

As suggested in [21], we choose the window size W to be an integer multiple of the size of GOP (group-

of-picture). In this paper, we assign W as the number of frames in a GOP. Notably, if the smoothing

window is started by a large I-frame, the required peak bandwidth would be highly increased. In this

paper, whenever the remainder of the media stream is started by an I-frame, we automatically adjust the

window size to resolve this problem. For example, we can extend the window size to W+1 to pre-

transmit this I-frame in the current window. In online transmission, we usually assign the value of d as

one frame.

Notably, in conventional window-based approaches, the number of sliding-frames is a constant
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value k  W. Given the sliding size k, the traffic-smoothing procedure will be executed periodically after

k new frames are generated as shown in Fig. 5. Although the small sliding size could lead to the small

peak bandwidth, the required computation time would be too high to online processing. Besides, it is

hard to decide the suitable sliding size to minimize both the computation time and the peak bandwidth

allocated. In this paper, we automatically decide the suitable sliding size. Our proposed approach

executes the smoothing procedure only when the previous scheduled frames are all transmitted. Notably,

the sliding size that considered in each window might be different with different numbers of frames (see

Fig. 5). Generally, the applied window is hopping (sliding size = W) for CBR media traffic. When the

burst traffic is presented, the siding size will be automatically decreased to make a better control. Thus,

the peak bandwidth requirement can be minimized by pre-transmitting large frames.

.... ....

rate rate

conventional proposed 
(static 5 windows) (dynamic 5 windows)

Fig. 5. In conventional approaches, the window sliding size is a given constant. In our approach, we

can automatically decide the suitable sliding size to shape the VBR traffic. The traffics between

different windows are also smoothed.

3.2. Bounded Bandwidth Allocation in Real-World Applications

In real-world applications, the online media stream may be latency- or quality-tolerance with a

bounded delay in playback and a bounded decay in quality. They may have a bounded network
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bandwidth and try to admit as many requests as possible. Whenever the network congestion is detected

and the available bandwidth is decreased, a feedback control algorithm could be applied to slow-down

the encoding speed and decreases the encoding quality to reduce the media traffic. In conventional

approaches, they simply assume that the media frames do not dropped or deferred during transmission.

However, these assumptions are not guaranteed in current networks. To resolve this bounded bandwidth

allocation problem, we can extend the feedback control algorithm to reduce the value of rmax to design a

new transmission schedule. The modified rmax = min{ ravailable, rmax }. Notably, if the available bandwidth

is too small, some frames may miss their transmission deadlines for continuous playback. As shown in

Fig. 6, given the available bandwidth, the transmission deadline for each media frame can be easily

computed by a linear-time algorithm based on the algorithms proposed in [2]. As shown in Appendix A,

this algorithm can be proved to be optimal in the utilizations of allocated buffer and bandwidth.

Considering a MPEG stream, we can directly drop P- and B-frames if their deadlines are missed. If an I-

frame has missed its transmission deadline, we can try to drop other B/P-frames or to defer the stream

display as shown in Fig. 6. Thus, the modified media traffic can fit the available bandwidth.

defer displaydrop frame

Fig. 6. If the available bandwidth is too small, some frames may miss their transmission deadlines

and the buffer may be underflow. We can drop frames or defer the stream display to reduce the

current media traffic to fit the allocated bandwidth by a feedback controller.
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Table 1. Statistics of the test VBR-encoded MPEG media streams. (fps: frame-per-second, AVG:

average bit-rate, STD: standard deviation of frame size)

Stream Frame # fps Max Frame AVG STD Burst Traffic

Star War 174136 24 22.62 KB 0.36 Mb/s 2.3 Convex-and-Concave

Princess Bride 167766 30 29.73 KB 1.17 Mb/s 4.8 None (large STD)

CNN News 164748 30 30.11 KB 1.17 Mb/s 3.7 None

Lecture 16316 30 6.14 KB 0.33 Mb/s 1.6 Convex

Advertisements 16316 30 10.08 KB 0.45 Mb/s 1.9 Convex-and-Concave

4. Experiment Results

In this paper, we have examined the proposed online transmission method by many benchmark

streams [25-26]. Without losing the generalization, we evaluate the proposed approach by the peak

bandwidth allocated and the network idle rate (the bandwidth utiliization – the actual bandwidth

consumed divides the peak bandwidth allocated). Comparisons are made with an optimal offline

scheduler proposed in [2] and the conventional window-based online schedulers presented in [21]. To

consider the long-length movie stream, our first test example is an over two hours long MPEG-encoded

Star War movie. In Star War, the number of frames in a GOP (called frame rate) is 24 fps (frames-per-

second). It has large media frames and high variation in frame sizes as many real-world media streams.

To test the video stream encoded by hardware MPEG coder, the next two media traces examined are

nearly 90 minutes long CNN News and Princess Bride video streams. As the hardware coder uses

variable distortion coding to maintain its target rate, the obtained variation in frame sizes is small. The

last two test data are Advertisements and Lecture video traces encoded by the UCB software MPEG

coder [25] with constant distortion coding. Their variations in frame sizes are different due to the video

contents are different. In Lecture, the same speaker and his slides are shown along with only zooming

and panning. As the frame contents are very similar, the variation in frame sizes is small. However, in
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Advertisements, the frame contents are changed from one scene to another scene in a sequence of

advertisements. Although the mean value of frame sizes is small, the frame size variation is very high.

Table 1 shows the detail statistics of test media streams.

4.1. Comparisons with Conventional Approaches

Notably, as the window sliding size used in our dynamic-sliding algorithm would be larger or equal

to that of SLWIN(1), it can be easily proved that our proposed approach would require smaller

computation time than that of SLWIN(1) (the one-frame sliding-window approach). Although we have

introduced a fast algorithm to speedup SLWIN(1) by computing only the first transmission segment in

each window, the consumed CPU time is still very large. Our experiments show that the proposed

approach can compute almost two times faster than the fast SLWIN(1) algorithm. When comparing the

required bandwidth and network idle rate, experiments to the Star War movie show that the required

bandwidth of SLWIN(1) is over 13% higher than that of our proposed approach (as shown in Fig. 7).

Besides, the obtained network idle rate of SLWIN(1) is over 4% higher than that of our proposed

approach. Our proposed approach is shown efficient and effective. Although the SLWIN(W) approach

with a W-frame hopping-window could compute fast, the required bandwidth and the obtained network

idle rate are too high. The requirements in large system resources make conventional approaches

impractical to play back burst VBR media streams such as the Star War movie. Fig. 8 shows the required

network bandwidth and idle rate to online transmit the Advertisements video stream. Comparisons are

made with the optimal offline scheduler (offline), the SLWIN(1) approach (online (W/W)) and the

SLWIN(W) approach (online (W/1)). Our obtained result is better than that of the conventional SLWIN(1)

approach.
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Fig. 7. The required network bandwidth and idle rate to online transmit the Star War movie

stream. Comparisons are made with the optimal offline scheduler (offline), the SLWIN(1)

approach (online (W/W)) and the SLWIN(W) approach (online (W/1)).
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Fig. 8. The required network bandwidth and idle rate to online transmit the Advertisements video.

Comparisons are made with the optimal offline scheduler (offline), the SLWIN(1) approach (online

(W/W)) and the SLWIN(W) approach (online (W/1)).
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Fig. 9. The cumulative playback function of the Star War movie stream. This media stream

contains a long-term concave burstiness.

4.2. Obtained Results for Different Types of Burst Traffics

In this paper, to take a more in-depth look at the proposed algorithm, we demonstrate how the

concave-covex behaviors of input media can influence the required system resources in transmission. Our

experiments show that, given a suitable buffer size (> max{fi}), the required bandwidth depends

primarily on the characteristics of stream burstiness. If the video stream has a sustained area of small

frames followed by a sustained area of large frames, it contains a concave burstiness. This kind of

burstiness is hard to predict by the previous traffic size. The required bandwidth for online transmission

tends to be higher than stream’s average bit-rate even a large buffer size is allocated. For example, the

Star War movie stream contains a long-term concave burstiness (see Fig. 9). As shown in Fig. 7, the

increasing of buffer size does not lead to the decreasing of allocated network bandwidth when the buffer
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size is larger than 80 KB. Comparing to the conventional SLWIN(1) and SLWIN(W) approaches, our

proposed approach can utilize the allocated network bandwidth more efficiently. Under the same

constrains of initial delay and buffer size, our obtained network idle rate is smaller than those obtained by

the conventional approaches. Furthermore, the obtained improvement is increased dramatically whenever

a sufficient buffer is allocated.
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Fig. 10. The cumulative playback function of the Advertisements video stream. This media stream

contains a long-term convex burstiness.

Different from the concave burstiness, a sustained area of larger frames may be followed by a

sustained area of smaller frames. It presents a convex burstiness that can be found in the Advertisements

video stream (see Fig. 10). With a convex burstiness, the burst traffic is usually presented at the first

window and can be easily identified. As shown in Fig. 8, our allocated peak bandwidth is almost the

same as that allocated by the SLWIN(1) approach. When comparing the obtained network idle rate, our
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proposed approach is better than the SLWIN(1) approach. Generally, a video stream may contain both

the concave and convex long-term burstiness (as shown in Star War and Advertisements). Comparing the

Lecture video that contains only the convex burstiness to the Advertisements video, the relations between

the required bandwidth and the available buffer size for Advertisements is more complex than that for

Lecture. The cumulative playback function of Lecture is shown in Fig. 11. The required peak bandwidth

and the obtained network idle rate are shown in Fig. 12. We can find that these two video streams have

the same frames number and the same GOP size. Besides, their average frame rates and variations in

frame sizes are similar. The only difference between these two media streams is the characteristic of

burstiness. This experiment shows that the obtained results of online traffic smoothing highly depend on

the characteristic of stream burstiness.
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Fig. 11. The cumulative playback function of the Lecture video stream. This media stream contains

only a long-term convex burstiness.
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Fig.12. The required network bandwidth and idle rate to online transmit the Lecture video stream.

Comparisons are made with the optimal offline scheduler (offline), the SLWIN(1) approach (online

(W/W)) and the SLWIN(W) approach (online (W/1)).
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4.3. Obtained Results for Different Frame Size Variations

If a video stream has no concave or convex long-term burstiness, the required bandwidth would

highly depend on the frame size variation. In this paper, we use the standard deviation (STD as show in

Table 1) to measure the frame size variations for different media streams. Generally, the standard

deviation for media stream f0f1 ... fn-1 (fi is the i-th media frame size) is defined as follows.

STD = sqrt{ ((f0–mean)2 +  (f1–mean)2 + ...+ (fn-1–mean)2) / n }

where  mean = (f0 + f1 + ...+ fn-1) / n

Comparing Princess Bride and CNN News, these two media streams have the similar stream length and

the same average frame rate. However, the frame size variation of Princess Bride is higher than that of

CNN News. Comparison results of the required bandwidth and the obtained network idle rate are shown

in Fig. 13 and Fig. 14. In our experiments, the required peak bandwidth for Princess Bride would be

larger than that for CNN News. The large variation in frame size would lead to the large requirement in

peak transmission bandwidth.

Comparing to the video streams which contain long-term burstiness, our experiments also show that

only for a nearly-CBR media stream (such as Princess Bride, see Fig. 15), the conventional SLWIN(W)

approach may be considered as a good choice because of its simplicity. However, the obtained network

idle rate of SLWIN(W) is still very large. Notably, the allocated bandwidth of our online transmission

scheduler is the same as that obtained by the optimal offline transmission scheduler. Our proposed

approach is shown to be effective and efficient, and can allocate a small network bandwidth for online

VBR stream transmission. The obtained results are better than those obtained by the conventional

SLWIN(1) and SLWIN(W) approaches.
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Fig.13. The required network bandwidth and idle rate to online transmit the nearly-CBR Princess

Bride video stream. Comparisons are made with the optimal offline scheduler (offline), the

SLWIN(1) approach (online (W/W)) and the SLWIN(W) approach (online (W/1)).
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Fig. 14. The required network bandwidth and idle rate to online transmit the nearly-CBR CNN

News video stream. Comparisons are made with the optimal offline scheduler (offline), the

SLWIN(1) approach (online (W/W)) and the SLWIN(W) approach (online (W/1)).
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Fig. 15. The cumulative playback function of the Princess Bride video stream. It is a nearly-CBR

media stream.

5. Conclusion

This paper presents a traffic smoothing method for delivery of online media stream. The proposed

approach can automatically decide the suitable size of window sliding to smooth the VBR traffic under

the minimum bandwidth requirement. We have explored the proposed algorithm by transmitting several

benchmark video streams. Given the client buffer size and the playback delay, our proposed approach

would require smaller peak bandwidth than that of conventional approach with 13% improvements when

transmitting the Star War movie stream. Besides, the utilization of network obtained is also better than

that obtained by the conventional approach. When considering the latency- and quality-tolerance

applications, an encoder feedback control algorithm based our proposed algorithm and the algorithms

proposed in [2] can be easily applied. Our proposed approach is shown effective and efficient.
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Appendix: A

ALGORITHM: identify the frames those miss their transmission deadlines

input: video stream V, the peak transmission rate r, the client buffer b and the initial delay d

output: the media frames those miss their transmission deadline

A-1 = min{ |V|, b, (d-1)*r }

for i = 0 to n-1 do {

Ai = min{ |V|, Fi-1 + b, Ai-1 + r*Tf } // F is the CPF

if (Ai < Fi) {  // the frame i will miss its transmission deadline

the solution procedure (i.e. drop the frame or defer the frame playback time)

}

}


