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Abstract

The ��D fractional Brownian motion �fBm� model is useful in describ�

ing natural scenes and textures� Most fractal estimation algorithms for

��D isotropic fBm images are simple extensions of the ��D fBm estimation

method� This method does not perform well when the image size is small

�say ��	 � ��	�� We propose a new algorithm that estimates the fractal

parameter from the decay of the variance of the wavelet coe
cients across

scales� Our method places no restriction on the wavelets� Also� it pro�

vides a robust parameter estimation for small noisy fractal images� For

image denoising� a Wiener �lter is constructed by our algorithm using the

estimated parameters and then applied to the noisy wavelet coe
cients at

each scale� We show that the averaged power spectrum of the denoised

image is isotropic and is a near �
f
process� Numerical simulation shows the

performance for our algorithm in both the fractal parameter and image

estimation� Applications on coastline detection and texture segmentation

in noisy environment are also demonstrated�
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� Introduction

Fractional Brownian motion �fBm� is a non�stationary stochastic model� which

has a 	�f spectrum and the statistical self�similar property 
	��� For an isotropic

�D fBm� it has the averaged power spectrum 
��

P �wx� wy� �
��p

w�
x � w�

y

���� �

where � is the scaling exponent� � � � � 	� Many natural phenomena are found

to have 	�f spectrums� Thus� an fBm provides good mathematical modeling of

these phenomena� Moreover� the self�similar property� which means that the sta�

tistical measure is invariant to the change of scales� makes fBm very useful in de�

scribing natural scenes and textures� The scaling exponent � has also been shown

to be related to the fractal dimension and surface roughness 
	��� Many research

works have focused on the generation of fBm 
	��
�� and estimation of the fractal

parameter �scaling exponent� � 
	��
�
	��
��� Among them� the wavelet approach

was adopted naturally because the statistical self�similarity properties of an fBm

can be described based on the scaling properties of wavelet transforms� Most of

the previous wavelet�based results have depended heavily on the orthogonality

and vanishing moment of the wavelet function� They used the approximation

that the orthogonal wavelet coe�cients are almost white processes� This approx�

imation works only if orthogonal wavelets with high vanishing moment are used�

The performance will be severely degraded if non�orthogonal wavelets are used�

It was shown in 
�� that the orthogonality of a wavelet can be discarded if the

fractal parameter is estimated from the autocorrelation of the wavelet transform

of an fBm� In spite of the comparative performance of the fBm estimation and

denoising methods with the results obtained using orthogonal wavelet transform�

this approach allows fractal estimation and other applications� such as edge de�

tection and instantaneous frequency analysis� both of which are captured nicely

by non�orthogonal wavelet transforms� to be done with one wavelet transform

analysis 
		�
	�
���

In this paper� we will extend the proposed methods in 
�� to an isotropic �D

	



noisy fBm image� The extension is not straightforward� Although one can ob�

tain the fractal parameter of an isotropic fBm by averaging the estimated fractal

parameters from several directions using the 	�D fractal parameter estimation

algorithm� this approach does not work well in practice� It was shown in 
�� that

it requires more than 	��� sampled points for robust 	�D fractal parameter es�

timation� when the fBm is embedded in additive white noise environment� for a

median size image �say of size ��� �� or smaller�� there are not enough pixels

in each direction for robust 	�D fractal parameter estimation� Thus� alternative

methods must be developed in order to achieve robust fractal estimation from a

small noisy fBm image� In this paper� we show that the wavelet transform of an

isotropic fBm image at each scale is a two�dimensional weakly stationary process�

that is� a weakly stationary process in both the horizontal and vertical directions�

Thus� robust fractal parameter estimation can be obtained from two�dimensional

wavelet coe�cients� even in the case of a small noisy fBm image� We propose a

fractal parameter estimation algorithm which formulates the robust fractal pa�

rameter estimation problem as the characterization of a composite singularity

from the autocorrelation of the wavelet transforms of an noisy fBm image� All

the related parameters are then solved and estimated using a robust regression

method� For fBm image estimation� we apply the Wiener �lter to noisy wavelet

coe�cients at each scale� The �denoised� image is then obtained by means of

wavelet reconstruction� Finally� we show that the denoised image is a near �
f

process� The proposed parameter estimation and denoising method are applied

on problems of coastline detection and texture segmentation�

In Section � we derive the properties of the autocorrelation of the wavelet

transform of a �D noisy fBm� The parameter estimation method is also developed

in this section� In Section �� we discuss the image denoising method� In Section

�� simulation results based on these methods are shown� We also demonstrate

the applications on coastline detection and texture segmentation� Conclusions

are given in the �nal section�





� Fractal Parameter Estimation from the Auto�

correlation of ��D Wavelet Transform

In this section� we will show that the autocorrelation function of the wavelet

transform of an fBm image is a two�dimensional weakly stationary process at

each scale� that is� weakly stationary in both the horizontal and vertical direc�

tions� Moreover� the variance of the wavelet transformed image at each scale

s is proportional to s��� where � is the fractal parameter of the fBm� Using a

similar procedure� we will also prove that the wavelet transform of a white noise

image is also stationary in both the horizontal and vertical directions� and that

its variance at each scale s is proportional to s���

The wavelet transform Wsf��x� y� of a �D fBm image f��u� v� with scaling

exponent � is formulated as

Wsf��x� y� �

ZZ
f��x� u� y � v��s�u� v�dudv� �	�

where ��u� v� is the wavelet� and �s�u� v� � �
s�
��u

s
� v
s
�� The autocorrelation of

the wavelet transform Wsf��x� y� at the scale s is derived as follows�

EfWsf��x� y�Wsf��x� �x� y � �y�g ��

� Ef
ZZ

f��x� u� y � v��s�u� v�dudv

ZZ
f��x� �x �m� y � �y � n��s�m�n�dmdng

�

ZZZZ
Eff��x� u� y � v�f��x� �x �m� y � �y � n�g�s�u� v��s�m�n�dudvdmdn�

where �x and �y are shifts in the horizontal and vertical directions� respectively�

Note that the autocorrelation of the fBm image is 
��

Eff��x� u� y � v�f��x� �x �m� y � �y � n�g ���

� ��
�f
�x� u�� � �y � v���� � 
�x � �x �m�� � �y � �y � n����

�
��x �m� u�� � ��y � n� v����g�

where ��� is a constant� Furthermore� from the properties of wavelets 
	�� the

following equation must be satis�ed�ZZ
�s�u� v�dudv � �� ���

�



Replacing ������� into ��� we can simplify the above to
ZZZZ

����j��x �m� u� �y � n � v�j���s�u� v��s�m�n�dudvdmdn�

where j�u� v�j � p
�u� � v��� By changing of variables with p � m � u and

q � n� v� the above equation can be further simpli�ed�ZZZZ
����j��x � p� �y � q�j���s�u� v��s�p� u� q � v�dudvdpdq

�

ZZ
����j��x � p� �y � q�j�� 	

s�
��

p

s
�
q

s
�dpdq ���

� RWsf���x� �y��

where ��x� y� �
RR

��u� v���u�x� v�y�dudv� From the above equation� we know

that the autocorrelation of the wavelet transform of a �D fBm is stationary in

the both horizontal and vertical directions� Replacing �x � � and �y � � in ����

we have

RWsf���� �� �

ZZ
����j�p� q�j�� 	

s�
��

p

s
�
q

s
�dpdq�

Let u � p�s and v � q�s� the above equation becomes

RWsf ��� �� � ����s��
ZZ

j�u� v�j����u� v�dudv � s��Kp� ���

where Kp depends on � and the wavelet� and Kp is a �xed constant given the

wavelet transform of a �D fBm image� The variance of wavelet transform at each

scale s changes according to s��� This variance progression provides a method to

estimate the scaling exponent �� and this method works for orthogonal or non�

orthogonal wavelets because in our deduction� we only require that the wavelets

satisfy ����

Following a similar procedure� the formula of the autocorrelation of the wavelet

transform of the �D white noise n�u� v� is derived as

EfWsn�x� y�Wsn�x� �x� y � �y�g
�

ZZ
�n

�	��x � p� �y � q�
	

s�
��

p

s
�
q

s
�dpdq ���

� RWsn��x� �y��

�



where �n
� is the noise variance� Again� by replacing �x � � and �y � �� we obtain

RWsn��� �� � �n
� 	

s�
���� �� �

	

s�
Kn� ���

where Kn is determined by the noise variance and wavelet� The variance of

wavelet transform at scale s of the white noise changes proportional to s���

Assume that z�u� v� � f��u� v� � n�u� v� is a �D fBm embedded in white

noise� Because the wavelet transform is a linear operation� we can combine the

result of wavelet transform for �D fBm and white noise by means of addition�

The autocorrelation of the wavelet transform of the noisy fBm is the summation

of ��� and ����

RWsz��x� �y�

�

ZZ

����j��x � p� �y � q�j�� � �n

�	��x � p� �y � q��
	

s�
��

p

s
�
q

s
�dpdq

� 
����j�u� v�j�� � �n
�	�u� v�� � �s��x� �y�� ���

where �s��x� �y� �
�
s�
�� �x

s
� �y
s
�� In fact� ��� is the wavelet transform of����j�u� v�j���

�n
�	�u� v� with wavelet ��u� v�� which has a vanishing moment two times greater

than ��u� v�� It is worth noting that ����j�u� v�j�� � �n
�	�u� v� has a composite

singularity at ��� ��� which is the superposition of an isotropic peak and a Dirac�

The problem of parameter estimation can then be related to the detection and

characterization of singularities 
		�� Taking ��x� �y� � ��� ��� the variance of the

wavelet transform of z�u� v� is

RWsz��� �� � Kps
�� �Kns

�� �	��

for � � � � 	 and Kn� Kp � �� The above variance progression formula does not

depend on wavelets that have more vanishing moments�

In practice� it is su�cient to estimate the parameters Kp� Kn and � from the

dyadic scales� Kp� Kn� and � in Equation �	�� can be obtained from any three

dyadic scales� However� to get a robust numerical result� we shall estimate these

parameters from as many di�erent scales as possible� Let n be the number of

dyadic scales� we �nd the parameters Kn� Kp� and 
 � s�� that are the solution

�



of the following constrained nonlinear minimization problem�

f�Kp� Kn� 
� � min
nX

j��

�Kp

j �Kn

��j � RW
�j
z��� ���

� �		�

subject to

� � Kn �
Pn

j�� RW
�j

z���
Pn

j�� �
��j �

� � Kp �
Pn

j�� RW
�j

z���
Pn

j�� �
�

	 � 
 � ��

n � ��

In the nonlinear minimization problem as in �		�� we need to solve three

parameters Kn� Kp� and 
 to �t the variance of wavelet transform at each scale�

But from our observations in experiments and from those given in another report


��� we know that the variances at some scales are not stable� This may introduce

signi�cant bias in the �nal estimation result� The authors in 
�� tries to exclude

the �rst scale� or the �rst two scales� and claimed better results� but this is not

a systematic method generally� Therefore we change our least mean square �LS�

formula in �		� into a least median of squares regression �LMS� one �

f�Kp� Kn� 
� � min med
j

�Kp

j �Kn

��j �RW
�j
z��� ���

�� �	�

The LMS algorithm has been claimed to resist the e�ect of nearly ��� of

contamination in data 
	��� But it has the drawback of low computation e�ciency�

In practical computation� we �rst calculate the solution of Kn� Kp� and 
 from

variances from any three scales� All possible combinations of any three scales

are included� Then� the median of the square terms in �	� is found for all

combinations� We choose the combination with the minimal median� Then� we

�



include half of the scales with square terms less than the other half� Finally�

a constrained nonlinear minimization algorithm is applied to the data of these

scales to �nd the solution of Kn� Kp and 
� The nonlinear minimization formula

becomes

f�Kp� Kn� 
� � min
X
j�J

�Kp

j �Kn

��j � RW
�j
z��� ���

�� �	��

where J is the set that contains the selected scales from the LMS method�

��� Optimization by the Penalty Method

There are many algorithms for solving of a constrained nonlinear minimization

problem� We have used the internal penalty method in our experiments� The

internal penalty method transforms the constrained problem into a unconstrained

problem so that the minimization can be solved easily 
	��

Let N �
Pn

j�� RW
�j

z�����
Pn

j�� �
��j and P �

Pn
j�� RW

�j
z�����

Pn
j�� �

� The penalty function of

equation �	�� is

�r�Kp� Kn� 
� � f�Kp� Kn� 
� � r� �
N�Kn

� �
Kn

� �
P�Kp

� �
Kp

� �
��� � �

�����

where f�Kp� Kn� 
� �
P

j�J�Kp

j �Kn

��j � RW
�j
z��� ���

� is the objective func�

tion� r � � is the penalty parameter� and the terms following r are obtained from

the constraints �		�� We can �nd an initial Kn� Kp� and 
 from any three scales�

and calculate an initial r as the ratio of the objective function f�Kp� Kn� 
� and

the penalty terms� A local minimization technique� such as the conjugate gra�

dient method� can be used to �nd the local minimum of �r�Kp� Kn� 
�� which

occurs at K�
p � K

�
n� and 
�� Then� r can be multiplied by a constant less than

	� These new parameters are used to again �nd the local minimum of �r � This

process can be iterated until a given accuracy is reached�

�



� Fractal Image Estimation

Although several algorithms have been proposed to estimate the parameters of

a noisy fBm image 
��� few works have focused on the reconstruction of an fBm

image from a noisy environment� Extension of 	�D fBm algorithms of signal

reconstruction to �D fBm image denoising may be straightforward� but no such

work has been published� In the classic algorithm of fBm signal reconstruction

given in 
	��� the authors made an assumption based on that the wavelet transform

of an fBm is white noise� The assumption is an approximation that depends on

the number of vanishing moments of orthogonal wavelets� Extension of their

algorithm to the �D case can be done easily and will not be stated here� In

this section� we will propose an fBm image estimation algorithm that places no

constraints on the orthogonality of wavelets�

Since we have shown that the wavelet transform of a �D noisy fBm is a weakly

stationary process at each scale� Wiener �ltering can be applied to each scale�

Note that in Section � the autocorrelation of the wavelet transform Wsf��x� y�

of a �D fBm at scale s was

RWsf���x� �y� �

ZZ
����j��x � p� �y � q�j�� 	

s�
��

p

s
�
q

s
�dpdq� �	��

By simple calculation� the power spectra Ssf��wx� wy� ofWsf��x� y� is the Fourier

transform of �	��� and we obtain

Ssf��wx� wy� �
��

�
p
���� �sin���p
w�
x � w�

y

����
 ��swx� swy�� �	��

where  ��wx� wy� is the Fourier transform of ��wx� wy�� Recall that the autocor�

relation of the wavelet transform of �D white noise is

RWsn��x� �y� �

ZZ
�n

�	��x � p� �y � q�
	

s�
��

p

s
�
q

s
�dpdq� �	��

and that its Fourier transform is

Ssn�wx� wy� � �n
� ��swx� swy�� �	��

�



Suppose that Wsf��x� y� and Wsn�x� y� are uncorrelated� the frequency response

of the Wiener �lter for the wavelet transform of a noisy fBm is an isotropic

function of the frequency and takes the following form �

Hs�wx� wy� �
Ssf��wx� wy�

Ssf��wx� wy� � Ssn�wx� wy�

�

��
��
p
�	������sin����p
w�x�w

�
y

����
 ��swx� swy�

���
��
p
�	������sin����p
w�x�w

�
y

���� � �n�� ��swx� swy�

�
��

�
p
���� �sin���

���
p
���� �sin��� � �n�

p
w�
x � w�

y

���� � �	��

Now� we will show that the power spectrum of the denoised fBm image is

isotropic and is a near �
f
process� Let us take Mallat and Zhong!s approach 
	��

Let the horizontal wavelet ���x� y� and vertical wavelet ���x� y� be given by

���x� y� � ��x���y�� ���x� y� � ��x���y��

respectively� where ��x� is a wavelet which is the derivative of a smoothing func�

tion� At each scale s� a coarse image and two detail images� which represent the

horizontal and vertical details� are generated�

In our denoising algorithm� the Wiener �lter is applied to the wavelet coef�

�cients of the noisy fBm at each scale� and then the denoised image f e�u� v� is

recovered by means of wavelet reconstruction �

f e�u� v� �
X
s

�hs
� �Ws

�x � �s��u� v� � hs
� �Ws

�x � �s��u� v��� �	��

where ���u� v� and ���u� v� are the reconstruction wavelets� �s�u� v� �
�
s�
��u

s
� v
s
��

and hs
� and hs

� are the impulse response of the Wiener �lter for the horizontal and

vertical wavelet coe�cients� It is easy to see from �	�� that hs
� � hs

�� Without

loss of generality� we will use the dyadic wavelet transform� Since f e�u� v� is the

output of a sequence of linear operation� its power spectrum can be written as

Sfe�wx� wy� � Sx�wx� wy�jHs�wx� wy�j�
X
j�Z

j  ���jwx� 
jwy�  ���

jwx� 
jwy�j�

� j  ���jwx� 
jwy�  ���

jwx� 
jwy�j��

���

�



where Sx�wx� wy� is the average power spectrum of the noisy fBm�

To show that the denoised image is a near �
f
process� we �rst deal with the termP

j�Z�j  ���jwx� 
jwy�  ���

jwx� 
jwy�j� � j  ���jwx� 

jwy�  ���
jwx� 

jwy�j��� Some

related results can be found in 
	�� and we list them below for convenience �

j ��w�j � 	� �	�

jH�w�j� � 	� ��

j ��w�j � jH�w�jj ��w�j� ���X
j�Z

�  ���jwx� 
jwy�  ���

jwx� 
jwy� �  ���jwx� 

jwy�  ���
jwx� 

jwy�� � 	� ���

G�w�K�w� � jH�w�j� � 	� ���

L�w� �
	 � jH�w�j�


� ���

j  ���wx� wy�  ���wx� wy�j� � jG�wx�K�wx�L�wy�j�j ��wx�j�j ��wy�j�� ���

j  ���wx� wy�  ���wx� wy�j� � jG�wy�K�wy�L�wx�j�j ��wx�j�j ��wy�j�� ���

Using ���� the lower bound is

X
j�Z

�j  ���jwx� 
jwy�  ���

jwx� 
jwy�j� � j  ���jwx� 

jwy�  ���
jwx� 

jwy�j��

� j
X
j�Z

�  ���jwx� 
jwy�  ���

jwx� 
jwy� �  ���jwx� 

jwy�  ���
jwx� 

jwy��j� � 	�

���

	�



The upper bound is derived from the above relations step by step �

X
j�Z

�j  ���jwx� 
jwy�  ���

jwx� 
jwy�j� � j  ���jwx� 

jwy�  ���
jwx� 

jwy�j��

�
X
j�Z

�j ��j��wx�j�j ��j��wy�j�
�
jG�j��wx�K�j��wx�L�

j��wy�j��

� jG�j��wy�K�j��wy�L�
j��wx�j�

�

�
X
j�Z

�j ��j��wx�j�j ��j��wy�j�
��
	� jH�j��wx�j�

���	 � jH�j��wy�j�


��

�
�
	� jH�j��wy�j�

���	 � jH�j��wx�j�


���
�

�
X
j�Z

�j ��j��wx�j�
�
	� jH�j��wx�j�

�
� j ��j��wy�j�

�
	� jH�j��wy�j�

�
�

�
X
j�Z

�
�j ��j��wx�j� � j ��jwx�j�

�
�
�j ��j��wy�j� � j ��jwy�j�

�
�

� lim
wx��

j ��wx�j� � lim
wx��

j ��wx�j� � lim
wy��

j ��wy�j� � lim
wy��

j ��wy�j� � �

We can see that the summation term is between the upper and lower bound�

therefore� we have recoverd a near �
f
process�

		



� Simulation Results and Applications

In this section� we will �rst demonstrate the simulation results of our algorithms�

then� the applications on coastline detection and texture segmentation are shown�

��� Simulation results

For the simulation process� the discrete version of the isotropic �D fBm synthesis

was given by 
��� The increments of the �D fBm are �rst synthesized by discrete

Fourier transform� and then the fBm image is added from the incremental values�

This method can not produce �D fBm images with exact fBm statistics� but the

authors claim almost perfect fBm statistics and fast implementation� A constant

parameter ��
� is set as ��� in the synthesis process� �� fBm realizations of image

size �� � ��� with each scaling exponent � � ��� ���� and ��� are generated�

Smaller image sizes of 	�� 	�� ��� ��� and �� � are generated by cutting

out the central part of the ��� �� images�

In our implementation� we followed the approach described in 
		�
	��� where

no decimation was applied to the detailed images in both the horizontal and

vertical directions� We then estimated the scaling exponent � in both directions

from the detailed images� They were expected to be close in magnitude because

we used the isotropic �D fBm images� which had the same scaling exponent in

all directions statistically� We then took the average of the scaling exponents in

these two directions as the scaling exponent of the whole fBm image� In all the

experiments� we adopted two wavelets� the Haar wavelet and Mallat wavelet� for

comparison of �lter performance� An image size of N � N was decomposed up

to log�N scales� Using the LMS method� only the data on half of the scales were

selected� Kn� Kp and � were calculated from the data of the selected scales using

internal penalty method�

White noise was added to the fBm images so that the SNR was 	�dB and �dB�

respectively� The mean and root mean square �RMS� errors of the estimated  �

are plotted in Figs� 	 to � as a function of the image size for various values of ��

	



From the results of parameter estimation of clean fBm images shown in Fig� 	� we

can estimate the scaling exponent � precisely for image sizes larger than 	��	��

The degree of the RMS error is about 	���� This result is comparable to that

of another proposed method 
��� in which the same �D fBm generation process

was used� But we also note the underestimation of � with a true value ���� which

problem is also reported in 
��� The performance of the Haar wavelet was slightly

better than that of the Mallat wavelet because Mallat wavelet has longer support�

which introduces unwanted boundary e�ects in smaller images� In the case of a

noisy environment� our method still estimates � well for image sizes larger than

	��	�� The estimation error is about 	��� worse than that in the case of clean

image� This shows the robustness of our method to added noise� In all cases�

our method always produces estimates of � that are distinguishable from each

other if their true values are originally di�erent � This is a good property if we

do not require precise estimation� but robust estimation that still can distinguish

one fBm region from another� for example� in the application of texture image

segmentation 
���

The performance of the image denoising algorithm described in Section �

was also evaluated� In order to distinguish the error introduced by parameter

estimation and the image denoising algorithm� we set a prior the true parameters

��
� and �n

� in the Wiener �lter formula �	�� in the experiments� The Wiener �lter

was applied to each scale of wavelet transform� Then� the denoised fBm image was

generated by means of wavelet synthesis of the �ltered wavelet transform images�

Sixty�four realizations of fBm images� with sizes of ��� �� and 	�� 	�� and

scaling exponents � of ���� ���� and ��� were used� The SNR gain� which is the

reconstructed image!s SNR minus the original SNR� was measured by taking the

average of �� SNR gains for each case described above� The Haar and Mallat

wavelets 
	� were used in our experiments� The results are shown in Fig� ��

First� we can see that the performance of the Haar and Mallat wavelets 
	� is

indistinguishable� Images of size ��� �� have about  to �dB more SNR gains

than those of size 	� � 	� in the case of � � ��� and ���� The SNR gain of

� � ��� is higher than that of � � ��� at about �dB� and � � ��� is higher than

	�



� � �� at about � to �dB� The degrading of the denoising e�ect for small �

values is due to the smoothing e�ect of the Wiener �lter� The fBm images with

lower � values represent rougher surfaces 
	��� and exhibit similar behavior with

respect to noises� Therefore� the Wiener �lter not only smoothes out the added

noises� but also smoothes out the original roughness of the fBm images� The low

SNR images have better SNR gains after denoising�

For visual evaluation� we present some sample �gures of image denoising in

Figs� � to �� The ��� �� fBm images with � � ���� ���� and ��� were added

with noises such that the noisy fBm had an SNR value of � dB� We can see that

all denoising results are visually acceptable� In the following� we demonstrate

two applications for fbm image parameter estimation and denoising�

��� Application � � Coastline detection

The �rst application of fBm image denoising is a model of a terrain surface� In

order to identify the coastline� we set those pixel values below a certain threshold

to black as if they were below sea level� For example� Fig� ��a� is an fBm image

with � � ���� and Fig� ��b� is the result of coastline detection� If the image is

added with white noise� then simple thresholding can not identify the coastline

well� This is clearly shown in Fig� ��c�� where �dB noise was added to the image

shown in Fig� ��a�� One can observe many dotted noises� and that the coastline

can not be identi�ed clearly� In Fig� ��d�� we show the result of coastline detection

on the denoised image using our algorithm� One can see that it is a smoothed

version of the original coastline shown in Fig� ��a��

��� Application � � Texture segmentation

The estimated fractal parameter � can be used as a useful feature for texture

segmentation and classi�cation� In this subsection we will demonstrate its ap�

plication in texture segmentation� Fig� ��a� shows a �	 � �	 texture mosaic

created by three fBm images with di�erent scaling exponents �� in the upper

	�



��� �	 is an fBm image with � � ���� in the lower left corner is a ��� ��

fBm image with � � ���� and in the lower right corner is a ��� �� fBm image

with � � ��� One can easily see the texture boundary� but an edge detection

method will �nd too many edges due to the singular behavior of an fBm� There�

fore� we used a small sliding window to estimate the scaling exponent �� and

the center pixel of this window was assigned this estimated � value as its local

feature� This fractal feature was computed for each pixel� then this feature image

was clustered to obtained the segmented image� It had been reported that the

fractal feature alone can not segment texture well 
��� especially in the case of

noisy environment� in which the parameters can not be precisely estimated with

only local data� So we add the power of incremental fBm� which is the average

energy of the incremental fBm in a window� as another feature�

According to our previous experimental result in Fig� 	� in the case of clean

fBm parameter estimation� the degree of the RMS error is below 	��� for window

size above or equal to � � �� Therefore� We used sliding window of size � �
� to estimate the fractal parameter of the clean fBm mosaic� also the same

window size to estimate the power of incremental fBm� A Gaussian �lter of

variance � is used to smooth the resultant feature images� Then� we apply c�

mean algorithm to classify each pixel to one cluster� assuming that we know the

number of clusters� The classi�ed pixels are given gray level N which is equal

to their cluster number� This clustered image is shown in Fig� ��c�� The major

segmentation errors happened in the texture boundaries� in which the parameter

estimation is inaccurate�

White noise was added to the fBm mosaic such that the SNR is 	�dB� This

noisy fBm mosaic is shown in Fig� ��b�� From previous experiments� window

size must be greater than �� � �� to achieve better parameter estimation� so

we chose sliding window of size �� � ��� The scaling exponent and the power

of the incremental fBm for each pixel were also estimated� Note now that in

the estimation of the power of the incremental noisy fBm� the white noise will

contribute to this measure� Thus� this feature will not be useful for segmentation

in the case the noisy data is in low SNR� Similar Gaussian smoothing of variance
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� and c�mean clustering method were applied in the noisy fBm mosaic� The

clustered result is shown in Fig� ��d�� We still have greater segmentation errors

in the texture boundaries� According to this segmentation result� we will estimate

the noisy fBm mosaic� We identi�ed the texture boundary of the fBm mosaic and

partitioned it into three rectangular sub�images� Then� we applied our parameter

estimation method to each sub�image for the parameters �� Kp� and Kn� We

obtained ��
� and �n

� from the corresponding estimated Kp and Kn at each sub�

image by using the Equations ��� and ���� Finally� the denoised sub�images

were obtained by using our proposed Wiener �ltering method� The denoised

fBm mosaic is shown in Fig� ��e�� The PSNR of the original fBm mosaic and

the denoised fBm mosaic is about �����dB� We have about ��dB gain from the

denoising process�

� Conclusion

We have showed that the wavelet transform of a �D fBm is weakly stationary

in both the horizontal and vertical directions� A new fractal estimation method�

based on the decay of the variance of the wavelet transform of a noisy fBm image

across scales� has been proposed� This new method allows estimation of the frac�

tal parameter on small image blocks� It outperforms many conventional fractal

parameter algorithms� where the fractal parameter is obtained by averaging the

	�D results in many directions using 	�D fractal estimation algorithm�

For the estimation of a denoised image� a Wiener �lter was applied to the

noisy wavelet transform on each scale� Then� a smoothed �denoised� image was

obtained after applying the inverse wavelet transform� We have shown that the

averaged power spectrum of the estimated image is isotropic and is a near �
f

process� Finally� we demonstrated our algorithms on the applications of coastline

detection and texture segmentation�
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Figure 	� The mean and RMS error of the scaling exponent estimation from ��

realizations of clean fBm images with various sizes� �#�� and ��� indicate the

results obtained using Haar and Mallat wavelet� respectively� Top� Estimation of

� � ��� Middle� Estimation of � � ���� Bottom� Estimation of � � ����
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Figure � The mean and RMS error of the scaling exponent estimation from ��

realizations of clean fBm images with various sizes� Noise was added to image

such that SNR � 	�dB� �#�� and ��� indicate the results obtained using the

Haar and Mallat wavelet� respectively� Top� Estimation of � � ��� Middle�
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Figure �� The SNR gain from denoising the image with various SNR� Left� image

of size �� � ��� Right� image of size 	� � 	�� �#�� and ��� indicate the

results obtained using the Haar and Mallat wavelet� respectively� Top� fBm with

� � ��� Middle� fBm with � � ���� Bottom� fBm with � � ����





Figure �� Image denoising example� Top �gure � �� � �� fBm image with

� � ���� Bottom left � noisy fBm with SNR � �dB� Bottom right � denoised fBm

image with SNR gain 	�	dB�
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Figure �� Image denoising example� Top �gure � �� � �� fBm image with

� � ��� Bottom left � noisy fBm with SNR � �dB� Bottom right � denoised fBm

image with SNR gain ����dB�
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�a� �b�

�c� �d�

Figure �� Example of coastline detection� �a�� original �� x �� fBm image with

� � ���� �b�� coastline detection of original fBm image� �c�� coastline detection

of the noisy fBm with SNR � �dB� �d�� coastline detection of the denoised fBm

image�
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�e�

Figure �� Application of texture segmentation and denoising� �a�� Original �	�
�	 fBm image mosaic� �b�� Noise was added to �a� such that SNR � 	�dB� �c��

Texture segmentation result of �a�� �d�� Texture segmentation result of �b�� �e��

Denoised image of �b� according the texture segmentation of �d��
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