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Abstract

In this paper� we consider the edge searching and node searching problems on trees�
Given a tree� we show a transformation from an optimal node�search strategy to an
optimal edge�search strategy� Using our transformation� we simplify a previous linear�
time algorithm for determining the edge�search number of a tree� and improve the
running time of a previous algorithm for constructing an optimal edge�search strategy
of an n�vertex tree from O�n logn� to O�n�� We also improve the running time of a
previous algorithm for constructing an optimal min�cut linear layout of an n�vertex
tree with the maximum degree three from O�n logn� to O�n��

� Introduction

The graph searching problem was �rst proposed by Parsons �Pa��� Pa��� and independently
proposed by Petrov �Pe�	�
 A graph represents a system of tunnels
 Initially� all the edges of
the graph are contaminated by a gas
 We wish to obtain a state of the graph in which all the
edges are simultaneously cleared by a sequence of moves using the least number of searchers
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The graph searching problem is not only interesting theoretically� but also have applications
on several combinatorial problems �Bi��� CMST�� Ki�	� KP�� KT�	� Mo��� MPS�� RS���


In this paper� we consider the edge searching problem and the node searching problem
on trees
 In node searching �KP���� the allowable moves are ��� placing a searcher on a
vertex and �	� removing a searcher from a vertex
 A contaminated edge is cleared if both
its two endpoints simultaneously contain searchers
 In edge searching �Pa���� besides the
allowable moves in the node searching� one more move� ��� moving a searcher along an edge�
is allowed
 In edge searching� a contaminated edge is cleared by moving a searcher along this
edge
 A cleared edge may be recontaminated if there is a path from a contaminated edge
to the cleared edge without any searcher on its vertices �or edges�
 A vertex is guarded if it
contains a searcher


A node�search strategy is a sequence of moves allowed by node searching rules that clears
the initially contaminated graph
 The node searching problem is the problem to �nd a node�
search strategy to clear the initially contaminated graph using as few searchers as possible

The number of searchers needed to solve the node searching problem on a graph G is called
the node�search number of G and we denote it as ns�G�
 We de�ne similarly for the edge
searching problem� an edge�search strategy� and the edge�search number es�G� of G
 A
search strategy is called optimal if it uses the minimum number of searchers
 It has been
shown in �KP��� BS��� �respectively� �La��� BS���� that there always exists an optimal
node�search �respectively� edge�search� strategy for a graph that does not recontaminate any
edge
 Kirousis and Papadimitriou �KP��� proved that for any graph G� ns�G��� � es�G� �
ns�G�� �
 In the rest of paper� we only consider the node� and edge�search strategies which
do not recontaminate any edge


The node searching problem is equivalent to the gate matrix layout problem and interval
graph augmentation problem �Mo���
 The problem of �nding the node�search number is
equivalent to the pathwidth problem �RS��� Mo���� the interval thickness problem �KP���
the narrowness problem �KT�	�� and the vertex separation problem �KP��� Ki�	�
 From
the equivalent of the above problems� the node searching problem is NP�complete on planar
graphs with vertex degree at most three �MoS���� starlike graphs �a proper subclass of chordal
graphs� �Gu���� bipartite graphs �Kl���� cobipartite graphs �i
e
� complement of bipartite
graphs� �ACP���� and bipartite distance�hereditary graphs �a proper subclass of the chordal
bipartite graphs and distance�hereditary graphs� �KBMK���
 For some special classes of
graphs� it can be solved in polynomial time� as e
g
� trees �Mo��� Sc��� EST���� cographs
�BM���� permutation graphs �BKK��� trapezoid graphs �BKKM��� split graphs �Gu���
Kl���� partial k�trees �BK���� and k�starlike graphs for a �xed k �Gu��� PKHHT���


The edge searching problem is equivalent to the min�cut linear arrangement problem for
any graph with the maximumdegree � �MaS���
 The edge searching problem is NP�complete
on general graphs �MHGJP���� planar graphs with the maximum vertex degree � �MoS���
and starlike graphs �PKHHT���
 However� it can be solved in polynomial time on complete
graphs �GP���� trees �MHGJP���� interval graphs� split graphs� and k�starlike graphs for a
�xed k � 	 �PKHHT���


Though the above two searching problems appear to be similar� the time complexities to
solve them are di�erent
 There are linear time algorithms on a tree to �nd both its node�
search number and an optimal node�search strategy �Sc��� Sc�	� �also mentioned in �Mo���

	



Theorem �
���
 However� the previous best algorithm �MHGJP��� takes O�n log n� time to
�nd an optimal edge�search strategy on a tree of n vertices� while its edge�search number
can be found in linear time �MHGJP���
 In this paper� we improve the time complexity of
�nding an optimal edge�search strategy on a tree by establishing a relationship between the
two searching problems on this tree


We �rst extend the concept of an avenue of a tree in edge searching as used by Megiddo
et al� �MHGJP��� to an avenue system
 We show that in node searching� a similar avenue
system can be de�ned
 Based on properties of the above two avenue systems� we discover that
the two search numbers are equal on trees that have at least four vertices with no degree�	
vertex� and whose every internal vertex is adjacent to at least one leaf� so�called a sprout tree
�will be de�ned in Section ��
 We further show that an optimal node�search strategy for a
sprout tree can be transformed into an optimal edge�search strategy using the same number
of searchers in linear time
 For any tree T � if it is not a sprout tree� then we can transform
it to a sprout tree T �
 We will prove that if T is not a path� then T and T � have the same
edge�search number
 Our above transformation takes time linear in the size of the input
tree
 Note that the best previous result for constructing an optimal edge�search strategy for
a tree needs O�n log n� time �MHGJP���
 Besides the above algorithmic achievement� the
relationship between two searching problems we discovered may be of interest by itself


Recently� we were informed that independently Golovach �Go��� Go��� obtained similar
results
 In �Go���� Golovach mentioned that if a graph G has no vertices of degree 	 and is
di�erent from the complete graph with two vertices then ns�G� � es�G�
 Unfortunately� no
detail is given
 We were also told that Golovach �Go��� has the following results
 If graph
G� is obtained from the graph G by adding of any number of degree�� vertices adjacent
to vertices of G having degrees more than 	� then es�G� � es�G��
 In the same thesis�
Golovach also shows that if there exists an optimal node�search strategy of G such that in
which one searcher is placed on a vertex v� deg�v� � �� by some move and is removed from
v immediately by the next move� and there are less than ns�G� searchers on the graph after
the �rst move� then ns�G� � es�G�


The remains of this paper are organized as follows
 In Section 	� we de�ne the avenue
systems on trees for edge and node searching problems
 Our main results about the rela�
tionship between the node searching and edge searching on trees are presented in Sections �

The linear time algorithm for constructing an optimal edge�search strategy for a tree and the
min�cut linear layout problem on trees with the maximum degree � are presented in Section
�
 Finally� we give conclusion in Section 


� Avenue system

Let T be an unrooted and connected tree
 Let V �T � and E�T � denote the vertex and edge
sets of T � respectively
 A sequence of vertices �v�� v�� � � � � vr� is a path if �vi� vi��� � E�T ��
� � i � r � �
 A vertex in T with degree � is called a leaf and a non�leaf vertex is called an
internal vertex
 For any vertex t � V �T �� a connected component of Tnftg is called a branch
of T at t
 Let v be adjacent to t in T 
 The branch of T at t containing v is denoted as Ttv
 Let
T�
tv denote the subtree such that V �T�

tv � � V �Ttv� � ftg and E�T�
tv � � E�Ttv� � f�t� v�g
 T

�
tv

is called an e�branch at t
 Note that the branch Ttv �or e�branch T
�
tv � is uniquely determined

�



by the vertex t and its neighbor v


��� Edge searching

Lemma ��� �Pa��� If G� is a subgraph of G then es�G�� � es�G��

Lemma ��� �Pa��� For any tree T and an integer k � �� es�T � � k � � if and only if
there exists a vertex t � V �T � with at least three e�branches T�

tu� T
�
tv � and T�

tw such that
es�T�

tu� � k� es�T�
tv � � k� and es�T�

tw� � k�

From Lemma 	
	� Megiddo et al� �MHGJP��� proposed the concept of avenue of a tree
for the edge searching
 For any tree T � let s � es�T �
 A path �v�� v�� � � � � vr� of two or more
vertices is an e�avenue for T if the following conditions hold


�
 Exactly one e�branch of v� �respectively� vr� has edge�search number s and this e�branch
contains v� �respectively� vr���


	
 For every j� 	 � j � r � �� the edge�search numbers of exactly two e�branches of vj
are s and in these two e�branches� one contains vj�� and the other contains vj��


Given an e�avenue �v�� v�� � � � � vr�� an e�branch at vi� � � i � r� is called a nonavenue
e�branch if it contains no other vertex in the e�avenue but vi
 We call a vertex v in a tree T
an e�hub of T if the edge�search number of any e�branch at v is less than es�T �


Lemma ��� �MHGJP		� For any tree T � T has either an e�hub or a unique e�avenue�

Note that more than one vertex in a tree can be chosen as an e�hub
 A tree T is minimal
with respect to edge searching if the deletion of any vertex results in a forest T � whose es�T ��
equals to es�T ���
 We de�ne similarly for T being minimal with respect to node searching

In a tree T that is minimal with respect to edge searching and es�T � � 	� every internal
vertex is an e�hub �MHGJP���


Lemma ��� For any tree T of es�T � � 	� any leaf of T cannot be an e�hub or a vertex of
the e�avenue�

Proof� Let v be any leaf of T and let u be the neighbor of v
 If T has an e�avenue containing
v� then u must belong to this e�avenue
 Since the e�branch T�

uv contains the two vertices u� v
and the edge �u� v�� es�T�

uv� � �
 By the condition �	� of the e�avenue� u does not belong to
the e�avenue
 This is a contradiction
 That is� v cannot be a vertex of the e�avenue of T 

If T has no e�avenue� then we assume T has an e�hub
 In this case� the e�branch at v is T
itself
 By the de�nition of an e�hub� v cannot be an e�hub of T 
 �

For convenience� in the rest of this paper� an e�hub is regarded as an e�avenue consisting
of a single vertex
 Note that if es�T � � �� then T is a path


Let T be a tree
 We de�ne an e�avenue systemAe�T � and the set of nonavenue e�branches
F�Ae�T �� as follows


�



�
 If T is a path �u�� � � � � uk�� then A
e�T � � f�u�� � � � � uk�g and F�A

e�T �� � fTg


	
 If T is not a path� then let �v�� v�� � � � � vr� be its e�avenue and let T �T � � fBjB is a non�
avenue e�branch at vi� � � i � rg
 Then Ae�T � � f�v�� v�� � � � � vr�g � ��T

�
�T �T �A

e�T ���
and F�Ae�T �� � fTg � ��T

�

�T �T �F�A
e�T ����


With respect to Ae�T �� e�labels of vertices in T are de�ned as follows
 Firstly� for each
tree T � in F�Ae�T �� with es�T �� � 	� the e�label of any vertex in the e�avenue of T � in Ae�T �
is es�T ��
 Secondly� for each tree T � in F�Ae�T �� with es�T �� � �� the e�label of any vertex
in T � is � if this vertex is not labeled above


Note that there is no con�ict in labeling a vertex� i
e
� a vertex cannot have two di�erent
e�labels
 If the e�label of a vertex v is at least 	� v belongs to the e�avenue of exactly one
tree in F�Ae�T ��
 By Lemma 	
� and the way we labeled� v will not be relabeled
 If the
e�label of a vertex v is �� then v cannot have any e�label whose value is not �
 An example
of the e�avenue system is shown in Figure ��b�
 In the example� let T be the tree in Figure
��a�
 We choose �w� as an e�avenue of T and the e�branches at w are T�

wq� T
�
wu and T�

wx

The e�avenues of T�

wq� T
�
wu and T�

wx are �c� f� j� l� q�� �u� and �x�� respectively
 By the recursive
de�nition� Ae�T � � f�w�� �c� f� j� l� q�� �u�� �x�� �a� c�� �b� c�� �d� f �� �f� g� h�� �j� k�� �l�m� o�� �p� q��
�q� r�� �t� u�� �u� v�� �x� y�� �x� z�g and the corresponding e�labels are depicted in Figure ��b�


By de�nition� each vertex v with the e�label at least 	� is in an e�avenue of a subtree of T
in F�Ae�T ��
 We denote this tree by T v
 Let i be the e�label of v in Ae�T �
 Then es�T v� � i
and T v is a nonavenue e�branch at u of T u for some u whose e�label is at least i� �
 Note
that if the e�label of v is es�T �� then T v � T 
 If es�T v� � 	� then the nonavenue e�branches
at v in the subtree T v are referred in the following as nonavenue e�branches at v without
specifying the subtree
 For example� in Figure ��a�� the subtree T f is T�

wq

Given Ae�T �� we design the following algorithm to construct an optimal edge�search

strategy of T 


Algorithm ES�T � Ae�T ���
Let �v�� v�� � � � � vr� � Ae�T � be an e�avenue of T �
place a searcher on v��
if es�T � � � then move the searcher at v� to vr via vi� 	 � i � r � �
else
for i �� � to r do
for each nonavenue e�branch T � at vi do ES�T �� Ae�T ���� �� Ae�T �� � Ae�T � ��
if i � r then move the searcher at vi to vi�� along �vi� vi���

end for
end if�
remove the searcher on vr

end ES�

Lemma ��� Let T be a tree andAe�T � be its e�avenue system� Then Algorithm ES�T�Ae�T ��
constructs an optimal edge�search strategy of T �

Proof� We prove this lemma by induction on es�T �
 If es�T � � �� then T � �u�� u�� � � � � us�
is a path and Ae�T � � f�u�� u�� � � � � us�g
 In Algorithm ES�T � Ae�T ��� T is cleared by placing
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Figure �� Avenue systems of a tree T 


a searcher on u� and then move it to us via ui� 	 � i � s � �
 Since only one searcher is
used� Algorithm ES�T � Ae�T �� constructs an optimal edge�search strategy for T 


Assume that for all trees T with 	 � es�T � � k � �� ES�T�Ae�T �� constructs an
optimal edge�search strategy of T 
 Now we consider a tree T with es�T � � k
 Let
�v�� v�� � � � � vr� � Ae�T � be its e�avenue
 In Algorithm ES�T�Ae�T ��� we �rst place one
searcher on v� then we recursively clear all the nonavenue e�branches at v� using at most
k � � searchers
 Note that the edge�search number of any nonavenue e�branch at v� is less
than k
 For each nonavenue e�branch T � at v�� let Ae�T �� denote the e�avenue system of T �

contained in Ae�T �
 By the induction hypothesis� T � can be cleared by the optimal edge�
search strategy constructed by ES�T ��Ae�T ���� which uses at most k � � searchers
 After
all the nonavenue e�branches at v� are cleared� we again have k � � free searchers
 We then
move the searcher at v� to v� along the edge �v�� v��
 By using a process similar to the one
we used to clear the nonavenue e�branches at v�� we can clear each nonavenue e�branch of vi�
	 � i � r� one after one using at most k � � searchers
 After all the nonavenue e�branches
at vr are cleared� T is cleared
 Hence Algorithm ES�T � Ae�T �� uses exactly k searchers to

�



clear T 
 Thus our lemma is proved
 �

As an example� for the tree T in Figure ��a�� we can clear T using the e�avenue system
depicted in Figure ��b� as follows
 We �rst place a searcher on w
 Secondly� we clear the
e�branch T�

wq
 Since �c� f� j� l� q� is the e�avenue of T
�
wq� we place a second searcher on c
 By

using the third searcher� we can clear �a� c� and �b� c�
 Next� we move the searcher at c to f
along the edge �c� f�
 Then the edge �d� f� and the path �f� g� h� can be cleared by the third
searcher
 By the similar process� we can clear the vertices j� l and q
 After the e�branch
T�
wq is cleared� we have two free searchers
 By using these two searchers� we can clear the

e�branches T�
wu and T�

wx
 Thus T can be cleared using � searchers

Since more than one vertex in a tree can be chosen as an e�hub� a tree may have many

distinct e�avenue systems
 In addition� by Lemma 	
� and our labeling method� we know
that for any e�avenue system of tree T � the labels of the leaves of T are �
 We have the
following lemma


Lemma ��� For any tree T with no vertex of degree 	 and jV �T �j � �� no internal vertex
is labeled with � in any e�avenue system of T �

Proof� Let Ae�T � be an e�avenue system of T 
 By Lemma 	
�� all the e�labels of the leaves
in T are �
 Suppose v is an internal vertex whose e�label is �
 By the de�nition of e�label�
there exists a vertex u such that the e�label of u is at least 	� v belongs to a nonavenue
e�branch T � at u and es�T �� � �
 Since T � is a path and v is not labeled then� the degree of
v in T is either � or 	
 It contradicts to the fact that T has no vertex of degree 	 and v is
an internal vertex
 �

��� Node searching

Let G be a graph
 According to �KP��� an optimal node�search strategy for G can be
represented by a sequence of vertex sets Y � �Y�� � � � � Yr�� where Yi � V �G� is a set of
vertices guarded by searchers at step i for � � i � r
 An edge �u� v� is cleared at step i if
fu� vg � Yi and fu� vg 	� Yj for all j � i
 An edge �u� v� is clear at step j if u� v � Yi for some
i � j
 A vertex u is cleared at step i if it is the �rst step that all the incident edges of u are
clear
 Recall that we only consider the node�search strategies which do not recontaminate
any edge
 Since recontamination does not occur� if v is guarded at step i and is cleared at
step j� then v � Yt for i � t � j
 The node�search number of Y is maxi jYij
 Note that
�Y�� � � � � Yr� is also called a path�decomposition of the graph G �Mo���
 For any subgraph G�

of G� Y � � �Y� 
 V �G��� � � � � Yr 
 V �G��� is a node�search strategy of G� which use at most
maxi jYi 
 V �G��j searchers
 Thus we have the following lemma


Lemma ��	 If G� is a subgraph of G then ns�G�� � ns�G��

Let T be a tree
 If T contains any edge� then ns�T � � 	
 For convenience� we de�ne
ns�T � � � if T contains only one vertex
 Thus� ns�T � � 	 if and only if there exists a vertex
t � V �T � with at least one branch
 The necessary and su�cient conditions for ns�T � � k���
k � 	� were provided by Sche�er �Sc���
 The following lemma is due to Sche�er �Sc���


�



Lemma ��
 �Sc
�� For any tree T � ns�T � � k � � for k � 	 if and only if there exists
a vertex t � V �T � with at least three branches Ttu� Ttv� and Ttw such that ns�Ttu� � k�
ns�Ttv� � k� and ns�Ttw� � k� For any tree T � ns�T � � 	 if and only if there exists a vertex
t � V �T � with at least one branch�

By Lemma 	
�� we can de�ne similarly the avenue of node searching as follows
 A path
�v�� v�� � � � � vr� of two or more vertices is an n�avenue for a tree T with ns�T � � s � 	� if the
following conditions hold


�
 Exactly one branch of v� �respectively� vr� has node�search number s and this branch
contains v� �respectively� vr���


	
 For every j� 	 � j � r � �� the node�search numbers of exactly two branches of vj are
s and in these two branches� one contains vj�� and the other contains vj��


Given an n�avenue �v�� v�� � � � � vr�� a branch at vi� � � i � r� is called a nonavenue branch
if it contains no other vertex in the n�avenue
 We call a vertex v in a tree T an n�hub of T
if all the branches at v have node�search number less than ns�T �


Lemma ��� Any tree has either an n�hub or a unique n�avenue�

Proof� Our proof is similar to the proof of Lemma 	
� in �MHGJP���
 Let T be a tree
with no n�hub
 Let s � ns�T �
 That is� every vertex in T has at least one branch with the
node�search number s
 Consider the set B of all edges �u� v� of T with the property that the
search numbers of Tuv and Tvu are both s
 In the following� we will show that B itself is an
n�avenue


First� we show that B is nonempty
 Since T does not have an n�hub� for every vertex
v � V �T �� v has at least a neighbor v� such that ns�Tvv�� � s
 In other words� there
is a mapping from V �T � to E�T � such that every vertex v maps to an edge �v� v�� where
ns�Tvv�� � s
 Since T has n vertices and n� � edges� there must exist two vertices u and v
such that both of them map to the same edge �u� v�� i
e
� ns�Tuv� � s � ns�Tvu�
 That is�
�u� v� � B


We next show that B is a path
 By Lemma 	
�� it is impossible to have a vertex with
three branches and whose node�search numbers are all s
 Thus we only need to show that
B is connected
 Suppose that B is not connected
 Let �u� v� �� B be an edge on a path in
T joining two disconnected components of B
 Both Tuv and Tvu contain an edge from B�
Hence the node�search numbers of Tuv and Tvu are both s
 This implies that �u� v� belongs
to B� which is a contradiction
 It follows that B is connected and is a path
 �

Similar to e�hubs� more than one vertex in a tree can be chosen as an n�hub
 In a minimal
tree with respect to node searching� every vertex is an n�hub
 That is� a leaf can be an n�hub
in a tree


Lemma ���� Let T be a tree with jV �T �j � 	� If T has an n�hub� then there always exists
an internal vertex of T which is an n�hub of T �

�



Proof� Consider the case that v is a leaf and v is an n�hub of T 
 Let u be the neighbor
of v
 Since v is a leaf� v has only one branch T � � Tnfvg
 Note that ns�T �� � ns�T � � �

All the branches at u except the one consisting of the single vertex v are subtrees of T �
 By
Lemma 	
�� the node�search numbers of the above branches are no greater than ns�T ��
 The
node�search number of the vertex v is �
 Thus� u is also an n�hub of T 
 Since jV �T �j � 	� u
is an internal vertex of T 
 Hence our lemma is proved
 �

In the rest of this paper� an n�hub is also regarded as an n�avenue consisting of a single
vertex


We de�ne below an n�avenue system which is similar to the e�avenue system
 Let T be
a tree
 We de�ne an n�avenue system An�T � and the set of nonavenue branches F�An�T ��
as follows


�
 If T consists of one single vertex v� then An�T � � f�v�g and F�An�T �� � fTg


	
 If T consists of more than one vertex� then let �v�� v�� � � � � vr� be its n�avenue and let
T �T � � fBjB is a nonavenue branch at vi� � � i � rg
 ThenAn�T � � f�v�� v�� � � � � vr�g�
��T

�
�T �T �A

n�T ��� and F�An�T �� � fTg � ��T
�
�T �T �F�A

n�T ����


With respect to An�T �� n�labels of vertices in T are de�ned as follows
 For each tree
T � in F�An�T ��� the n�label in An�T � of any vertex in the n�avenue of T � is ns�T ��
 An
example of the n�avenue system is shown in Figure ��c�
 In the example� let T be the tree
in Figure ��a�
 The n�avenue of T is �j� l� q�
 The nonavenue branches at j are Tjf and Tjk

The n�avenues of Tjf and Tjk are �c� f� g� and �k�� respectively
 By the recursive de�nition�
An�T � � f�j� l� q�� �c� f� g�� �m�� �u�w� x�� �a�� �b�� �d�� �h�� �k�� �o�� �p�� �r�� �t�� �v�� �y�� �z�g and
the corresponding n�labels are depicted in Figure ��c�
 Since more than one vertex in a tree
can be chosen as an n�hub� a tree may have many distinct n�avenue systems


During the assignment of n�labels� for each branch T � in F�An�T ��� if T � has an n�hub
then� by Lemma 	
��� we can always choose an internal vertex as its n�hub
 If ns�T �� � 	�
jV �T ��j � 	� and a vertex u � V �T �� is a leaf in T � then we label the other vertex� which is
an internal vertex of T � in T � with 	
 By doing so� we have the following lemma


Lemma ���� Let T be a tree with jV �T �j � 	� Then there exists an n�avenue system of T
such that the n�labels of all the leaves of T are ��

By the de�nition of n�label� each vertex v in an n�avenue for a subtree of T in F�An�T ���
we denote this tree by T v
 Let i be the n�label of v in An�T �
 Then ns�T v� � i and T v is
a nonavenue branch at u of T u for some u whose n�label is at least i � �
 Note that if the
n�label of v is ns�T �� then T v � T 
 If ns�T v� � 	� then nonavenue branches at v in the
subtree T v are referred in the following as nonavenue branches at v without specifying the
subtree
 For example� in Figure ��a�� the subtree T c is Tjf � i
e
� the branch at j containing
f 


Given An�T �� we also design the following algorithm to construct an optimal node�search
strategy of T 


�



Algorithm NS�T � An�T ���
Let �v�� v�� � � � � vr� � An�T � be an n�avenue of T �
place a searcher on v��
if ns�T � � � �i
e
� r � �� then remove the searcher on v�
else
for i �� � to r do
for each nonavenue branch T � at vi do NS�T �� An�T ���� �� An�T �� � An�T � ��
if i � r then
place a searcher on vi��� �� clear the edge �vi� vi��� ��
remove the searcher on vi

end if
end for�
remove the searcher on vr

end if
end NS�

Lemma ���� Let T be a tree and An�T � be its n�avenue system� Then Algorithm NS�T�An�T ��
constructs an optimal node�search strategy of T �

Proof� The proof is similar to Lemma 	

 In the case of ns�T � � �� T consists of a single
vertex u and An�T � � f�u�g
 In the case of ns�T � � 	� let �v�� v�� � � � � vr� � An�T � be its
n�avenue
 While clearing every nonavenue branch at vi� vj is cleared for � � j � i� �
 After
all the nonavenue branch at vi are cleared� only vi contains a searcher
 Since ns�T � � 	� we
always have ns�T � � � � � free searchers at this time
 By placing a free searcher on vi���
� � i � r� �� the edge �vi� vi��� is cleared and then the searcher at vi can be removed
 The
detail is omitted owing to the similarity to the proof of Lemma 	

 �

For example� for the tree T in Figure ��a�� we can clear T using the n�avenue system
depicted in Figure ��c�
 Note that the n�avenue of T is �j� l� q�
 Firstly� we place a searcher
on j
 There are two nonavenue branches Tjf and Tjk at j
 We �rst clear Tjf 
 Since �c� f� g�
is the n�avenue of Tjf � we place a second searcher on c
 Next� place the third searcher on
a then �a� c� is cleared
 Similarly� after a is cleared� we place the third searcher on b and
then �b� c� is cleared
 Now we place the third searcher on f and then �c� f� and �f� j� are
simultaneously cleared
 After c is cleared� we have one free searcher again
 We then place
this free searcher on d and �d� f� is cleared
 Next� we place a searcher on g� then f is cleared
and we have a free searcher
 By placing this free searcher on h� the branch Tjf is cleared

Now we have two free searchers
 By using a searcher� we can clear Tjk
 After Tjf and Tjk
are cleared� we place a searcher on l then j is cleared
 By using the similar process� we then
clear the vertex l and �nally the vertex q
 After all the nonavenue branches at q are cleared�
T is cleared


In general� besides the leaves of T � internal vertices can be labeled with � in an n�avenue
system


Lemma ���� Let T be a tree with at least one internal vertex and whose every internal
vertex is adjacent to at least one leaf� Then there exists an n�avenue system of T such that
no internal vertex of T is labeled with ��

��



Proof� Consider an n�avenue system An of T satisfying Lemma 	
��
 By our de�nition of
n�labels� the neighbor of a vertex with n�label � cannot be labeled with � in An
 Hence�
there is no internal vertex of T whose n�label is � in An
 �

� Relation between node and edge searching on trees

In this section� we will show a relationship between node�search strategy and edge�search
strategy on trees
 We �rst de�ne the reduction operation on degree�	 vertices in a tree T 
 Let
v be a vertex of degree 	 which is adjacent to vertices u and w
 Let T � be the tree obtained
from T by deleting v and its incident edges� and then joining u and w by a new edge
 We
say that T � is obtained from T by applying a reduction operation on v
 The reduction of T is
the tree obtained from T by applying all possible reduction operations
 That is� there is no
degree�	 vertex in the reduction of T 
 A tree of at least four vertices is called a reduction tree
if it is the reduction of some trees
 The following lemma is implied by the results mentioned
in �KP��� PS���


Lemma ��� Let T � be the reduction of a tree T � Then es�T � � es�T ���

We next de�ne the sprout operation on internal vertices of a tree
 For an internal vertex v
that is not adjacent to any leaf� the sprout operation adds a new leaf to vertex v
 The sprout
of T is the tree obtained from the reduction of T by applying all possible sprout operations

A tree is called a sprout tree if it is a sprout of a reduction tree
 Let T � be the sprout tree of
T 
 Let T�

vu be any e�branch at v in T and es�T�
vu� � 	
 Then the e�branch at v in T � which

contains u is the sprout of T�
vu


Lemma ��� Let T � be the sprout of a reduction tree T � Then es�T � � es�T ���

Proof� We �rst prove es�T �� � es�T � by induction on es�T �
 Since T is a reduction tree�
es�T � � 	
 If es�T � � 	� by Lemma 	
	� it is impossible to have an internal vertex which
has three e�branches of edge�search number no less than 	
 Thus the internal vertices of T
induce a path
 Furthermore� T is a reduction tree which has no degree�	 vertex
 Thus each
internal vertex of T has a neighbor which is a leaf
 That is� T � T �
 Hence es�T �� � es�T �

Now� we assume es�T �� � es�T � for every reduction tree T with 	 � es�T � � k � � and its
sprout tree T �


Let us consider a reduction tree T with es�T � � k and its sprout tree T �
 Let Ae�T � �
�v�� � � � � vr� be the e�avenue of T 
 In T �� for convenience� we also call the e�branches at vi
which do not contain any vj� j 	� i and � � j � r� nonavenue e�branches without ambiguity

We provide the following edge�search strategy to clear T � according to Ae�T �
 We �rst place
a searcher on v�
 Then we clear one by one the nonavenue e�branches at v� in T � by optimal
edge�search strategies
 After all the nonavenue e�branches at v� are cleared� we move the
searcher at v� to v�� then v� is cleared
 We continue the above clearing process on v�� � � � � vr
sequentially until all the e�branches at vr are cleared
 Then T � is cleared


We compute the search number we used in our edge�search strategy
 Let T �T � � fBjB
is a nonavenue e�branch at vi� � � i � r� in Tg and let T �T �� � fBjB is a nonavenue
e�branch at vi� � � i � r� in T �g
 Let T��T �� � fBjB is the sprout of T �� T � � T �T � and

��



es�T �� � 	g and T��T
�� � fT �jT � � T �T � and es�T �� � �g
 If vi is attached a leaf ui by a

sprout operation� then let Ti be the tree with V �Ti� � fvi� uig and E�Ti� � f�vi� ui�g
 Let
T��T �� � fTijvi � Ae�T �� which is attached a leaf by a sprout operationg
 Then T �T �� �
T��T �� � T��T �� � T��T ��
 By the induction hypothesis� for each e�branch T � � T��T ���
es�T �� � k � �
 For all T � � T��T

�� � T��T
��� es�T �� � �
 Thus our edge�search strategy

uses at most k searchers
 Hence es�T �� � es�T �

Since T is a subtree of T �� by Lemma 	
�� es�T � � es�T ��
 Thus es�T � � es�T ��
 �

Remark We were informed that Lemma �
	 is implied by results independently shown in
�Go��� �in Russian�


A caterpillar is a tree consisting of a simple path P �called the body or backbone� with an
arbitrary number of simple paths attached by coalescing an endpoint of the added path with
a vertex in P 
 The attached paths are called hairs
 A caterpillar is called a k�caterpillar if
all of its hairs have length at most k


Lemma ��� For any reduction tree T � es�T � � 	 if and only if ns�T � � 	�

Proof� Assume that es�T � � 	
 Let �v�� v�� � � � � vr� be an e�avenue of T 
 The edge�search
numbers of the nonavenue e�branches at vi� � � i � r� are �� i
e
� the nonavenue e�branches
at vi are paths
 Since T is a reduction tree� the length of each nonavenue e�branch is �
 It
implies that T is a ��caterpillar
 On the other hand� a ��caterpillar with no degree�	 vertex
is a reduction tree with the edge�search number 	


With a similar argument� we can show that a reduction tree of node�search number 	 is
a ��caterpillar with no degree�	 vertex and vice versa
 The lemma thus follows
 �

Lemma ��� For any reduction tree T � ns�T � � es�T ��

Proof� We prove this lemma by induction on the number es�T �
 Firstly� by Lemma �
��
if es�T � � 	� then ns�T � � 	
 Next� we assume ns�T � � es�T � for every reduction tree T
with 	 � es�T � � k � �
 Now we consider a reduction tree T with es�T � � k
 Let Ae�T �
be an e�avenue system of T and let �v�� v�� � � � � vr� � Ae�T � be an e�avenue of T 
 For each
nonavenue e�branch T�

viu
at vi� � � i � r� if es�T�

viu
� � 	� then T�

viu
is still a reduction tree


By de�nitions of the e�avenue� es�T�
viu
� � k � �
 If es�T�

viu
� � �� then V �T�

viu
� � fvi� ug


In the following� we will clear T in the context of node searching based on information
available in the e�avenue system Ae�T � using es�T � searchers
 Firstly� we place one searcher
on v�
 Then we clear all the nonavenue e�branches T�

v�u
at v�
 By the induction hypothesis�

for T�
viu

of es�T�
viu
� � 	� � � i � r� ns�T�

viu
� � es�T�

viu
� � k � �
 Thus� T�

v�u
of es�T�

v�u
� � 	�

can be cleared with at most k � � searchers in node searching
 To clear an e�branch T�
v�u

of es�T�
v�u

� � �� we only place one searcher on u
 Thus we can clear all the nonavenue
e�branches T�

v�u
at v� in the context of node searching using at most k � � searchers
 After

these e�branches T�
v�u

are cleared� we have k � � free searchers and we place a free searcher
on v�
 Then the edge �v�� v�� is cleared� the searcher at v� is removed and we have k� � free
searchers again
 We continue the above clearing process on v�� � � � � vr sequentially until all
the e�branches at vr are cleared
 Hence ns�T � � es�T �
 �

Remark Lemma �
� is implied by results independently mentioned in �Go���


�	



Lemma ��� Let T be a tree and let v be a vertex whose n�label is at least 	 in an n�avenue
system of T � Let T � be a tree obtained by attaching a new leaf u to v� Then ns�T � � ns�T ���

Proof� We prove this lemma by induction on ns�T �
 In the case of ns�T � � 	� by the
de�nition of v� v is a vertex in the n�avenue of T 
 Thus Tvu is a branch at v with V �Tvu� � fug

It is not di�cult to see that ns�T �� � 	 � ns�T �


We assume for all trees T with 	 � ns�T � � k � �� ns�T �� � ns�T �
 Now we consider
a tree T with ns�T � � k and its n�avenue An�T � � �v�� � � � � vr�
 In T �� we also call the
branches at vi which do not contain any vj� j 	� i and � � j � r� the nonavenue branches
without ambiguity
 We provide the following node�search strategy for T � according to An�T �

First� we place a searcher on v�
 Then we clear one by one the nonavenue branches at v�
by optimal node�search strategies
 Note that while we clear a branch Tv�w at v�� the edge
�v�� w� is cleared
 After all the nonavenue branches at v� are cleared� we place a searcher
on v�
 Then v� is cleared
 We continue the above clearing process on v�� � � � � vr sequentially
until all the nonavenue branches at vr are cleared
 Then T � is cleared


Let T �T � � fBjB is a nonavenue branch at vi� � � i � r� in Tg and T �T �� � fBjB is a
nonavenue branch at vi� � � i � r� in T �g
 We compute the number of searchers used in the
following two cases


�
 v � vi for some i� � � i � r
 Let Ti be the tree containing only one vertex u
 Then
T �T �� � T �T � � fTig
 Since for all T � � T �T ��� ns�T �� � k � �� our node�search
strategy uses at most k searchers


	
 v 	� vi for all i� � � i � r
 Let T � be the nonavenue branch at vi for some i� � � i � r
which contains u
 By the induction hypothesis� ns�T �� � k��
 All the other nonavenue
branches in T �T �� are also in T �T �� which are of node�search number no greater than
k � �
 Thus our node�search strategy uses at most k searchers


By the above discussion� ns�T �� � ns�T �
 Since T is a subtree of T �� by Lemma 	
��
ns�T � � ns�T ��
 Thus ns�T � � ns�T ��
 �

Lemma ��� For any sprout tree T � es�T � � ns�T ��

Proof� We prove this lemma by induction on the number ns�T �
 Firstly� by Lemma
�
�� if ns�T � � 	� then es�T � � 	
 Next� we assume that for every sprout tree T with
	 � ns�T � � k � �� es�T � � ns�T �� Now let T be a sprout tree with ns�T � � k
 By Lemma
	
��� we have an n�avenue system An�T � in which no internal vertex of T has n�label �

Let �v�� v�� � � � � vr� � An�T � be an n�avenue of T 
 For each nonavenue branch Tviu at vi�
� � i � r� if ns�Tviu� � 	� then Tviu may contain at most one vertex of degree 	
 If it has a
degree�	 vertex� then this vertex must be u which is an internal vertex of Tviu
 Furthermore�
u is adjacent to a leaf
 Since the n�label of each leaf is �� the n�label of u is at least 	
 By
Lemma �
� if ns�Tviu� � 	� then ns�T�

viu
� � ns�Tviu� � k � � and T�

viu
is a sprout tree
 If

ns�Tviu� � �� then V �Tviu� � fug

In the following� we will clear T by edge searching rules based on the n�avenue sys�

tem An�T � using ns�T � searchers
 For each nonavenue branch Tviu of ns�Tviu� � 	 at vi�

��



� � i � r� ns�T�
viu
� � ns�Tviu� � k�� and T�

viu
is a sprout tree
 By the induction hypothesis�

if ns�Tviu� � 	� then es�T�
viu
� � ns�T�

viu
� � k � �
 Thus we can clear T in the context of

edge searching by �rst placing one searcher on v�
 Then � we clear T�
v�u

of ns�Tv�u� � 	
using at most k� � searchers by edge searching rules
 To clear T�

v�u
of ns�Tv�u� � �� in edge

searching� we only place one searcher on u and move it to v� along the edge �u� v��
 After
the nonavenue e�branches T�

v�u
at v� are cleared� we have k � � free searchers and we move

the searcher at v� to v� along the edge �v�� v��
 After the edge �v�� v�� is cleared� v� is cleared
and v� is guarded
 We then continue the above clearing process on v�� � � � � vr sequentially
until all the nonavenue e�branches at vr are cleared
 That is� es�T � � ns�T �
 �

Remark We were informed that Lemma �
� is implied by results independently shown in
�Go��� �in Russian�


Theorem ��	 For any sprout tree T � es�T � � ns�T ��

Proof� Since a sprout tree is also a reduction tree� by Lemmas �
� and �
�� this theorem
holds
 �

Though there is a linear�time algorithm to determine the edge�search number of a tree
�MHGJP���� by using our results� we can also obtain a linear�time algorithm to determine
the edge�search number of a tree


Theorem ��
 The edge�search number of a tree can be determined in linear time�

Proof� We design an algorithm to �nd the edge�search number of any tree T as follows

If T is a path� then es�T � � �
 If T is not a path� then we �rst construct its reduction
tree T �
 Next� we construct the sprout tree T �� of T �
 By using any linear�time algorithm
�EST��� Mo��� Sc��� to compute ns�T ���
 By Lemmas �
�� �
	� and Theorem �
�� es�T � �
ns�T ���
 �

� Construction of an optimal edge�search strategy

As in Section 	� we can construct an optimal edge�search strategy of a tree from its e�avenue
system
 If the pointers from every e�avenue A to the e�avenues of nonavenue e�branches at
vertices of A are provided� then it takes linear time in the construction of corresponding
edge�search strategy
 However� for the time being� we do not know how to build an e�avenue
system with the pointers in linear time
 In this section� we present a linear�time algorithm to
construct an optimal edge�search strategy of a tree T from an optimal node�search strategy
of T � which does not use avenue systems


Recall that an optimal node�search strategy Y can be represented by �Y�� � � � � Yr�� where
Yi � V �T � is a set of vertices guarded by searchers at step i for � � i � r
 For simplicity
of presentation� in the following we assume Y� � Yr�� � �
 The node�search strategy Y
clears T as follows
 At the beginning of step i� � � i � r� all the vertices in Yi 
 Yi��
are guarded
 In this step� we guard all the vertices in YinYi��� i
e
� the whole Yi is guarded

Thus the vertices in YinYi�� are cleared
 Then� all the searchers on the vertices of YinYi�� are

��



removed
 Moreover� there exists an optimal node�search strategy Y satisfying the following
assumptions


�� For any vertex u � Yi� � � i � r� at least one incident edge of u is clear at step i


�� If u is cleared at step i� then u �� Yj for all j � i


�� Yi 	� Yi�� and Yi 	� Yi�� for 	 � i � r


In the following� we consider Y satisfying the above three assumptions
 Note that in Y�
any leaf occurs exactly in one step by assumptions ��� and �	�


For each vertex u � YinYi��� we say that step i is the clearing step of u in Y
 According
to the clearing steps of vertices� all the vertices of T can be sorted into a sequence C �
�v�� v�� � � � � vn� such that the clearing step of vi is no later than the clearing step of vj if
i � j
 We call C a clearing sequence of Y
 Note that all the vertices in YinYi�� have the
same clearing step i
 For vertices with the same clearing step� without loss of generality�
we assume in the following that the orders of leaves �if they exist� are smaller than that
of the others in C
 The clearing sequence C plays an important role in constructing our
optimal edge�search strategy
 In the following� we �rst show that a clearing sequence C
which corresponds to an optimal node�search strategy satisfying the three assumptions can
be constructed in linear time
 Then� according to C� we design a linear�time algorithm to
construct an optimal edge�search strategy of a sprout tree


For each vertex u � V �T �� let u be guarded at step au and be cleared after step bu in
a node�search strategy Y � �Y�� � � � � Yr�� i
e
� u � Yt for au � t � bu
 Let Iu � �au� bu� for
all u � V �T �
 A set of intervals forms an interval model of T if the interval graph de�ned
by the set of intervals contains T as a subgraph
 Since for all �u� v� � E�T �� Iu 
 Iv 	� ��
fIuju � V �T �g forms an interval model of T 
 Note that Yi � fu � V �T �j Iu � �au� bu� and
au � i � bug
 An interval model of T is optimal if the maximum clique size of the de�ned
interval graph is the smallest among all interval models of T 
 Conversely� an optimal interval
model F � fIu � �au� bu�ju � V �T �g of T corresponds to an optimal node�search strategy
of T where a searcher is placed on u at step au and removed after step bu for all u � V �T �
�KP��


Sche�er mentioned that an optimal interval model F of T can be constructed in linear
time �Sc�	�
 In general� the node�search strategy corresponds to F may not ful�ll assumptions
���� �	� and ���
 In order to obtain an optimal interval model F � whose corresponding optimal
node�search strategy satisfying the three assumptions� we make the following modi�cation
of F 


Let N�u� � fvjv � V �T � and �u� v� � E�T �g and N �u� � fug � N�u�
 Let F � fIu �
�au� bu�ju � V �T �g
 We �rst modify F into F � � fI �u � �a�u� b

�
u�ju � V �T �g by setting

a�u � maxfau�minfavjv � N�u�gg and b�u � maxfavjv � N �u�g for all u � V �T �
 It can be
veri�ed that F � is an interval model of T by showing that a�u � b�u for all u � V �T � and
I �u
I

�
v 	� � for all �u� v� � E�T �
 Let Y � denote the node�search strategy corresponding to F �


By the setting of a�u� at least one neighbor of u is guarded at time a�u in Y
� for all u � V �T �


Thus� Y � satis�es assumption ���
 By the setting of b�u� b
�
u is the �rst time at which u is

cleared for all u � V �T �
 Thus� Y � satis�es assumption �	�
 In the above modi�cation� for
each vertex� we only need to check its neighbors in T and overall it takes linear time


�



The interval model F � whose corresponding node�search strategy Y� satisfying the three
assumptions is obtained by modifying F � as follows
 We �rst sort the endpoints of all
the intervals in F � in nondecreasing order� in which for endpoints with the same value�
left endpoints precede right endpoints
 After this� we partition the sorted sequence into
a consecutive sequence of segments where each segment contains a consecutive sequence
of left endpoints followed by a consecutive sequence of right endpoints
 Assume there are
totally r segments
 We number these segments from � to r in increasing order
 For all
vertices u� if a�u �respectively� b�u� is in the ith segment� let a�u � i �respectively� b�u � i�

Let F � � fI�u � �a�u� b

�
u�ju � V �T �g
 Note that F � preserves the intersection relations of

intervals in F �
 Let Y �
i � fu � V �T �jI�u � �a�u� b

�
u� � F � and a�u � i � b�ug for � � i � r and

Y� � �Y �
� � � � � � Y

�
r �
 It can be veri�ed that Y� satis�es assumptions ��� and �	�
 Since there

is at least one right �respectively� left� endpoint in the ith �respectively� �i� ��th� segment�
Yi 	� Yi�� �respectively� Yi�� 	� Yi�
 That is� Y� satis�es assumption ���
 A clearing sequence
C corresponding to Y� can be obtained by sorting vertices according to the right endpoints
of their corresponding intervals in F � in nondecreasing order� in which for vertices with the
same value of right endpoints� leaves precede internal vertices
 By using a linear�time integer
sorting algorithm �CLR�	�� the above sorting processes can be done in linear time
 Hence C
can be obtained from F in linear time


Let T be a sprout tree and F be an optimal interval model of T obtained as in the above

Let Y � �Y�� � � � � Yr� be an optimal node�search strategy corresponding to F and let C be a
clearing sequence corresponding to Y
 Next� we construct an optimal edge�search strategy
S from C in linear time
 In S� the vertices are cleared in the same order as C
 The moves of
S are as the following algorithm OES


Algorithm OES�T � sprout tree� C � �v�� � � � � vn���
for i � � to n do
if vi is not guarded then place a searcher on vi�
if vi has only one uncleared incident edge �vi� u� then
move the searcher on vi to u along the edge �vi� u�

else begin
for all uncleared edges �vi� u�� where u is guarded� use a free searcher to clear �vi� u��
for all uncleared edges �vi� u�� where u is unguarded� do begin
place a searcher on vi�
move this searcher to u along the edge �vi� u�

end for�
remove the searcher on vi

end if
end for

end OES�

Let S be the edge�search strategy constructed by Algorithm OES
 In each iteration of
OES� a vertex is cleared
 Let phase j of S be the sequence of moves obtained from a sequence
of iterations in OES for clearing the vertices in YjnYj��
 The idea of our algorithm is that
in phase j of S� it clears all the vertices in YjnYj�� using at most jYjj searchers
 Note that

��



in edge searching� an edge is cleared by letting a searcher go through it �instead of by just
guarding both endpoints as in node searching�
 Therefore� though an edge is guarded by
searchers at both of its endpoints� we need another searcher to clear this edge
 In each phase
of S� it should be guaranteed that no extra searcher is needed to clear the vertices


Let Sj � fuju has a searcher during the phase j of Sg
 Note that since the vertices
cleared at phase j of S are the same as the vertices cleared at step j of Y� SjnSj�� � YjnYj��

Before proving that Algorithm OES constructs an optimal edge�search strategy� we need the
following lemma


Lemma ��� Sj � Yj for � � j � r�

Proof� Let W be a vertex set and let N �W � � �w�WN �w�
 We prove this lemma by
induction
 As a basis� we consider S�
 In node searching� since all the vertices in Y�nY�
are cleared at step � of Y� N �Y�nY�� � Y�
 Similarly� in edge searching� S also clears all
the vertices in Y�nY� at phase �
 Since only the vertices in N �Y�nY�� have a searcher during
phase � of S� S� � N �Y�nY��
 Hence S� � Y�


We assume Si � Yi for all i� � � i � k��
 Now we consider Sk
 In edge searching� S clears
vertices in YknYk�� at phase k
 Let Wk � fwjw � N �YknYk��� and w �� Sk��g
 Since vertices
in Yk��nYk are cleared at phase k� � of S� Sk � �YknYk����Wk � �Sk��n�Yk��nYk��
 By the
induction hypothesis� Sk�� � Yk��
 Hence Sk��n�Yk��nYk� � Yk��n�Yk��nYk� � Yk�� 
 Yk

Since the clearing sequence of S is the same as C �obtained from Y�� �YknYk��� �Wk � Yk

Therefore Sk � Yk
 �

Lemma ��� Given a sprout tree T and a clearing sequence C corresponding to an optimal
node�search strategy Y of T � Algorithm OES�T� C� constructs an optimal edge�search strategy
of T in linear time�

Proof� Since OES clears all the vertices of T � the strategy S constructed by OES is an
edge�search strategy of T 
 In the following� we consider the phases of S
 For simplicity� we
assume S� � Sr�� � �
 Now we consider the number of searchers used in OES
 We show in
the following that in iteration i� at most jSjj searchers are used for all vi cleared in phase j


To guarantee that no extra searcher is needed in phase j� we �rst consider the case that
vi is the �rst cleared vertex in SjnSj��


�
 vi has only one uncleared incident edge
 We assume this uncleared edge is �vi� u�
 As
in the algorithm� the edge �vi� u� is cleared by moving the searcher on vi to u
 Since
fvi� ug � Sj � no more than jSjj searchers are used in iteration i


	
 vi has more than one uncleared incident edges
 By de�nition� vi must be an internal
vertex
 By our assumption on C� if YjnYj�� contains a leaf� then the �rst cleared
vertex in phase j of S is a leaf
 Since vi is an internal vertex� all the vertices in YjnYj��
��SjnSj��� are internal vertices
 Since T is a sprout tree� vi is adjacent to a leaf that
is cleared before phase j
 That is� vi must have been guarded at phase j � �� i
e
�
vi � Sj��
 Let Ui � fxjx is an unguarded neighbor of vi at the beginning of iteration
ig
 By assumption �	� on Y� Ui is not empty� otherwise since vi � Sj��� by Lemma

��



�
�� Sj�� � Yj�� and therefore vi is cleared at the step j � � in Y which contradicts
to that vi is cleared at step j in Y
 Thus we have at least jUij �� �� free searchers
at the beginning of iteration i
 By using any free searcher� the uncleared edges �vi� u�
with u �� Ui can be cleared
 After all the uncleared edges �vi� u� with u �� Ui are
cleared� we still have at least jUij free searchers
 We then clear the uncleared edges
�vi� u� with u � Ui
 Once the edge �vi� u� is cleared� u is guarded
 Hence after all the
vertices in Ui are guarded� vi is cleared and the searcher on vi is removed
 Since vi
is the �rst cleared vertex in phase j� the number of guarded vertices at the beginning
of iteration i is jSj 
 Sj��j
 Furthermore� Ui � SjnSj�� and jUij � �
 Hence we use
jSj 
 Sj��j� jUij � jSjj searchers in iteration i


Note that after vi is cleared� we always have at least one free searcher in the rest of phase
j


Now we consider the case that vi is not the �rst cleared vertex in SjnSj��
 Let Ui � fxjx
is an unguarded neighbor of vi at the beginning of iteration ig
 For uncleared edges �vi� u�
with u �� Ui� we clear them by using a free searcher which is freed from the �rst cleared vertex
of phase j
 For uncleared edges �vi� u� with u � Ui� we clear them by using jUij searchers

Since Ui � Sj� we use at most jSjj searchers in iteration i
 That is� we use jSjj searchers
to clear all the vertices in SjnSj�� in phase j
 By Lemma �
�� Algorithm OES uses at most
max jjYj j � ns�T � searchers to clear T 
 By Theorem �
�� S is optimal


Now we consider the time complexity of Algorithm OES
 In OES� we scan the vertices
according to their orders in C
 For each scanned vertex� we only clear its uncleared incident
edges
 Hence� Algorithm OES runs in linear time
 �

Theorem ��� An optimal edge�search strategy of a tree can be obtained in linear time�

Proof� We design an algorithm to construct an optimal edge�search strategy for any tree
in the following
 For any tree T � if T is not a path� then we �rst obtain the reduction of
T � say T �
 Next� we obtain the sprout of T �� say T ��
 We �rst obtain a clearing sequence
according to an optimal node�search strategy of T �� by using a linear�time algorithm �Sc�	�
and then transform it to an optimal edge�search strategy S �� for T �� using Algorithm OES

We then obtain an edge�search strategy S � for T � from S �� by deleting all allowable moves
clearing the leaves which are added by sprout operations
 For each edge �u� v� � E�T �� but
�u� v� �� E�T �� there exists a path from u to v in T and each vertex �	� u� v� in this path
has degree 	
 The expanding of �u� v� from S � is to modify S � such that the clearing moves
of �u� v� is replaced by the clearing moves of a path from u to v
 Our edge�search strategy
S for T is obtained from S � by expanding all the edges �u� v� � E�T �� but �u� v� �� E�T �

Since S uses the same number of searchers as S ��� by Lemmas �
� and �
	� S is an optimal
edge�search strategy for T 
 It is not di�cult to see that the deletions of added leaves and
the expansions of degree�	 vertices can be done in linear time
 �

Theorem �
� answers positively the question proposed by Megiddo et al� �MHGJP��� of
whether an optimal edge�search strategy for any tree can be constructed in linear time


Let T be a tree and V �T � � n
 A linear layout of T is a one�to�one function L mapping
the vertices of T to f�� 	� � � � � ng
 For � � i � n� let ��L� i� denote the number of edges

��



�u� v� of T � with L�u� � i � L�v�
 The cutwidth of T under L� denoted by cw�T�L�� is
maxf��L� i�j� � i � ng
 The cutwidth of T � denoted by cw�T �� is minfcw�T�L�jL is a linear
layout of Tg
 Given a graph G and a positive integer k� the cutwidth problem is the problem
to determine whether cw�G� � k and the min�cut linear arrangement problem is the problem
to �nd a linear layout L of G such that cw�G�L� � k


Chung et al� �CMST�� proved that for any tree with the maximum degree �� its edge�
search number and cutwidth are identical
 They also gave an O�n log n��time algorithm to
determine the cutwidth and a corresponding linear layout for any tree with the maximum
degree �
 Yannakakis improved this result to an arbitrary tree in O�n log n� time �Ya���

Makedon and Sudborough showed a more general result such that es�G� � cw�G� for an
arbitrary graph G with the maximum degree � �MaS���
 They also constructed an optimal
linear layout for a graph G with the maximum degree � based on an optimal edge�search
strategy of G in linear time
 By combining results of �MaS��� and Theorem �
�� we have the
following theorem


Theorem ��� An optimal min�cut linear layout of a tree with the maximum degree � can
be obtained in linear time�

� Conclusion

In this paper� we establish a relationship between the node searching and edge searching
problems on trees
 The bridge is built from an n�avenue system and an e�avenue system of a
tree
 We currently do not know how to construct an optimal edge�search strategy for a tree
from any one of its e�avenue systems in linear time
 However� we show that for a sprout tree�
its optimal edge�search strategy can be obtained from its any optimal node�search strategy
without using its avenue systems
 This result leads to a linear�time algorithm for construct�
ing an optimal edge�search strategy for any tree
 This also answers positively the question
proposed by Megiddo et al� �MHGJP��� of whether an optimal edge�search strategy for any
tree can be constructed in linear time
 Furthermore� it leads to a linear�time algorithm to
construct a min cut linear layout for any tree with the maximum degree �
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