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Abstract

Current systems, such as UNIX, lack necessary scheduling and resource management

mechanisms in supporting specific timing requirements, thus multimedia applications

cannot run smoothly on top of them. Aim on solving these problems, in this paper we

propose a system framework, the Lyra, for supplying multimedia applications with

sophisticate timing controls. Lyra enhances conventional systems in supplying firewall

protections among multimedia applications, while also considering I/O interference,

and aims on processing digital data on time. Empirical evaluations show that Lyra not

only practically provides better QoS supports than conventional systems, but also

performs better than several works that aim on similar problems.

1. Introduction

Advances in compression techniques [Mit96] have made digital data to be stored and processed more

efficiently than the past decade, today that we see multimedia applications everywhere in entertainment,

education, conferencing or in medical services. Unlike conventional applications, multimedia

applications do not process discrete data only, but usually process continuous media (CM) data instead.

CM data, such as video and audio streams, have strong temporal relationships that usually require timing

control in playback and synchronization. However, we cannot find any commodity systems that support

such kind of timing services.

Conventional systems cannot service the timing requirements of multimedia applications because these

systems are originally designed for time-sharing applications. These so-called time-sharing applications
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only care their data whether to be processed correctly and efficiently, but care nothing about whether the

data are processed on time. Multimedia applications, on the contrary, care more about whether the data

streams are manipulated on time, but can tolerate a certain level errors in data manipulations, if these

errors are not so evident to human. Though multimedia applications are so popular on commodity

desktop systems, what we observed is that applications themselves need to do timing controls, but still

depend on the unreliable best-effort system services. When the system is slightly overloaded, the

behaviors of multimedia applications are out of controls [Lee98].

To meet the timing requirements, seemingly it is possible to apply the existing hard real time scheduling

algorithms [But97, Liu73] into desktop systems [Mer93]. This kind of adoption has been experimental

demonstrated to be unacceptable for servicing multimedia applications [Nie93]. This unacceptable result

is caused because multimedia applications have different behaviors from those of hard real time

applications. Missing deadlines is not a so serious failure for multimedia applications. In addition, they

can also tolerant a certain level of data loss, thus multimedia applications can smoothly reduce their

resource-consumption rates and adapt to an acceptable playback to reduce system loads [Nei97].

Another views to support multimedia applications are to make resource reservations to provide Quality

of Service (QoS) guarantees for multimedia applications [Jon97, Mer94]. How fair about the resource

allocations and what kind of delay-bound guarantees are usually the concerned points. Firewall

protection is the basic result achieved via the proportional share reservation techniques [Jon97, Kim94].

The results in bounded-delay guarantee for resource availability are good but aren’t good enough for

practically servicing multimedia applications. Multimedia applications do not really care how fair they

consume the resources, but care about whether the data can be operated on time. In addition, multimedia

applications require not only the processor resource. To practically meet the requirements of multimedia

applications, a system should consider multiple resource scheduling at the same time [Raj98].

In this paper, the Lyra system is introduced to solve above problems. Lyra is a system framework that is

designed and implemented for practically serving specific timing requirements for multimedia

applications, which will be detailed illustrated in following sections. By isolating the resource

management mechanisms from conventional machine core components, Lyra acts as a framework for

defining the running model about program executions. Lyra enhances conventional systems in supplying

firewall protections among multimedia applications, while also considering I/O interference, and aims
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on processing digital data on time. Empirical evaluations show that Lyra not only practically provides

better QoS supports than conventional systems, but also performs better than several previous works that

aim on similar problems.

The rest of the paper is organized as follows. In order to know what kind of services multimedia

applications need, and which practical considerations should be taken into the system design, we first

discuss characteristics of multimedia applications at Section 2. Section 3 introduces the programming

model used in Lyra. Based on this model, the Lyra is designed and implemented. Section 4 illustrates its

architecture. Follow on is the important, and maybe the most important resource scheduling algorithms

used in Lyra in smoothly serving executions of multimedia applications. The performance evaluations

are presented at Section 5 to highlight Lyra’s contributions. To compare with the works that aims on

similar problems, a simulation environment based on Lyra is built for further inspections. Section 6

introduces previous related researches. At the last Section, we conclude this paper.

2. Multimedia Applications

To design a framework for running multimedia applications, we first need to know their characteristics

that specially asking for system supports. Without losing the generality, we focus on applications that

play digital video and audio data.

Multimedia data should be processed on time. This means playbacks for media data should bring users

an acceptable quality. Slightly delays and data loss can be tolerated, but too largely variances in media

playbacks will be perceived by human and cannot be accepted. To make use of this characteristic, a

multimedia application can be modeled as a periodic task with constant period, but has variable

processing time in each period. This is a different feature from conventional hard real time applications.

Take video playbacks for example. To meet the requirements of human eyes, each video frame should

play 30 frames per second. It means the period of the video player is 33.3 milliseconds, a fixed time

period. However, the processing time within each period is different from period to period.

In addition, multimedia applications are data-intensive applications. The data that they consumed and

manipulated are larger than conventional tasks. For example, an MPEG-1 video player usually needs

about 1.5 Mega bits per second. This large data size will consume a lot of memory buffer and cause I/O
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subsystem to be busy in satisfying the consumption. Like the applications, I/O subsystem also needs

processor time in feeding data to applications. However, the relationships among the I/O device capacity,

its processor time consumption, the buffer consumption and the admission control mechanism are

usually ignored in previous researches. A practical system should consider these in more detail to do

more sophisticates services.

Since multimedia applications are resource-intensive, a system should provide firewall protections to

avoid any resource monopolization and system service lock up. In addition, when an application is

authorized to run on a system by passing the admission-control mechanism, it is better to provide

executable guarantee for this application. Users will get crazy if a video clip is played smoothly at the

initial time but later hanging there for any perceivable delay. Thus how to guarantee the shared resource

among competing applications is also a necessity for framework design.

For most multimedia application designers, they probably know some timing or resource-consumption

attributes, but it is hard for them to specify exact and complete attributes in application design or

executions. For example, a MPEG-1 player designer probably knew that this player will consume about

1.5 Mega bits per second, and also knew that the player needs to play 30 frames per second, but he will

never know how much processing time the player needs to run on a system. And so does the exact share

that the player needs to allocate when it is executed on any possible platforms. A system framework

should provide an easy-to-use model for programming, and an adaptive mechanism to change the

parameters dynamically.

Multimedia applications usually will manipulate multiple streams at the same time. For example, a

movie clip will need at least the audio and video playbacks at the same time. A very important

requirement for this kind of services is how to do synchronization during playing multiple streams.

Especially, when a system framework supports such kind of services, this service should not induce too

much overhead in system performance, or introduce too much burden on application designers.

Another feature about multimedia applications is the dynamic characteristic. Unlike embedded hard real

time applications, multimedia applications are not known in a prior, that a system scheduler can not

make an optimal scheduling plan for them. No matter what kind the schedulability tests or resource

reservations, each scheduling mechanism needs to consider the dynamic characteristic. This will cause



5

special difficulties in making any admission controls and scheduling plans, if multiple resources are

taken into consideration. Fortunately, for each type of media data processing, it is found that the

processing time is proportional to the data size that being processed [Bav98, Lee98]. If applying the

linear regression model to analyze the relationship between processing time and data size, the coefficient

of determination is close to 1. This means if we model multimedia applications as periodic tasks, their

data consumption rates within each period will also be proportional to the processing time of that period.

A system framework can make use of this information to add assumptions for reducing the difficulties.

3. Programming Model in Lyra

The Tunnel Model

Based on above observations and discussions, here we introduce the programming model used in Lyra,

the tunnel model. As illustrated in Figure 1, Lyra assumes that all multimedia applications are executed

at edge systems, which are the real resource collections for program executions. Each continuous media

stream is pumped into the edge system from remote pumping systems trough the virtual data tunnels

(VDT). Each stream will occupy one tunnel for sending data. It is assumed that each pumping system is

Figure 1: The Tunnel model used in Lyra environment
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powerful enough to pump enough data into the tunnel. Each tunnel can be physically constructed by a

network link or by an I/O bus connecting the I/O devices.

On the edge systems, the hardware resources are partitioned and shared by several Lyra frameworks.

And within each Lyra framework, there is a data manager (DM) that is responsible for receiving data

from each tunnel and preparing the data on the shared buffers for each application. In addition, DM is

also responsible for sending feedback information to the pumping systems, if the pumping systems send

data too fast or too slow. The pumping system can be a video server in the remote site or a simple disk

attached at the same machine Lyra operates. About how the DM talks with pumping system will not be

further discussed in this paper. We will focus on how Lyra operates.

Definitions and Notations

Here we formally define the multimedia tasks, the data manager and introduce a remaining rate server

(RRS) used in Lyra.

Definition 1: Each multimedia application is defined to be a task Mi with multiple threads {hij | j�0}

attached. Each thread is responsible for one data stream playback. Threads created for manipulating

multimedia data are periodic When the thread hij is created, it needs to specify its release time��� , the

periodic T�� , and the averaged data consumption rate ��� .  The framework will assign a default

processing time Cij to the thread hij. Period is a constant but processing time is a variable that may

change in each period. 

Definition 2: A processing deadline dij
k is set to the end of each periodic T��

 k,  k. If  k,  Cij
k
  T��

 k for

any k  1, it is defined as a deadline miss. 

Definition 3: Based on Definition 2, an averaged CPU share for each thread hij is sij , where sij = Cij / T���.

Definition 4: A DM is a periodic thread. Its release time is set to 0, its maximum data production rate is

R and its periodic is TD , where TD is set to min{ T��
 |  i, j, if hij exists}, when admission control is
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performed. DM’s processing time CD in each periodic is defined to CD = ��� ·TD / R ·SD , when each

time the admission control is performed. 

Unlike the periodic thread definitions described in Definition 1, TD is not a constant and so is the CD.

Their values are updated when admission control is performed. We will describe later why TD and CD are

set to above values in the Section of scheduling algorithms. We also describe some assumptions in

following paragraphs. We made these assumptions before we design the Lyra framework. These

assumptions though are not 100% matching the real world cases, these assumptions are very close to

practical situations.

Definition 5: Remaining Rate Sever is a virtual thread. It does not contain any executable codes. Once a

thread exhausted its processor share, its remaining jobs within this period will queue to this server for

possible executions. Once the RRS gets its CPU share, it will execute the queued jobs. The CPU rate

assigned to this job is equal to U = (1 - (Cij / T�� )). The virtual deadline V of RRS is defined to v + Q /

(1 - (Cij / T�� )), where v is the virtual time [Zha91] of RRS and Q is the system time quantum. 

The RRS is created here for using the remaining rates to do the works that attached to it. The primary

purpose is that if a thread has exhausted its CPU share, i.e., executed longer than the permitted Cij
k time

in period T��
 k, the remaining jobs can be queued to the RRS for possible executions. If the extra jobs can

be executed before the deadline dij
k , a deadline miss is reduced. Of course, if the jobs are not executed

on time before the next period is issued, a deadline miss is created. RRS’s goal is to do its best efforts to

help multimedia applications that have exhaust their reserved rates but still remaining jobs to run. RRS

will execute the remaining jobs in LCFS order because the last one may have the higher probability to

be executed before its deadline.

Assumption 1: The data manager has a maximum data production rate R, and it is known to the Lyra

system. The DM also needs processor time to service each data stream. The processor consumption rate

for data manager to achieve its maximum data production rate is SD, and is known to Lyra system. 

Assumption 2: Each thread’s real data consumption rate��� is proportional to its real processing time Cij.
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Since data manager is a thread running on the system, it is evident that the data manager also costs

processor time to serve each data stream. The processor time it costs will be proportional to its data

production rate. For example, if data manager runs as an asynchronous I/O server, it can prefetch data

into the system greedily. When each time the data is ready for copying, data manager costs CPU time to

move data into the shared buffer. Thus the assumptions match the real world cases.

Though applications specify their data consumption rates when they are ready to run, the real rate that

applications consume in each period will not always be the same. But from the results of previous works

[Bav98, Lee98], it makes sense to make the assumption 2.

4. Lyra Framework Architecture

Design goals

Lyra is designed under following expectation. First, it should has a robust admission control mechanism

that when an application is authorized to execute on top of it, the application can run smoothly to its end.

Figure 2: The Lyra architecture.
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For achieving this goal, we consider more resources at one time, than just thinking the CPU resource

only.

The processing time Cij of each thread is not a constant from period to period. If we use the averaged Cij

to do admission control, more deadline misses might be created. We expect that the deadline misses can

be reduced as more as possible. Third, a thread’s execution cannot influence other threads’ execution,

once the thread is admitted to get its share of the resources. This is the so-called firewall protection

property.

The exact processing time within each periodic is not constant. Thus Lyra is expected to implement an

adaptation mechanism to dynamic change the Cij of each thread hij to a precise one. Of course, it is still

under the constraint that the adaptations will not influence existing authorized applications’ CPU share.

Motivations

Each thread runs periodically that they will get their CPU share sij if it does not need extra processor

time. However, if it exhausts its reservation rate sij, Lyra still expects to help it to finish its jobs on time.

So, Lyra creates RRS to help finishing the jobs. If finally the extra jobs can be finished on time, it is

good. If not, than a deadline miss is created.

Because each thread’s CPU reservation share sij is not exact as what they need, they may reserve too

much or too little by setting the Cij at the time the thread is created. In addition, after a longer phase, the

share may also change from phase to phase. Thus an adaptation mechanism is needed.

Finally, because data manager also consumes processor rate in serving multimedia applications, the

admission control mechanism needs to consider this extra rate when applications joining the system and

leaving the system. In addition, whether the data consumption rate is beyond the data manager’s

maximum data production rate R also needs to take into consideration. And whether buffer size is

enough is also important.

Based on these goals and motivations, Lyra is designed and implemented. The remaining problems are

how the RRS to compete with all threads to help reducing the number of deadline misses, while still

keep firewall protections among applications. We left this discussion at Section 5, the resource

scheduling algorithms.
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System Architecture

Lyra’s architecture is shown in Figure 2. Since it is a framework, it means if any system that tries to

support Lyra, this system should have the ability to export the system privilege and resource

management to Lyra. This can be done by using extended operating systems, like SPIN [Ber95] or, hipec

[Lee96], or just run Lyra on top of existing embedded kernels. We now implement Lyra on Vega kernel

[Lee97], and plan to port it to real time Linux.

There are seven major parts defined in Lyra, the scheduling module, the event/interrupt module, the

buffer management module, the admission control module, the adaptation module and the data manger.

The whole system is controlled by the event/interrupt module, which will issue six major events to the

system. Except the AP_LEAVE and AP_JOIN events, the other four events are the re-scheduling points

for Lyra to re-calculate which thread to run next. Routines in adaptation module will be invoked to re-

calculate the CPU share at the time the period is started, or ended, or when the share is exhausted. When

each event happens, scheduling module is activated to select the next thread with earliest deadline to

run.

5. Resource Scheduling Algorithms

The primary scheduling algorithms used in Lyra are illustrated in Figure 3 and 5. They are the virtual

deadline algorithm and the admission control algorithm. The other one is the adaptation algorithm.

Virtual Deadline (VD) Algorithm

VD algorithm’s purpose is to define RRS server’s virtual deadline that we can use it to compete with

normal thread. By calculating the CPU share of RRS and using it to calculating the virtual time of RRS,

RRS is designed no to influence others. Furthermore, if virtual time is defined, we use it to get the

virtual deadline of RRS.

VD algorithm is called when system clock interrupts the system. The primary purposes of VD algorithm

are to check whether there is a deadline miss after this time quantum, to charge time to the running

thread and update RRS’s virtual deadline. In line 1 of Figure 3, if VD finds that this is an end of a period,
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it means now is a deadline miss. VD handles that deadline miss by discarding any remaining jobs in this

period, no matter this job is processed by the thread itself or by the RRS.

As illustrated in line 6, when VD finds that the running thread exhausts its share but still remains jobs to

run in this period, VD appends the jobs to the RRS. After competing with other threads, RRS might be

scheduled to run to finish the remaining jobs before the deadline.

Special tricks are used in VD at line 2, 10, 12, 14. At line 2, virtual time of RRS is reset to the current

time to avoid the RRS saving a lot of credits. Without this reset, RRS will have a very small virtual time

just because it is not executed for a long time. Once there are jobs attached to the RRS, RRS will soon

be scheduled and run for a long time to increase its virtual time. This will cause other threads to miss

their deadlines. Line 10 needs to be added because the system can not be preempted at any continuous

time, but only in system time tick boundary. So there exist possibilities that a thread consumes more

Algorithm VD( )

1. if (deadline miss) handle it

2. if (CPU is idle) v = current time

3. else

4.    if ( normal thread running) {

5.        charge time consumption�to the thread.

6.        if (this thread exhausts its share)

7.           Append the remaining jobs to the RRS

8.           if (RRS idle)

9.                activate it.

10.                v = v + (�- Cij ) / U

11.     } else if ( it is RRS running )

12.                v = v + �/ U

13. }

14. V = v + Q / U.

15. Pick a thread with an earliest deadline to run

Figure 3: Virtual deadline algorithm
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processor time. Figure 4 illustrates this case. Even the extra consumption is small but should not happen.

So, line 10’s purpose is to re-charge the over-used time on RRS.

At line 12, if it is RRS running, then the time is charged to RRS by calculating its virtual time. Finally, at

line 14 of Figure 3, virtual deadline is calculated. It is assumed that RRS will the exhaust next time

quantum. So by fairly calculating its share of this time quantum, the virtual deadline should be the one

illustrated at line 14 of Figure 3.

Admission Control Algorithm

The admission control algorithm is illustrated at Figure 5. It considers three resources at one time, which

are illustrated at line 3, 4 and 5. We reserve �1, �2 and�3 in the system because the system still has

some system works to do, rather than just servicing multimedia applications. In addition, if an

application requests less resource than it needs, this application cannot get help from RRS if the system

remains too few resources to RRS. Using �1, �2 and�3  in the admission control algorithm can

reserve a percentage of resource in the system, that guarantees the RRS will not blocked anytime.

Currently,�1, �2 and�3 are set to 10%, which perform good enough in current implementation.

Figure 4: Illustration about over charges in VD.

clock tick i -1 clock tick i

deadline

period T

 reserved rate Cij

 real charged rate �



13

At line 1 of Figure 5, TD is set to the minimal period of all running threads. The purpose is to let the data

manager (DM) appears frequently during each period of time. This will cause the DM not to appear at

one time and then monopolize the resource for a long period.

Line 2 is about how to calculate the processing time of DM. We need to reset CD here because the new

job will ask new data rate from DM. DM consequently needs to get more processor time to achieve this

requirement. By calculating the added processor time, the CD is reassigned. Line 3 through line 5 are the

filters to admit or reject the applications. Line 3 considers whether the total processor rates are enough to

meet applications’ need. It takes the data manager’s processor rates into consideration too. At line 5, the

B is the available buffer size used in Lyra. The m is an indicator to show how the buffer is allocated to

the applications. For example, if data manager expects that the buffer should be 50% filled with data,

then m is 2. If it is expected that only 25% of allocated buffer filled with data, then m is set to 4. If m is 1,

it means the data producer (DM) and the data consumer (the application) should precisely produce and

consume the data at the same rate without any noisy effects. The larger the m, the more buffer is

Algorithm admit_ctl( hij )

1. TD is set to min{ T��
 |  i, j, if hij exists}

2. Cd = ��� ·TD / R ·SD

3. if ( (CD / TD + Cij / T�� � 1 – �1 ) and

4.    (��� � R · (1-�2)) and

5.    ( (m ·��� · T��)� �� � · (1 –�3 )) )

6. {

7.    add hij to the system

8.    update U = U – Cij / Tij

9.      update dij = current time t + Tij

10.    update V = v + Q / U.

11.    Pick a thread with an earliest deadline to run

12. }

Figure 5: Admission control algorithm
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allocated, thus applications can regulate their playback more smoothly.

Adaptation Algorithm

The adaptation scheme current is simple i Lyra. Via monitoring the Cij, we set a window size� to the

number of frames played per second, and then use following formula to adapt the real rate that an

application actually needs. Figure 6 illustrates the adaptive changes for Cij.

Cij = (�– 1) /��Cij + Ck
ij /� (1)

Theoretic Results

There are some theoretic results that illustrated at following. Due to the size limitation, the proof is not

presented in this paper. Two results are presented. The first result shows that introducing RRS into the

system to do out-of-share jobs will not cause any more deadline misses, than without using RRS. The

second result is about media synchronization. If two threads have the same period size and all are

admitted into the system with the same release time, they are guaranteed to have synchronization skew

bounded by their period. This means applications can use this feature to do media synchronization

without too much efforts. The detailed theorem expressions are presented in following.

Figure 6: Illustration about how to do adaptation.
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Theorem 1: Let Dt
ij be the total number of deadline misses that thread hij encountered from release time

����to time t, if the RRS is introduced into the system and scheduled by the virtual deadline algorithm.

And let D’
ij

t be the total number of deadlines misses thread hij encountered from release time����to time t,

if the RRS is not introduced into the system. If there is a fix set of threads running on the system, then

Dt
i ��

D’
ij

t, t �����

Definition 6: fn
ij is the finishing time that thread hij finishes its work at its nth period. Define the

synchronization skew Z(m,n)(hij, hst) = | fm
ij- f

n
st | i,j,s,t,n,  threads hij and hst in manipulating different

data streams at different periods. 

Theorem 2: If threads hij and hst have the same period T, and at their nth periods, no threads finish their

works by getting help from RRS, then Z(n,n)(hij, hst)� Tij , where T = Tij = Tst, i,j,s,t,n. 

6. Evaluations

We focus the evaluations on two points. The first is about the firewall protection property. If there are

applications greedily consuming resources, they cannot consume the allocated resources of other

applications. Second, we showed in the evaluations that once multiple resources are taken into

considerations, deadline misses will be reduced, no matter whether applications are greedy in resource

consumption. We also implemented other approaches proposed in previous published literature, and

compare the deadline misses with them.

Firewall protection

The first experiment illustrates the firewall property of our scheduling algorithm. Table 1 summarizes

the parameters used in our experiments. Table2 shows the characteristics of applications. The actual

computation time distribution is normal distribution with standard deviation illustrated next to the

computation time value. Application 4 is greedy. Whenever it is scheduled, it runs without relinquishing

processor voluntarily. All applications are started at time 0. We collect data from time 0 to time 30000

(in ms).

We illustrate the share an application gets in Figure 8 to 11. Note that because accessing data also

needs processor time, each application in other scheduling algorithms needs more processor time than

requested. For our approach, ideally the calculated processor share should be close to Cij/Tij, while for
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others should be equal to Cij/Tij +�ij  / R�SD . We listed the actual processor share received in Table 3.

From Table 3, we see that the greedy application does not use up all the resources. Instead, all

applications execute at their estimated rates. Hence, a greedy task cannot disturb other applications that

behave well. For other algorithms, RC > MTR-LS > EDF in view of fairness.

Table 4 lists the number of deadlines misses of each application. We could see that in EDF, the

numbers are larger than the others. Hence, EDF is not good for firewall protection. In this case, our

approach is better than other algorithms, because we only buffer four times data (m=4) that an

application will use in each period. When the buffer is empty, the application is put to sleep by our

assumption.

Admission Control

The admission control mechanism used in our approach considers processor and I/O simultaneously,

while traditional EDF, and RC algorithm only take processor resource into consideration. The admission

control mechanism used in MTR-LS uses a constant value for I/O access. We argue for the necessity. We

believe that to re-compute I/O needed processor time in doing admission controls is necessary. The

reasons are as follows. First, for different processor speeds, machine models, and I/O devices, the time

needed for I/O are not the same. We could use a system micro benchmark to get the maximum needed

processor time for any given devices and machines, i.e. we could get R and SD. This means that a

constant processor share reserved for doing I/O is not suitable for a dynamic environment, where their

value might be too large. Second, if only processor time is considered, there may be cases where the sum

of processor time is below 1. Many admission control mechanisms will admit the job. But adding this

application could cause system overloaded, because the admitted application will request I/O services

that also consume processor time.

Table 1: Experimental parameters

Variable Value
m 4
SD 0.2

���� ���� �� 0.1
R 40 Mbps
B 16 MByte

System tick interval 1 ms
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We do an experiment in this section to show that our approach does not admit the fourth application,

while others do. The characteristics of applications are the same as previous experiment except for the

AP 4. AP 4 has computation time 3, period 15, and data rate 6. For algorithms only consider processor

resource, the total processor time needed for these four applications is 89%. Hence, it is admitted while

Table 2: Application requested resources.

Computation

time (ms)

Period

(ms)

Data rate

(Mbps)

Requested

Processor Share

Total Processor

Share(plus I/O)

AP 1 5(0.2) 30 6 0.167 0.197

AP 2 10(1) 33 20 0.303 0.403

AP 3 22(1) 100 8 0.22 0.26

AP 4 1(greedy) 33 1(greedy) 1/33 1

Table 3: Effective average processor share received by each application.

AP1 AP2 AP3 AP4

Our approach 0.165982 0.300386 0.218981 0.119014

EDF 0.154669 0.371780 0.146898 0.326738

MTR-LS 0.174820 0.375589 0.259753 0.189898

RC 0.196713 0.359160 0.260031 0.184152

Table 4: Number of deadlines missed.

AP1 AP2 AP3 AP4

Our approach 5 13 6 909

EDF 285 142 266 909

MTR-LS 163 148 4 909

RC 0 259 1 909

Table 5: Number of deadlines missed before and after adding the fourth application.

AP1 AP2 AP3 AP4

Our approach 0, 0 0, 0 0, 0 -, -

EDF 0, 60 0, 80 0, 91 -, 103

MTR-LS 142, 158 82, 160 0, 12 -, 334

RC 0, 132 259, 349 0, 67 -, 83
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in our approach is not, because the calculated value is 109%. Table 5 shows the number of deadlines

missed before and after adding the fourth application.

7. Related Work

Hard Real-Time Related Scheduling Algorithms

Hard real-time applications cannot tolerate miss deadlines. Hence, algorithms developed for this type of

applications typically have strict admission control constraints. Applications also must have predictable

behaviors in program executions. Rate-monotonic (RM) and earliest deadline first (EDF) scheduling

algorithms are two famous algorithms developed for real-time systems [Liu73]. RM statically assigns

priority to tasks according to their periods. The one with shorter period has higher priority. EDF

dynamically assigns priority to tasks according to their deadlines. The one that has smaller deadline

Figure 7-8: Received processors in MTR-LS and VD algorithms

Figure 9-10: Received processors in RC and EDF algorithms
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value, i.e. more urgent, has higher priority. Many researchers applied these two scheduling algorithms to

support multimedia applications [Mer94,Raj98]. They considered the problem of processor capacity

reserves [Mer94], and they use RM and EDF for scheduling CPU. Later, a resource-centric approach is

proposed [Raj98]. In their work, they also consider other resources other than the processor, but only do

reservations respectively. Since doing I/O also needs processor time, their reservations are not so precise,

especially to the multimedia applications.

For handling aperiodical events in a real-time system, many approaches were proposed. Our

approach is similar to the total bandwidth server [But97], which handles aperiodical events by using

unreserved resources without interference to hard real-time tasks. The different points are as follows.

First, the total bandwidth server requires knowing the aperiodical request’s length in advance. We assign

the request’s length to one quantum time because to estimate the length of request is not easy. Second,

the total bandwidth server’s time-base point is set to Max{current_time, time_base}. The time when an

event occurs is defined to the current time. In our approach, we use the virtual time to calculate the

virtual deadline. The time base is earlier than the current time. Thus the RRS can be set in a earlier

virtual deadline and to prevent applications from missing mode deadlines. Though the deadline of RRS

is shortened, RRS will not violate the firewall protections.

Fair Queuing Related Scheduling Algorithms

Fair queuing related algorithms were designed to fairly distribute resources among competing tasks. For

example, in network bandwidth allocation, the most concerned points are fairness, delay bounds and

jitters. Many works are done in order to provide these guarantees [Ben96, Dem89, Goy96b, Zha91, and

Zha95]. There is a difference between network and operating system scheduling. In the network case,

when a packet arrives, the needed service time is known because we could see the packet’s length. In the

operating system case, it is harder to know exact computation time that a request needs. Hence in our

approach, in calculating the virtual time of RRS, we only increases one quantum after the consumption

length is known. That is to say, we use coarse-grained approximation in fairness because to meet

deadlines is multimedia applications’ primary concern. Multimedia applications care less about how

fine-grained fairness could be achieved.

The rate-controlled (RC) [Yau96] and move-to-rear list scheduling (MTR-LS) [Bru97] are two

proportional-share algorithms. The RC algorithm is similar to the VirtualClock [Zha91] and WFQ

[Ben96], but it increases in integral multiple values of application’s periods, i.e. it uses coarse-grained
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approximation. MTR-LS algorithm is similar to weighted-round-robin (WRR) algorithm with finer

modifications. Application will stay at the original position in the ready queue when it is not ready for

this type of resource.

Hierarchical Scheduling Algorithms

To mix various types of application in an operating system, a single algorithm to schedule all these types

of application is not easy to develop. Hence, many hierarchical resource partition algorithms are

proposed. In this way, each partitioned part can use different scheduling algorithms for different task

sets. A hierarchical scheduling algorithm must be fair enough, i.e. fine-grained approximation to the

ideal fluid flow system, in order to give the underlying part the illusion that they are run by a slower

processor. For example, start time fair queuing (SFQ) [Goy96b] is such an algorithm. The SFQ

algorithm is similar to SCFQ proposed in the network bandwidth allocation. A difference between SFQ

and SCFQ is the way to charge resource usage. SCFQ needs to know requests’ length in advance, while

SFQ charges resource usage after the request is ended. Our approach also charges resource usage after

the resource has used.

8. Conclusions

In this paper, a system framework is introduced to support multimedia applications running smoothly.

Our purpose is to let applications run under their share allocations. By dividing their processing time in

their periods, system can know the share allocations. If all applications do not use more time than what

they are granted, applications can run smoothly that will not cause any deadline misses. However, real

world multimedia applications do not have fixed processing time from time to time. This means that

applications might want to consume more processor time in handling their extra jobs. For solving this

problem, we introduce the RRS into the system to use the remaining rate of the system to help these

applications. By using the virtual deadline algorithm, the RRS will not influence the other applications’

normal executions, but still tries to reduce the number of deadline misses of the system.

Our contributions can be illustrated as follows. First, our work lets application designers easily to design

and run their applications without guessing the difficult timing parameters. The framework tries to

minimize the total number of deadline misses of the system, if there are enough resource share remained

for such kind of jobs. Even so, it does not violate the firewall protection property. Through empirical

evaluations, this property is proved.
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In addition, by considering the practical situations, multiple resources are considered in doing admission control.

This part though is simple and direct, but influences a lot to practical application implementations and program

executions. However, it is usually ignored. We add this into the framework design, and from the simulation

comparisons, Lyra does provide a better environment for multimedia applications than previous works. Besides,

the introduced framework can support applications to do media synchronization easily. This property is proved in

theoretic analysis.
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