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Abstract

We propose a new method to estimate the surface orientation of a planar texture under
perspective projection based on the ridge surface of 2D continuous wavelet transform
(CWT) with rotations. We show that textural information giving the perception of surface
orientation can be characterized from ridge surfaces in the space/frequency space. Three
variants of ridge detection algorithm are presented. In order to deal with the weakly-
ordered and disordered textures, robust regression method (RANSAC) is introduced to
solve the problem. A closed-form solution is derived to determine surface orientation.

The effectiveness of our method are demonstrated on several real-world textured images.
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1 Introduction

It had been pointed out [11] that texture variations provide important cues in visual per-
ception of three dimensional structures from a monocular image. In computer vision and image
processing, this problem has received much attention and is called shape from texture, even
though it is the orientation of a planar surface instead of the shape of a curved surface that
is being computed. The reason may be that a curved surface can be approximately recovered
provided that the orientation of the planes tangent to the surface are estimated. The orienta-
tion of a planar surface are the slant angle, which determines the degree of obliqueness of the
surface, and the tilt angle, which is the direction towards which the texture in the image plane
inclines most rapidly.

The main difficulty in solving the shape from texture problem is how to characterize the
texture variations of perceived images. In the literature, many authors [1][5][4] used texture
features such as the texels or edges as the representation of texture variations. However,
it is well-known that the detection of texels and edges are not much reliable. The textural
variations is better to be characterized by the space/frequency representation, since it has
been shown that textures are distorted locally and non-linearly [16][12]. In the past, some
space/frequency representations [3][13][14][18][19] had been adopted. We chose the continuous
wavelet transform with rotations, in particular the Morlet wavelet, because it gives a dense
sampling in the space/frequency domain and optimizes both spatial resolution and frequency
resolution simultaneously. In our previous papers [16][12], analytical solution has been proposed
to estimate the planar surface orientation of strongly ordered texturs, i.e., textures with regular
variations. In this paper, a robust method is proposed for textures with less regular structure
such as weakly ordered or disordered textures described in Rao’s book [17]. A ridge detection
algorithm together with a robust regression method based on random sample consensus [10],
are proposed in estimating the surface orientation of complex planar textures. In the past, to
the best of our knowledge, only Kube [15] can estimate the surface slant of random textures.
He used orthographical projection model and assumed isotropic textures. Our method differs

from his in that we use perspective projection model and homogeneous textures are assumed.



In addition, the used texture models are different: we used sinusoidal texture model whereas
they used fractional Brownian plane. Furthermore, our method can estimate tilt angle while
his method can not.

The rest of this paper is arranged as following. In Sec. 2, some background for the two-
dimensional continuous wavelet transform is briefly reviewed. In Sec. 3, we propose three
algorithms to detect ridge surfaces. In Sec. 4, we explain why the surface orientation is
derivable from ridge surfaces. A closed-form solution in computing the tilt and the slant angles
is provided. In Sec. 5, a hybrid of ridge detection and robust fitting algorithm is proposed.

Finally, the experiments and conclusions are summarized in Sections 6 and 7, respectively.

2 Continuous Wavelet Transform

A complex-valued function (x) € L?(R?) is called a wavelet if the double integral is zero:

Jr2 ¥(x)dx = 0. Let N 9)(X) be obtained by the translation, scaling, and rotation of ¢ (x):
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where b € R?, s > 0, and § € [0,27) are translation, scaling, and rotation parameters,

respectively. Also,
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is the rotation matrix of the angle §. The two-dimensional continuous wavelet transform [2] of

f(x) is defined simply as the convolution product with Vo 9)(x):
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where ¢(x) denotes the complex conjugate of 1)(x). If the Fourier transform of the wavelet
1 (x) is localized at the frequency kg, the wavelet transform coefficient at (b, s, #) measures the
frequency content of f(b) at w = rykg/s. In other words, there is a natural association of the
polar coordinate (s~*, ) and the frequency of I t9)(}() at b. We also showed in [12] that the
squared-modulus (Wf)?(b, s,0) can be interpreted as energy density.
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3 Ridge Detection

We adopt the texture model [6] represented in terms of a superposition of amplitudes {Ax(x)},
frequencies {Q(x)}, and phases {py}:

= D Ar(x) cos( (x) + pr), (1)

kel (x)
where k € I(x) implying that the kth amplitde in {Ax(x)}, the kth frequency in {Q(x)}, and
the kth phase in {p;} appear at f(x).

The continuous wavelet transform is used to reliably extract the different frequency compo-

nents of the modulation model. Let us take the wavelet transform of f(x) [12]:
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Since ¥y (w) is concentrated at the frequency ko, the k-th frequency component €2, of f(x)
will be concentrated around ry, ko/si, where 6 is the angle between ko and Qy, and s,jl is the
magnitude multiplier in order to scale ||ko|| to ||Q]|.

In such case, the texture energy at (b, s,#) is approximately the summation of the energy

of each individual component:

(W) (b,s,0)° =~ \w se_ )| (2)
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Eq. 2 indicates that the texture energy at b is concentrated around |I(b)| different frequency
\

||

components. In polar coordinate (s7',6) , they are concentrated around ( ko]l

0x) correspond-
ingly. In this paper, we use the following algorithm to effectively extract these points of energy
concentration. We select points which are the squared-modulus local maxima among 6 and
s for any fixed b. Let N (z) contain the neighborhood of the argument z, including x; then
(b, sg, ) is selected if

VN (s0) YN (65) |OW)(b,s0,00)|" > [(WF) (b, N(s0), N (6))I-



It is not hard to realize that the set of energy aggregation points (b, s = ||||;{2(;c‘|‘|’9’°) is kept by
using this simple process. One can then read off from these points important local parameters
about the spatial frequency Q. It is worth noting that the energy aggregation points obtained
by our algorithm characterize exactly the local frequency of our texture model [9].
Algorithm 1: Single ridge detection

If the neighborhood of a pixel is defined for all voices and angles, there is only one repre-
sentative frequency for each pixel. We call the detected ridge as the "single ridge”. The single
ridge is particular suitable for textures with widely separately spectrums. In our previous work
[16], we had successfully used single ridge for estimating surface orientation.
Algorithm 2: Multiple ridges detection

If the textured image contains several frequencies which are not widely separately, the
detected single ridge will not be meaningful since different frequencies contribute to the ridge.
For this case, meaningful ridge surfaces should be constructed from ridge points by “continuity”
criterion. The neighborhood of a pixel is a narrow interval. The detailed algorithm connecting

the ridge points is described as follows:

Multi-ridge detection
1. Unmark all the ridge points.
2. Let (b, s,0) be an unmarked ridge point p and S; be a new ridge surface.

3. Assign the unmarked neighboring ridge points of p to S; and mark them. The neighboring
ridge points of p are all the ridge points that are neighbors to (b, s, #) in spatial frequency
space. In implementation, we adopt the common eight neighborhood for pixel b. The
neighborhood of scale s is one voice away from s. Similarly, the neighboring angle of 8 is

simply 06 degrees away from 6.
4. Repeat the second step until there is no unmarked ridge point.

Based on this process, the frequency information of a textured image forms disjoint ridge
surfaces in the continuous wavelet transform. Fig. 1(a) shows a picture of a scene. One

observes the slanting building from the decreasing window size. Fig. 1(b) is the scale map
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where the maximal modulus occurs at each pixel b (called single ridge). Figs. 1(c)-(f) show
the scales of multiple ridge surfaces. Fig. 1(c) shows the ridge surface corresponding to the
slanting building, where the ridge surface tilts horizontally. Fig. 1(d) shows the ridge surface
of vertical structures of the building. Figs. 1(e) and (f) correspond to the road and the cars in

front of the building.

4 Projection Model and Estimation of Surface Orienta-

tion

4.1 The Viewing Geometry

We choose coordinate systems that have been adopted in [18]. Let the coordinate systems
of the world (xy,Yuw,2w), of the surface plane (xs,ys,25), and of the image plane (x;,y;,2;) be
depicted in Fig. 2. The slant angle p is defined as the angle between 2z, and z;, which takes
non-negative values between 0° and 90°. Furthermore, the angle between the z; axis and the
projection of the surface normal, i.e. z;, into the image plane is defined as the tilt angle 7
which takes values between —180° and 180°. The slant-tilt combination represents the surface
orientation of a planar texture.

The relationship between above coordinate systems of a surface plane and the image plane

under the perspective projection model have been derived in [?], given by

T 2w | S€Cp 0O COS T sinT T;
= 7 _ , (3)
Ys 0 1 —sinT CosT Yi
where
Rw 20

fu . (4)

f  tanp(z;cosT +y;sinT) + f

4.2 Projection of Spatial Frequency

The spatial frequency of surface textures when viewed from the projected image will be sub-

jected to certain distortions according to the projective effects. For the moment, we assume



that the tilt angle 7 have been derived, hence the rotation matrix r, is known. Let x; = [x; yi]T

and xg = [z ys]T be coordinates of the image plane and of surface plane, respectively. We
denote x = [x; cos T — y;sinT x;sinT + y; cos T]T, the coordinate of new image plane obtained
by applying the rotation matrix r, to x;. After substituting Eq. (3) into the texture model

given in Eq. (?7), we obtain the projected texture in image plane:

2w | s€Cp 0
g(x) = Ay cos(ﬂg— X + p)- (5)
keI (%) Flo 1

Let the frequency vector € = [uy vg]; we have

g(x) = Z Ay, cos(— (ugz sec p + yog) + pr)

kel(x) f
= Z Ay, cos(dr(x Z Ay cos(Vor(x)"x + pp). (6)
kel(x) kel(x)

The perspective projection incurs a non-linear oscillation cos(¢x(x)) in projected image, and
the local spatial frequency is approximated by taking the gradient of the phase ¢i(x). After

substituting 27“’ from Eq. (4), the local spatial frequency is represented in terms of the slant

angle p :
O (x) 8¢k(x)} _ [ZO(ka sec p — vy tan p) 20Uk ] | zouxfsecp Phr(x)  Igk(x)
Ox oy | (ztanp + f)? stanp+ f]  |(ztanp+ f)2 4 0xdy oy |’

(7)

where %ix) and %(x) correspond to frequencies in the tilt and perpendicular to the tilt,
y

respectively. From the frequencies along the tilt and their variations perpendicular to the tilt,

that is 22X and P on(x) , respectively, we can compute the slant angle p from below equation:

ox o0xdy
oupfsecp  Oi(x)  9Pox(x) (8)
(xtanp+ f)2 Ox Y Oxdy

4.3 Estimation of Surface Orientation from Ridge Surfaces

The dominant frequency variations in a projected image gives the tilt direction toward which
the surface texture is slanting. We assume that surface orientation of a texture comes from
a strong and smooth variations of the spatial frequency in the projected image. And, spatial

frequency variations can certainly be determined from ridge surfaces. Suppose that the surface



orientation is derivable from the ridge surface S, and gs(x) is the image reconstructed by
restricting the wavelet transform to S. It is worth mentioning that gs(x) may be very different
from our textured image since there are surface properties in a textured image that are not
captured by the ridge points in S. To recapitulate what we have derived at Eqs. (6) and (7),
gs(x) is approximated by

gs(x) ~ Agcos(Vos(x)'x), (9)

where
vesto” = |5 5 - [ e S
As mentioned in Eq. (8), slant angle p can be computed from the frequencies variations
restricted to the ridge surface § in terms of %I(x), and 32;;7%;"). The precise way of obtaining

the frequency variations 845;—95") requires solving the partial differential equation given in Eq.

(8). Since the variations of spatial frequency appears strongly along the tilt direction, it is

possible to obtain a simplify way of computing %agx) by disregarding the variations of %I(x)
along the direction perpendicular to the tilt. It can be checked, in this case, that
0ps(x) 70, UsSeCP — vs T 1)
ox f (1+ %)2 '
Since the spatial frequency of a textured image is characterized by ridge points, it is possible
to relate 845;—95") to the contents of ridge points (x, s(x), f(x)) in ridge surface S. To recall the

content of ridge point (x, s(x), 8(x)): The magnitude of the spatial frequency at x is inversely
proportional to scale s(x) and 6(x) gives the direction the frequency pointing towards. Hence,
if we choose kg at (ko = ||ko||, 0); then the values of the ridge point (x, s(x), #(x)) in the ridge
surface S are given respectively by

B fk‘g(l—i- :vt;}np)2 ‘

2os Sec p

0(x) =r. (12)

S(X

It is readily clear that scale s(x) is a parabolic function of z. Example shown in Fig. 3(b) is 3D

profile of the scales in the ridge surface of a sinusoid image slanted horizontally in Fig. 3(a).



4.4 Estimation of Surface Orientation
4.4.1 Computing the tilt angle

Although the rotation 6 of the ridge points (b, s,#) on the ridge surface S is the tilt angle
T, it is impossible to obtain this value precisely from the rotation in the ridge points. In
implementation, the number of rotations used in computing the continuous wavelet transform
is always limited precision by a quantization §6. As a consequence, we can not expect that there
will be enough number of rotations available for determining the tilt angle to any precision.
However, we know earlier that ridge surface S parameterized in scale is a parabola(see Eq. 12),
depending on the value of the tilt 7, slant p, and coordinates x; and y;. The parabola is a
canonical form provided that we represent it using the new coordinate system x, obtained by
T

rotating x; exactly 7 degrees. We denote the ridge points ([z;, y;]*, s;,.) on S. To estimate the

tile angle, we fit the ridge surface S by using the quadratic function of z; and y;,
P(zi,y;) = 127 + apxiy; + asy? + aqx; + asy; + ag.
We know that the above formula can be expressed in the canonical form:
P'(x,y) = d12® + dux + dg,

where the mixed-product term is eliminated by a rotation of 7 degrees of the coordinate system.
The new formula P'(z,%) is independent of the axis y, which is pointing in the direction
perpendicular to that of the tilt. It is a simple matter to obtain the tilt angle of S from the
following formula:

_1 05
= tan ' —. 13
T an ” (13)

4.4.2 Computing the slant angle

Computation of slant angle by voting method From Eq. 12, the slant angle p can be
solved from the quotient of the scales s([z1, yo]") and s([z2, yo]¥) of two points in a ridge curve

(with constant y) given by

sz, yol") _ (1+ % tan p)?

= =C>
s([z2,%0]7) (1 + % tanp)?
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Solving the above equation for p, we have the slant angle:

f(l—C))

C.’L’Q — T ’

p = tan™'( (14)

— [s([z1.90]")
where C'= |/, o)
Computation of slant angle by curve fitting The ridge curve is approximated by (22 +

Bzt + By. Equating the coefficients of the above two equations, the slant angle is related to

the three coefficients [y, (1, and fs. After simple calculation, the slant angle p is derived by

I b

) (15)

p = tan !(

5 Robust Estimation

Fig. 4(a) shows an image of sinusoid containing only one frequency. Fig. 5(a) shows the
modulus of the wavelet transform at various orientations with respective to the scale at a given
location. It is found that the energy is appeared in one orientation and concentrated on a
narrow band of frequency. The peak frequency of this location is fairly apparent. It is enough
to represent the frequency of this location by the peak frequency. Unfortunately, there is
few image like sinusoid image encountered in the real-world. According to Rao’s book [17], the
textured images can be roughly categorized into three classes: strongly ordered, weakly ordered,
and disordered textures. All these textures can be regarded as the images composed of multiple
frequencies. Fig. 4(b) shows an strongly ordered texture D95. Similarly, the modulus responses
with respect to scale at one location are shown in Fig. 5(b). We see that the energy appears
more than one orientations and concentrated on some frequency bands. But, it is still easily to
choose local peak frequencies as the “signature” of the local texture variations. Moreover, the
neighboring pixels in regular textures usually have similar frequency responses and, thus, the
multiple ridge algorithm gives us nice continuous ridge surfaces which tend to separate different
frequency components, see Fig. 1. However, for the weakly ordered and disordered textures
shown in Figs. 4(c) and (d), the spatial frequency distributions become much more complex and

the neighboring pixels tends to have different frequency distributions in each orientation(see
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Figs. 5(c) and (d)). In such cases, the multi-ridge detection algorithm is unable to determine
“good” continuous ridge surfaces. Therefore, some constraints are necessary to be imposed
on the ridge points in determining the surface orientation. The constraints we found are the
consistency of orientation and the outlier detection for scales.

Consistency of orientation: When a perceived image is slanted, the representative orienta-
tions of ridge points should be consistent with the tilt angle as possible. All the ridge points
violate the consistency are discarded from the ridge surface.

QOutlier detection in scales: As described in the previous section 3, the ridge points are
fitting into a parabola. To have a robust fitting, the outlier points shoud be eliminated. A
robust regression method such as RANSAC [10] is applyed in our parabola fitting. This outlier

detection is particularly useful for the weakly and disordered textures as Fig. 7 shows.

6 Experiments

The textured images used in our experiments mainly come from Brodatz’s album [7] and images
obtained from WWW. The Morlet wavelet with center frequency ky = 6.9 was used. Four
octaves, eight voices, and eight rotations to perform the continuous wavelet transform. The
experimental results using Algorithm 2 (Mulit-ridge detection) have average error of tilt angle
within 1.48°, and the average errors of slant angle using the voting and curve fitting within
2.18° and 2.75°, respectively. Furthermore, the capability of noise-tolerance of Algorithm 2
have been demonstrated for some noisy images with various SN R ranging from 20 db to —5
db. We find that the estimated results were almost the same as those of the noise-free images.
In order to save the space, the textured images and their detected ridges are not shown here.
They can be found in [12]. On the other hand, we perform a similar as Turner [19] by our
robust estimation method. The three same images D95, D84, D24 are slanted 15°, 30°, 45°,
60°, and 75°, respectively. The estimated slant angles are shown in Fig. 6. It is found that
estimated slant angles are close to the true slant angles except for the D84 image (slanting
75°). In addition, the textured images used for robust estimations (Sec. 5) are shown in Fig.

7(a)-(h). It is seen that the structures of these images are not apparent. Among them, D04,
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D09, and D92 belong to disordered textures, while D15 and D24 are weakly ordered textures
according to the Rao’s book [17]. Their estimated results are shown in Table 1. The average
error of tilt is within 4.46° and those of slant angles using voting and curve fitting are within
2.56° and 3.89°, respectively. Fig. 8 shows the examples of the single ridges and the inliers
(after robust regression) of Fig. 7(a) and Fig. 7(f). Comparing the single ridge and the inlier,

it is found that the useful information are kept.

7 Conclusions

We have proposed two new methods for estimating the orientation of a planar surface texture
under the perspective projection model. Texture variations are effectively characterized by local
frequencies based on continuous wavelet transform. Even though a textured image has more
than a single dominant frequency component, the proposed multiple ridge detection algorithm
is able to choose the ridge surface that describe the surface orientation. For some natural
textures, mostly weakly ordered and disordered, the surface orientation can not be determined
accurately from ridge surfaces. We proposed a random regression method together with the
single ridge detection algorithm to solve the problem. The effectiveness of our method has been

demonstrated on several real-world images.
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(b) Single ridge (c) Multiple ridge 1

(d) Multiple ridge 2 (e) Multiple ridge 3 (f) Multiple ridge 4

Figure 1: Multi-ridge detection of a scene.

Figure 2: The coordinate relationship between the image plane and the surface plane with slant

angle p and tilt angle 7.
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Figure 3: Slanted cosine image and 3-D plot of its ridge: (a) The slanted image; (b) 3-D scale

map of the ridge.

. Sinusoid image (b). D95

Figure 4: Various structured images: (a) Sinusoid image; (b) Strongly ordered texture; (c)

Weakly ordered texture; (d) Disordered texture.
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4(c) 4(d)

Figure 5: The modulus of wavelet transform with respect to scale at various orientations of
a location: (a) Sinusoid image, (b) D95, (c) D24, and (d) D04. The scale increases from the
left to the right horizontally, modulus is indicated vertically; and the subplot boxs show the
orientations from —90°, —67.5°, ..., 67.5°(top to bottom)
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Figure 6: Estimations for three natural textures D95, D84, and D24 slanted 15°, 30°, 45°, 60°,
and 75°.

(f). Flowers (g). Leaves-1 (h). Leaves-2

Figure 7: Test images.
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(a).D04:single ridge

=

Fe

(b).D04:inlier of (a) (c).Flowers:single ridg¢d).Flowers: inlier of (c)

Figure 8: Examples of single ridges and their inliers for D04 and Flowers

Table 1: Estimated surface orientation.

Image Truer | T, | T — 7 | | Truep | py, pe | lpo—p|||p.—p]|
D04 90 95.47 5.47 30 29.00 | 30.33 1.00 0.33
D09 120 109.88 10.12 50 50.00 | 45.08 0.00 4.92
D15 0 -2.25 2.25 95 50.00 | 50.20 5.00 4.80
D24 60 06.11 3.89 15 14.00 | 12.82 1.00 2.18
D92 45 36.03 8.97 40 44.00 | 43.39 4.00 3.39
Flowers 150 150.63 0.63 45 43.00 | 39.00 2.00 6.00
Leaves-1 135 134.02 0.98 45 38.00 | 37.24 7.00 7.76
Leaves-2 90 85.94 4.06 50 49.50 | 48.26 0.50 1.74

Tm: tilt angle of our method

Py slant angle of our voting method

p.: slant angle of our curve fitting method
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