High-Level Execution Time Analysis

Farn Wang!

Institute of Information Science, Academia Sinica
Nankang, Taipei, Taiwan 115, R.O.C.
+886-2-7883799 ext. 1717 FAX : +886-2-7824814 farn@iis.sinica.edu.tw

!Supported by National Science Council, Taiwan, ROC under grant NSC 86-2213-E-001-009



High-Level Execution Time Analysis

Farn Wang?

Institute of Information Science, Academia Sinica
Nankang, Taipei, Taiwan 115, R.O.C.
+886-2-7883799 ext. 1717 FAX : +886-2-7824814 farn@iis.sinica.edu.tw

2Supported by National Science Council, Taiwan, ROC under grant NSC 86-2213-E-001-009



Abstract

A compositional algebra, called CAN, for the execution time analysis of high-level software pro-
cesses is introduced. In CAN, processes with Boolean parameters can be concatenated, concurrently
executed, and recursively invoked. We show that the set of execution times of a CAN is semilinear.
We then propose and analyze an algorithm which calcuates the execution time sets of a CAN in
semilinear forms. Finally, we consider several interesting variations of CAN whose execution time
sets can be computed with algorithms.
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 (AlPRA) L. e process name subscript

B (DEEA) e e process name subscript
X (ChD) Boolean sequence superscript
A (capital delta) .....oooiir e edge-weighted graph
€ (EPSIION) o e empty process
M (B e e arity function of process names
A (BAINIIA) .« .ottt e process name subscript
G 00 ) labeling function of trees
UP (TIW) .« variable used in determining the nonzero executability
IT (Capital P1) o eoeoee et ettt et e e e e e e set of process names
W (CaPIBAL PSI) ettt ettt e et e e e e Parikh’s mapping
o (33 10T ) a symbol in an alphabet
Y (capital SIZMA) ..o alphabet
) semilinear expressions
0T 7 PP a rule
O (capital theta) . ... set of rules
A a compositional algebra of numbers (CAN)
LA oo semantics, set of process execution times
B a bone tree
C e a contributing tree
D a compositional algebra of numbers (CAN)
PP set of arcs in a tree
F o a compositional algebra of numbers (CAN)
H o e a subtree
7 (calligraphical capital I) ... ..o.ooiuiei i e an interpretation
K a subtree
L e e e a language
L e e e e twice the biggest constant used in A
M mode in statechart or modechart
MA o maximum of minimum execution times of all process types
N (calligraphical capital N) . ...o..ooii e set of natural numbers
P e process name
12 set of process execution times
0 process name
R e e e process name
R* (calligraphical capital R) ...........ooiiiiiiiiiiiii i, set of nonnegative real numbers
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B starting process symbol

R T an execution tree, a derivation tree
1 set of nodes in an edge-weighted graph
Q0. Ve e set of nodes in a trees
P set of arcs in an edge-weighted graph
A X e e e e e e parameter sequence
A Y e e parameter sequence
44. Z (calligraphical capital Z) ... ... e e set of integers
45. a,b,c,d Ry i, 5,k LMy m e e nonnegative integers
R root in a tree
R 7R 3P nodes in a tree or a graph
T 7 a string in a language
Q0. Yy 2 et e e e e parameter variables
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1 Introduction

In the design of sophisticated systems, usually various nonregular behaviours are described and
need to be verified. Classic nonregular behaviors refer to those can not be described by finite state
automata and are often observed in systems implemented with unrestricted software recursion, multiple
infinite queues, range-unbounded variables, ... etc. Although the research of formal methods and
automated verification are booming with success to some extent reported elsewhere, in general there
has still been very little we can do in analyzing such sophisticated systems. For example, in the
model-checking approach of real-time systems, it is usually difficult to determine the timing constants
corresponding to the true timing behaviors of program codes. It is our belief that by adopting certain
specification paradigms, some real-time systems, with highly nonregular behavior descriptions in the
classic specification theories, actually exhibit reqularities that allow mechanical analysis and verification.

In this paper, we propose a new theory for the execution time analysis of high-level behaviors. We
call the theory the Compositional Algebra of Numbers (CAN), and show that it helps identify the
behavioral regularity of systems which may have previously been thought to be nonregular. Intuitively,
numerical addition represents the execution time of two concatenated sequential processes. For example,
we may have a process construction rule S{x,y) — P(x)Q(1, z,y) which means process S with Boolean
parameters z, y can be completed by first invoking a process P with parameter x and after the completion
of P(z), invoking a process ) with parameters 1,z,y. Note here z,y are unknown Boolean parameters

at the time of the rule specification.
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Parallel executions in CAN are modeled by the minimum and maximum selection operations. For
example, we may have another rule S(z,y) — min(P(z), Q(1, z,y)) which means process S with Boolean
parameters z,y is invoked by the simultaneous invocation of processes P with parameter z and () with
parameters 1, z,y and is fulfilled when either one of P(x) and Q(1,z,y) is fulfilled. Thus the execution
time of S(z,y) can be defined as the smaller of those of P({x) and Q(1,x,y). Examples of such parallel
execution include the parallel search in a distributed database, ... etc.

Similarly, a rule like S(z,y) — max(P(z),Q(l,x,y)) means process S(z,y) is fulfilled when both
process P(z) and Q(1,z,y) have been fulfilled. Thus the execution time of S(x,y) can be defined as
the bigger of those of P{x) and Q(1,z,y). Examples of such parallel execution include the parallel

mergesort, ... etc.

Example 1 : Suppose we have a CAN with process types S, P, Q), starting process S with parameters

1,1, and process construction rules :

The first rule says that an S{z,0) process (S process with parameters z,0) can take 3 time units to
complete. The next four rules say that an S(x,y) process can be the concatenation of an S(z,0) process
and an S(0,y) process, or be the concatenation of a P(z) process and a Q(1,z,y) process, or be the
parallel execution of a Q(z,y,1) and an S(y,0) process (fulfilled when either Q(z,y,1) or the child
S(y,0) is fulfilled), or be the parallel execution of a P(x) and an S(0,y) processes (fulfilled when both
P(z) and the child S(0,y) are fulfilled). I

Given a CAN A with a starting process type with Boolean constant parameters, a fundamental

problem is
“What is the set of execution times generated by A (written as [A]) 27

It will be good if we can compute a finite representation which describes the set. We shall show that for

every CAN A, [A] is semilinear 4. In section 2, we shall compare with related work. In section 3, we

4A set of integers is seminlinear iff it can be represented as the union of a finite number of sets like {a+b1j1+...+bnjn |
V1 < i < n(j; € N)} for some a,b1,...,b, € N. Semilinear integer sets are closed under intersection, union, and
complement and are subject to efficient manipulation.



shall formally define CAN. The usage of CAN in helping the verification of high-level software systems
can be illustrated by the examples in subsections 3.3, 3.4, and 3.5. In section 4, we shall derive an
algorithm to compute the semilinear description of any given CAN.

Finally, in section 5, we discuss several other possibilities in using the numerical properties of high-
level behaviors. The first one is called PCAN (Parallel CAN) which adopts a rendezvous semantics for
the parallel operators while disallows arbitrary concatenations. The second one, called SCAN (Stratified
CAN), allows finite alternation of concatenation and parallel rendezvous. The third one, called DRCAN
(Deterministic Recurrence CAN), allows integer parameter sharing between child processes and connects

to the theory of recurrence equations.
1.1 Notations

Notationally, we let A/ be the set of nonnegative integers. Given a set H, we let |H| be the size of
H. Given a sequence H, we let |H| be the length of H.

Given a rule 0 like “P(X) — ...... ;7 where X is a sequence of Boolean parameters, we shall let
lhs(f) = P(X), i.e. the left-hand-side of rule 6 is P(X).

A path is a directed graph in which all nodes form a single line. The length of a path is the number
of arcs (edges) in the line.

A tree is a directed acyclic graph such that there is a special node called root and from the root to
every other node in the tree, there is exactly one directed path. A node with no outgoing arcs is external
and is called a leaf. A node with outgoing arcs is called internal. The height of a tree is the length of
the longest path in the tree.

Finally, regarding the manipulation of semilinear expressions used in this paper, some discussions can
be found in [17]. We accept the following notation. Given a linear integer set {a + b1j1 + ... + bpJn |
J1y---5Jn € N}, we shall denote it as a + by * + ...+ byx. A semilinear expression is a union of finite

number of sets like a@ + by * + ... + by *. In particular, it can be shown that for all a,by,by € N,

a + by % +box = {a+ bij1 + bajo | 41,72 € N5b1j1 + beja < lem(by, ba)}
U (a+ lem(by, ba) + ged(by, ba)*)

With such an equivalence relation, we can translate all semilinear expressions into unions of sets like
a + bx. Then it can also be shown that the intersection of two sets, a1 + bi* and as + box*, is empty iff
a1 — a2 is not a multiple of ged(by, by).

Suppose we are given semilinear expressions 71,73. We can define the addition of 71 and 73, in

symbol 71 + 79, as {a1 + aa | a1 € T1;a2 € 9}. We can also define the Kleene closure 7% of 71 as the



minimum set 7 that satisfies the following condition : 7y C 7 AVa € 7Vb € 7(a + b € 7). Some other
interesting properties of semilinear expressions are (a@ + by * +... + by*)* = a % +by x +... + by* and

(mMU...UTy)* =71 %+...+ Tpx where 71,..., 7, are arbitrary semilinear expressions.

2 Related work

In the computation of concurrent systems, there are two major operations that control the system
behavior : communication and time passage[10, 14]. In the traditional theory of formal verification[1,
3, 5, 6, 10, 11, 16, 17], for example, temporal logics, process algebra, and first-order logics, universal
communication operators, e.g. broadcasting, are very often adopted and many good theoretical and
application results have been reported in recent years [2, 4]. Still very little has been done to exploit
specification structures and engineering designing rules to alleviate the burden of verification. In con-
trast, in a CAN system description, the system is defined as a numerical process which in turn may be
recursively constructed from other numerical processes. The processes are called numerical because from
outside, we can only observe their full execution times. Thus to some extent, CAN paradigm matches
the concept of abstraction and information hiding in a uniform way. The communication among child
numerical processes is restricted to the construction of their parent while the communication inside
child numerical processes is kept invisible to the parent.

The classic work of R.J. Parikh on context-free language[15] can be reinterpreted as a special case of
our CAN. Assume we are given a language L with finite alphabet X in sequence 0,05 ...0,. If there is
a string w € L, then Parikh’s mapping of w, denoted as W[w], is a vector (ci1,co,...,¢,) such that for
each 1 <1 < n, ¢; is the number of o; occurrences in w. Also V[L] = {¥[w] | w € L}.

Parikh’s fundamental work shows that given a context-free language L, U[L] is semilinear. We should
point out that Parikh’s result talks about semilinearity of integer vector sets. In our framework, we
only care about the case of unary alphabet. Given w € L with unary alphabet, we interpret w as a
particular computation of a process type and ¥[w] as the computation time of process w.

While CAN is not context-free, Parikh’s work in the unary alphabet case syntactically corresponds to
the BPA (Basic Process Algebra) of classical process algebra and represents a truly context-free fragment
of CAN since it lacks the parallel operator. Thus we also give Parikh’s subclass of CAN the name of
Basic CAN (BCAN). We envision the possibility of extending Parikh’s work with parallel operators to
enhance our ability in specifying and verifying the timing aspects of nonregular real-time systems.

As compared to the classic work of context-free language over general alphabets|7], we see our work



may lead to more verifiable real-time concurrent system specification. For one thing, in the general case,
the emptiness problem of classical context-free language intersection is undecidable[8] while in section 4
and 5, we shall see that under the CAN and SCAN paradigms, the problem becomes decidable and
forms a plausible framework for real-time system specification.

CAN does bear similar syntactical structure to classic process algebra theory[3, 5]. Thus it is possible
to treat CAN as a new semantic definition of process algebra. However, in classic process algebra,
parallel composition is defined on interleaving semantics and there is really nothing similar to our
parallel operator. But we feel that our parallel composition semantics for CAN is adequate for the

abstract description of concurrency in complex real-time systems.

3 CAN
3.1 Syntax

A CAN A is a tuple (II,n, S(X),©®) where II is the set of process names, n defines the number of
parameters received by each process, S(X) is the starting process and Boolean parameter values, and
© is the set of process construction rules. For each P € II, n(P) is called the arity of the process type.

The rules in © are in one of the following four forms.

- (c);

— P1<X1>P2<X2>;

— maX(P1<X1>,P2<X2>);
— min(Pl(X1>,P2(X2>);

v YUY
lslelels:

{
(
{
{

Here X is a sequence z1, ..., z, of Boolean parameters which can be either Boolean variables or Boolean
constants. c¢ is an integer constant in A" and P, Py, P, are process types in II. When n(P) = 0, we may
also abbreviate P() as P.
The intuition behind each rule is the following.
e Rule P(X) — (c); means that process P with parameters X can be executed with ¢ time units.
e Rule P(X) — P (X1)P>(X5); means that process P with parameter X can be executed by first
executing a process P; with parameters X; and then after the completion of P;(X;), immediately
executing a process P, with parameters Xs.
e Rule P(X) — min(P;(X1), P,(X5)); means that process P with parameters X can be executed
by simultaneously executing processes P, with parameters X; and P» with parameters Xs and

the execution is completed when either P;(X;) or P»(X3) is completed.



e Rule P(X) — max(P;(X1), P»(X2)); means that process P with parameter X can be executed by
simultaneously executing processes P; with parameters X; and P, with parameters Xs and the
execution is completed when both P;(X;) and P»(X2) are completed.

We require that in any given CAN (II, 7, S(X), ©), for each P € II, if P(X) is used in O, then | X| = n(P).
That is for each process invocation, its number of parameters must be consistent with its process’ arity.

Although the syntax of our composition rules is restricted to exactly two child processes, we note
the readers that this is purely for convenience of presentation. In practice, we may want to extend the
rules to incorporate rules with other than two child processes. For example, in section 4, sometimes we
write rules with one child process (P — Q). The definitions and proofs in the paper can be modified to

accomodate such extension without any difficulty.
3.2 Semantics

Suppose we are given a CAN A = (II,n, S(X), ©). An interpretation for A is a mapping from the set
of free Boolean parameter variables used in A to the set of Boolean constants. Given an interpretation Z
and a sequence X of Boolean variables and Boolean constants, Z(X) is a sequence of Boolean constants
obtained from X by for every free variable 2z € X, substituting x for Z(z). Given a rule §# € ©
and an interpretation Z, we let 67 be the instantiated rule obtained from 6 by substituting every free
variable x in @ for Z(z). We let ©F be the set of instantiated rules in © with respect to Z, that is,
©F = {67 | 0 € ©}. Also, we let ©7 be Uz is an interpretation for 4) -

We can also modify the derivation trees of context-free languages to formally define the semantics of
CAN. Given a CAN A = (I1, n, S(X), ©), Q € II, sequence Y of Boolean constants such that |Y| = n(Q),
and an interpretation Z for A, a derivation tree T = (V, E,r, u) for Q(Z(Y')) is a nonempty finite labeled
tree such that V is the set of nodes in T', F is the set of arcs in T', r is a node in T called the root, and
v is a partial mapping from V to ©Y such that

e for each internal node v € V, if v has left and right children u; and us respectively in T', then
p(v) is in the form of P(X) — max(P;(X1), P2(X2));, P(X) — min(P;(X1), P2(X2));, or P(X) —
Py (X1)Py(X5);, for some P, Py, P, such that lhs(u(ui)) = Pi(X1) and lhs(u(uz)) = Po(Xs) re-
spectively;
e for each leaf v € V, either u(v) = P(X) — (c¢); for some P € II,¢c € N; or p(v) is undefined in O.
o hs(u(r)) = QT(Y))
A derivation tree T'= (V, E,r, i) is executable iff one of the following three conditions is true.

e u(r) is a rule like P(X) — (c);.



Figure 1: Two execution trees

e u(r) is a rule like P(X) — P1(X1)P>(X3); or P — max(P;(X1), P»(X2)); and both its left and

right subtrees are executable.

e u(r) is a rule like P — min(P; (X1), P,(X5)); and at least one of its two subtrees are executable.
An executable derivation tree is called an execution tree. We define the semantics of CAN on execution
trees instead on derivation trees because intuitively given a min-rule, only one child has to have a
derivation to generate a derivation from the rule. In an execution starting with rules like P(X) —
min(P; (X;), P»(X5)), in case P;(X;) does not have an execution, we request [P%], C [P]4. The
intuition is that when a child procedure has no response at all, then the parent constructed with a

min-rule has to rely fully on the other child for the successful completion of the task.

Example 2 : For the CAN given in example 1, we may have the two execution trees in Figure 1.
In each node, we label a process type and the rule operator (blank for undefined rules, parenthesized
numbers for constants, + for sequential, min for minimum, max for maximum). The labels of a node,
its rule operator, and its children together record the construction of the relevant process. I

Each execution tree actually represents a computation of the root process symbol. Given an execution
tree T'= (V, E,r, u) with root r, we define its exzecution time [T] recursively on the structure of 7T'.

e If 4u(r) is undefined, then [T] = oc.

o If u(r) = P(X) — (c) for some ¢ € N, then [T] = c.

e If r has two subtrees 17,75, then either of the following three conditions is true : wu(r) is a



sequential rule and [T] = [T1] + [T2]; | 2| p(r) is a min-rule and [T = min([71], [Z2]); [ 3] u(r) is
a max-rule and [T] = max([T}], [T2])-
For convenience, from now on, internal nodes labeled with addition (sequential) rules, minimum rules,

and maximum rules are respectively called addition nodes, min-nodes and max-nodes.

Example 3 : It is obvious that each execution tree has an execution time. For the two trees shown in
Figure 2, execution times are 13 and 16 respectively. I

Now the semantics of CAN is defined to be the set of execution times of the starting process invocation.

Definition 1 : Semantics of CAN
Suppose we are given a CAN A = (II,n, S(X), ©). For each P € II and Boolean sequence Y such that
Y| = n(P), we let

[P(Y)] 4 ={[T] | T is an execution tree for P(Y) in A; [T] # oo}

Process P(Y) is said to have an execution if [P(Y)], # 0. The semantics of A, denoted as [A], is
defined to be [S(X)] 4. I

We here use several examples to show the benefit we may get by applying CAN theory properly.
Subsection 3.3 shows how to predict the execution time pattern of a recursive tree-traversing procedure
when no knowledge of the tree size is assumed.

Subsection 3.4 discusses how to schedule the real-time resource requests of two processes constructed
from recursive procedures. In classic verification theory based on state sequences, such a verification
problem is not identified as decidable because the intersection emptiness of two context-free languages is
undecidable[12]. CAN has the advantage here since its execution time set will be shown to be semilinear
in section 4 and semilinear set intersection is computable.

Subsection 3.5 shows CAN’s capability in verifying systems with dynamic process instantiation and
destruction. In traditional verification theory, when users are allowed such a capability, the verification
problem can easily become undecidable since instantiation and destruction of processes can respectively
simulate the increment and decrement operations of two-counter machines. Example 6 shows that as

long as users obey the CAN paradigm, timing predictability is still feasible.
3.3 Analysis of recursive tree search

Example 4 : Suppose we want to traverse a binary tree stored in a file system with the procedure in

Table 1. Each node in the tree can be painted green or blue. Procedure Traverse() processes each node



Traverse(T')

/* The left and right children of T" are T'left and T'.right respectively.

* T may be either green or blue.

*
/4

(1) If T is null, return.

(2) If T is green and internal, then paint 7T'.left green and process for 5
time units.

(3) If T is blue and internal, then paint T'.right blue and process for 25
time units.

(4) Traverse(T .left)

(5) Traverse(T .right)

}

Table 1: A recursive tree traversing procedure

according to their color and position in the tree. The color of each node also affect its children’s color.
This emulates some interaction between two generations.
But we can emulate the procedure by the following CAN. We use Boolean constant 0 to represent

green while 1 to represent blue.
T(x) = (0);  T(0) = (5)TO)T(x); T() = (25)T(x)T(1); T(1) = (25)T(1);

The first rule is straightforward. The second rule says a green node is processed with 5 time units and
paints its left child. The third rule says that for a blue node, it needs 25 time units of processing and
if its right child is internal, then the child needs some execution time as a blue node. The fourth rule
says that for a blue node, it needs 25 time units of processing and if its right child is external, then the
child needs no execution time.

By using the classic result of R. Parikh[15], we can calculate its admissible execution times as a
semilinear characteristic set. In this way, given any execution time ¢, the user can predict if there is
any tree-configuration which needs ¢ time units to traverse. This kind of analysis can thus be used to

schedule the resource utilization in real-time systems. I
3.4 Analysis of schedulability

The previous example falls entirely in the extent of R. Parikh’s work[15], thus BCAN, and does not
use the parallel operations of CAN. The following example gives us a taste about how the parallel

operators can be useful.



Example 5 : Suppose we have two stringent processes A and B which keep on posting sporadic
scheduling requests. They are stringent in the sense that on receiving their scheduling request, the
scheduler does not have too much time slack to juggle with. The only thing we know is that for each
process, in between its two successive scheduling requests, it executes some internal recursive operation
described by CAN’s which is of no interest to the outside observers.

Suppose that we are lucky that the descriptions for A and B both fall in class CAN (or PCAN, SCAN
in section 5) and their semilinear representations are 3+ 5i and 7+ 257 respectively. Due to the stringent
timing requirements of the scheduling, one safe solution is to reserve resources for the two processes
according to their execution time pattern. Since for all a,b € N, the intersection of {a +3+5i | i € N'}
and {b+ 74255 | j € N'} can be calculated efficiently, our analysis guarantees mutual exclusion safety
of such a scheduling policy. I

We would like to point out that although the last example seems to put too much restrictions on
the application of CAN, in fact in complex software systems, there is much room for timing constants
adjustment. Thus it is possible to use CAN theory to guide the constant adjustment in order to maintain

mutual exclusion.

3.5 Analysis of dynamic processes

The following example shows how to describe dynamically instantiated processes in CAN. Tradi-
tional algorithmic analysis of real-time systems usually assumes a static scenario of process lives, so no

processes are instantiated or destroyed in the middle of computation.

Example 6 : One parallel programming style advocates the use of COBEGIN and COEND (or
FORK and JOIN). For example, a user may write code like

COBEGIN P(commit); Q{commit) COEND
or

COBEGIN P(abort); Q(abort) COEND

to synchronize behaviors of different concurrent processes. The codes are executed by simultaneously
executing program P and () and completed when both P and ) are finished. When there is no
interaction except the parameter-sharing between processes P and @, the code falls in CAN subclass

and its execution time pattern is semilinear even with the presence of software recursion. I

10



4 Deriving semilinear descriptions of CAN

The algorithm to generate the semilinear description is presented and proved in four steps. First, we
show that CAN is equivalent to CAN without parameters. Second, we establish that CAN is equivalent
to CAN without max-rules. Then we present an algorithm to tell if the execution time set of a CAN is
of finite size. Finally we constructively prove that all CAN with no parameters and no max-rules are
semilinear by further reducing them to BCAN. The algorithm for calculating the semilinear expressions

of CAN is derived based on the constructive proofs.
4.1 CAN with no parameters

For a fixed number of Boolean parameter positions, we can compute all the Boolean parameter value
combinations. Given an n € N, we let {0,1}" be the set of all n-bit Boolean vectors. For example,
{0,1}* = {(0,0),(0,1), (1, 1), (1, 0)}.

Given a CAN A = (II,n S(X),0), we generate A = (I1,7,5(X),0) such that
I = {S}u{pP¥ | P e Iix € {0,177}, ii(S) = n(S) AVPX € H(H(PY) = n(P)), and
O =0"U{S — SX| x €{0,1}"9)}. The followig lemma shows that [A] = [A].

LEMMA 1 : Given CAN A = (Il,n, S(X), ©), for every execution tree T for A, there is an isomorphic
execution tree T for A such that for every node v in T and its corresponding node ¥ in T, if Ths(u(v)) =
P{Y), then lhs(u(v)) = PY.

Proof : Straightforward from the construction of A. I
4.2 CAN with no max-rules

From now on, we shall assume that all CAN’s given to us have no parameters. Our presentation plan
can be broken down to two steps. First we shall use lemma 2 to show that the minimum execution
time of a process type can be generated by a tree shorter than 3|II| — 1. This gives us an algorithm
to determine the minimum weights of process types. Then we shall present a reduction from arbitrary
CAN to CAN without max-rules and prove its correctness.

The proofs demand the definition of substructures in execution trees. Given an execution tree T', the
contributing tree C of T is the tree structure in 7" that really contributes to the weight of T'. C' can be
constructed from 7' using the procedure Contribute() in table 2. It is easy to see that along any path
in the contributing tree, the weight of a subtree cannot be smaller than that of its child subtrees in the

contributing tree.

11



Contribute(T) /* The root, left, and right subtrees are r, Ty, T» respectively. */ {

(1) If r is a leaf, return T.

(2) Else if r is labeled with an addition rule,
return tree(r, Contribute(71), Contribute(7%)).

(3) Else if r is labeled with a minimum or a maximum rule and [T] = [T1] = [T2],
return tree(r, Contribute(7}), Contribute(7%)).

(4) Else if r is labeled with a minimum or a maximum rule and [T] = [T1] # [T2],
return tree(r, Contribute(77)).

(5) Else if r is labeled with a minimum or a maximum rule and [T] = [T>] # [T1],
return tree(r, Contribute(7%)).

}

e tree(r,T1,...,T,) returns a new tree whose root is r and
whose subtrees from left to right are T4, ..., T, respectively.

Table 2: Procedure for generating the contributing tree

Prune; (T) {
(1) Identify the contributing tree C in T

(2) Identify two nodes, vy and vs, along a path in C from the root to a leaf such that
e vy is the ancestor of vs;
e v; and vs are labeled with rules with the same left-hand-side.

(3) Replace the subtree rooted at vy by the one rooted at vs.
(4) Return the modified T'.

Table 3: One procedure for pruning a tree

LEMMA 2 : Given a CAN A = (Il,n,S,0) with no parameters, for each P € II, if there is an
execution tree for P, then there is an execution tree of height < 3|II| — 1 and weight min([P] ,) for P.

Proof : Now assume that 7" is an execution tree with the minimum weight of all execution trees for
P. We repeat procedure Prune;() described in table 3 until the contributing tree is shorter than |II|.
It is clear that after this pruning process, the weight of T' cannot increase. For all other subtrees of T'
not in C after the final pruning iteration, we can again perform another pruning procedure described
in table 4 on them until all of them are shorter than 2|II|. Note that in Pruney(), we have to be careful
to maintain the executability of pruned trees. This forced the search of path shorter than 2|II|. This
finally transforms 7T into an execution tree for P with minimum weight and height < 3|II| — 1. I

Given a CAN A = (II,n, S, ©), we shall derive A = (II, 7, S, ©) such that there is no max-rule in ©
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Pruney(T) {
(1) Identify two nodes, v; and vs, along a path in T from the root to a leaf such that

e vy is the ancestor of vs;
e v; and vs are labeled with rules with the same left-hand-side.
e v roots an executable tree iff vy also roots an executable tree.

(2) Replace the subtree rooted at vy by the one rooted at vs.
(3) Return the modified T'.

}

Table 4: Another procedure for pruning a tree

and [A] = [A]. Lemma 2 shows that given a process type P (Note we have assumed that A has no
parameters), we can find the minimum weight of P’s execution trees by enumerating P’s executing tree
shorter than 3|II| — 1. Given A = (II,7, S,0) and P € II, we let mins(P) be the minimum execution
time of all execution trees for P € II. When P does not have an execution tree, we let ming(P) = oo.

We then let M4 = max{mins(P) | P € [I}. The new CAN is defined to be A = (I1,7, S, 0) with
DENU{P,|Pell;i e N;0<i< My;} U{P<|PeTl},

where Py is a newly introduced nonterminal symbol, 7 maps everything to zero, and © &

{P—= P |Pell;ie N;0<i< Myy;} U{P; = min(Q;, Ry) | P — min(Q, R) € 0;i < k}
U{P — P« | P eI} U{P; - min(Q;, R;) | P — min(Q, R) € 0;i < j}
U{P. = (¢) | P = (c) € O;c < My} U{P;, - min(Q«,R;) | P = min(Q,R) € ©;0 <i < My}
U{Pc = (¢) | P = (c) €EO;c> My} U{P<¢ = min(Q«,R«) | P - min(Q, R) € 6}

U{P; - QjRr | P> QR € O;i=j + k} U{P; » min(Q;,R<«) | P > min(Q,R) € ©;0 <i < M4}
U{P< = QR | P = QR € O;j+k > Mas} U{P< = Q< | P - max(Q,R) € ©;[R], # 0}

U{P« > QjR« |P > QR€O;0<j < Ma}U{P, - Q; | P > max(Q,R) € O;minu(R) <i< Ma}
U{P« > Q«R« | P = QR € O} U{P; = R; | P = max(Q,R) € O;mins(Q) <i < Mu}

LEMMA 3 : Any CAN A with no parameters has the same execution time set as that of the A defined
in the above.

Proof : (=) We want to show by induction that for every P € IT and w € N, if there is an execution
tree for P of execution time w, then there is such an execution tree in A. In the basic case, we have an
execution like P — (¢) in A. If ¢ > M4, then we have P — P, and P — (¢). Otherwise, we have
P — P, and P, — (c¢). Now assume that this direction of the lemma is true for all execution tree in A of
height < h. Given an execution tree in A of height h + 1, there are two cases to consider. First suppose

the root is constructed from a sequential rule P — QR and the two subtrees have execution times ¢ and
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Figure 3: Two structure transformations

d respectively. According to the inductive hypothesis, we know that there are the two execution trees
in A shown in Figure 2(a) for some 3 and v. From these two trees, we can thus construct the tree in
Figure 2(b) for some « and prove the case. The case when the root corresponds to a max- or a min-rule
can also be proven by similar construction.

(<=) Given an execution tree T in A for a P € II, we can construct an execution tree in A for P
with the same execution time. Note in A, process types without subscripts, like P, only appear in the
left-hand-sides of the rules. The construction goes in the following two steps. First we remove the root
node from T'. Second, we relabel the internal nodes with rules in © according to the two transformations
depicted in figure 3. Figure 3(a) is for max-rules like P — max((Q, R) while figure 3(b) is for rules like
either P — QR or P — min(Q, R). Note in figure 3(a), we use the drawing of a triangle headed by
circled R with min4 (R) inside as the execution tree of R with the minimum execution time for R. We

do the transformation for each original node (labeled with process types with subscripts) in the original
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execution tree T'. The result after the transformation is an execution tree for A and can be shown by

induction on the structure to be of the same execution time as 7'. This finishes the proof. I
4.3 Finiteness of the sizes of CAN execution time sets

According to lemma 3, from now on, we shall assume without loss of generality that all CAN’s
given to us have no parameters and no max-rules. Here we shall develop the necessary and sufficient
condition for a process to have infinitely many different execution times. We have the following plan of
presentation in this subsection. First, we use definitions 2 and 3 to construct the necessary and sufficient
condition which is called unboundedness condition. Then we use lemma 4 to prove that the condition is
indeed necessary and sufficient. Finally, we use the constructive proof in lemma 4 to develop a PSPACE
algorithm to detect the unboundedness condition.

We define the following structures in an execution tree.

Definition 2 : Bone trees Given an execution tree T'= (V, E,r,u) for P € [T in A = (Il,n, S, 0), a
bone tree B = (V, E,r, ) of T is a substructure in T satisfying the following conditions.

e VCV

e E={(N,N")| (N,N")€ E;N,N' € V}

e If N € V and pu(N) is a rule like P — QR, then one of N’s children is in V.

e If N € V and pu(N) is a rule like P — min(Q, R), then N’s two children are both in V. I

Definition 3 : Unboundedness condition Given P € Il in A = (I, 7,5, ©), we say P satisfies the
unboundedness condition iff there is an execution tree T' of P and a bone tree B in T such that along
all paths from root to leaves in B, there is a path segment v;,v;;1,...,v;, with ¢ < j, such that
e v; and v; are labeled with rules with the same left-hand-side; and
e there is an 7 < k < j such that vy is labeled with a sequential concatenation rule and the child of
v not in the path roots an execution tree of nonzero execution time. I

We first want to prove lemma 4.

LEMMA 4 : Given a CAN A = (I, n,S,0), with no max-rules and no parameters, and P € I,
|[P] 4| = oo iff P satisfies the unboundedness condition.

Proof : (=) Let w be the biggest constant used in the definition of A. Since |[P] ,| is infinite, there
must be an execution tree T for P heavier than 2/™lw. Now we shall constructively identify a bone tree
B in T which satisfies the unboundedness condition. The construction is accomplished by procedure

Bone() described in table 5. For example, both of the execution trees in figure 1 generate the same
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Bone(T) /* The root, left, and right child subtrees of T are r, Ty, and T». */ {
(1) If r is a leaf, return T.

(2) If r is an addition node, then
If [T1] > [Tz], return tree(r, Bone(T})); else return tree(r, Bone(7%));
(3) If r is a min-node, return tree(r, Bone(7}), Bone(T3));

}

e tree(r,T1,...,T,) returns a new tree whose root is r and
whose subtrees from left to right are T, ..., T, respectively.

Table 5: Procedure for constructing a bone tree

Figure 4: A bone tree

bone tree depicted in figure 4 through procedure Bone(). Now we want to show that B indeed satisfies
the unboundedness condition.

We call a node heavy if it is labeled with an addition rule and both of its children root subtrees of
nonzero weights. Other nodes are called light. We want to prove that along each path in B, there are
at least |II| + 1 heavy nodes. Note that the weight of a subtree 7" is broken down into two nonzero
weights of the corresponding child subtrees only when the root of T” is a heavy node. Also at each
heavy node in the execution of procedure Bone(), we choose to include only the heavier child subtree.
Thus it is clear that after passing each heavy node, the weight of the subtree is reduced to a value no
less than half of the weight of its parent tree. Also if we branch through a min-node, the weight of the
child subtrees can not be smaller than the weight of its parent tree. Since [T > 2w, it is clear that
along any path of B, there will be at least |II| + 1 heavy nodes.

Finally, of the |II| 4+ 1 heavy nodes along each path in B, there are two labeled with rules with the

same left-hand-side. Thus this direction is proven.
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Figure 5: Extending an execution tree

(«<=) If there is such an execution tree 7', we shall show that from 7" we can construct another execution
tree T' such that [T'] > [T] and T" also satisfies the unboundedness condition. We identify in B a
subgraph Cp which contributes to the weight of T'. That is for a node N in B labeled with a min-rule,
we only keep in Cp the child subtrees of N which have the same weights as the one rooted at N. We
call such a subgraph a contributing bone tree.

Along every root-leaf path in Cp, we identify nodes v; and v; as described in the unboundedness
condition. Then we replace the subtree rooted at v; by the one rooted at v;. The replacement for one
pair is shown in figure 5. We perform such a replacement for each root-leaf path in Cp. Note in Cp,
the weight of the tree rooted at v; is greater than that of the tree rooted at v;. After the replacement,
the weight of the tree rooted at N is lifted to the weight of the tree originally rooted at v;. Since the
path contributes the weight of the whole tree, it can be shown that the result new tree T” is heavier
than [T'] and satisfies the unboundedness condition. I

To utilize lemma 4, one question still need to be answered: how do we determine if a nonterminal
has a nonzero execution time? We can assign a variable vp to each P € II which may have one of three
values : 0 (has a zero weight), 1 (has a nonzero weight), and —oco (has no execution tree). Then we feed
these variables through the rules in © iteration by iteration. After iteration k, we know if a particular
nonterminal has a nonzero weight execution tree of height k. Within at most 2|II| iterations, a fixpoint
will be reached and we can tell which nonterminals have nonzero weights. This also indirectly shows

that the nonzero execution weight tree found is of height 2|II| at most.
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Unbounded(A4, P) /* A= (I,n,S,0) */

(1) Let I' = {[P, |T[]};
(2) Repeat {
(1) Nondeterministically choose an element [Q, ¢] from T}
(2) Nondeterministically choose 6 € © such that lhs(0) = Q;
(3) If there is no such 6, return FALSE; else {
(1) Delete [@, c] from T
(2) If 6 is Q — R; R»;, nondeterministically choose one of the following to perform. {
(1) If vg, =0, then add [R»,c] to T}
else if vg, = —o0, then return FALSE;
else if vg, =1 and ¢ > 0, then add [Rz,c— 1] to T}
else if vg, =1 and ¢ = 0 and vr, = —o0, then return FALSE;
(2) If vg, =0, then add [Ry,c] to T}
else if vg, = —o0, then return FALSE;
else if vg, =1 and ¢ > 0, then add [Ry,c— 1] to [;
else if vg, =1 and ¢ = 0 and vr, = —oo, then return FALSE;

W =

(3)If 6 is @ — min(Ry, Ry), then add [Ry,¢], [R2, ] to T}
(4)If T =, return TRUE;

(5) If T has been visited before, return FALSE;

}

}
}

Table 6: Procedure for determining the unboundedness condition

Now we propose to use the first part of the constructive proof for lemma 4 to develop an algorithm
to tell if a process satisfies the unboundedness condition. The algorithm is embodied in procedure
Unbounded() in table 6. Given the target process P in A = (II,n, S,©), Unbounded() nondeterminis-
tically searchs for the empty set node. In the repetition loop, counter ¢ decrements only when we have
passed through a heavy node. Also, no new element is added to I if ¢ = 0. This happens when we have
traversed through |II| 4+ 1 heavy nodes along a path. Thus when we reach the empty set node, we know
that along all paths, we have traversed through |II| + 1 heavy nodes and P satisfies the unboundedness
condition.

A nondeterministic implementation of Unbounded() needs only polynomial space. But the terminat-
ing condition at statement (2.3.5) has to be changed to search length test of 2/M(M+1) gince there can

only be 2T+ distinct configurations of T
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Bound(A4) /* A = (Il,n, S,0) */

{
(1) For each P € II, if Big(P), then ®p = 0o, else Pp = —o0

)
(2) Loop for 2Mw|II| 4 1 times. {
(1) For each rule P — (c) € O, if ¢ > @p, let &p :=¢;
(2) For each rule P = QR € O, if g + P > ®p, let Pp := Pg + Dp;
(3) For each rule P — min(Q, R) € O, if min(®g, Pr) > @p, let Pp := min(Pg, Pp);
}

}

Table 7: Procedure for computing the maximum execution times

4.4 Semilinear expressions of CAN

For convenience and conciseness of presentation, we let Big(P) & (|[P],] = oo V [[P]4] = 0) and

Small(P) & (0 < |[P] 4| # o).

With the algorithm in the last subsection, we can replace rules like P — min(Q, R) by P — Q,P — R
if Big(Q) A Big(R) is true. Now the remaining issues is how we are going to handle the min-rule when
either |[Q]| or |[R]| is a nonzero integer. Our strategy is to first compute the maximum execution time
of all P (max [P]) with Small(P). Then we use this as upper bound to help us enumerate all the rule
compositions, as we have done in the reduction in subsection 4.2.

The maximum execution times of all process types can be calculated with Procedure Bound(A) in
table 7. It is known from lemma 4 that for a Q with Small(Q), max [Q] < 2Mlw. Thus wihtin 2/ w|IT|+1
iterations, a fixed point will be reached and the maximum execution times of all process types can be
found. At the end of execution of procedure Bound(A), for each P € II with Small(P), max [P] = ®p.

Now we define yet another reduction to reduce a CAN with no parameters and no max-rules into a

BCAN A = (I1,7,8,6) with [T = {S} U {P. |0 < ¢ < 2w} U {Pc | P €11} and
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{8 = 8;|0<i<2Mwl
{8 = S«}

{P.— (¢)| P— (c) € ©}
{P, > QjR; | P = QR€O;i=j+k < 2Mw}
{P< = QR | P - QR € 05 + k > 21w}
{P« = Q<Rp | P = QR € ©;0 <k < 2w}
{P« = QjR« | P = QR € ;0 < j < 2w}
{P<« > Q«R« | P> QRE O}

{P; = Qi | P — min(Q, R) € ©; Small(R)
{P; » R; | P — min(Q, R) € ©; Small(Q)
{P; — Q; | P — min(Q, R) € ©;Big(R);0
{P; = R; | P — min(Q, R) € ©;Big(Q); 0
{P< = Q« | P — min(Q, R) € ©;Big(R)
{P« - R¢ | P — min(Q, R) € ©;Big(Q)

@
e
e

cCcccccccccccc

THEOREM 5 : Suppose we are given a CAN A = (Il,n, S, 0©) without no parameters and maz-rules

and a BCAN A constructed according to the just-mentioned reduction. Then [A] = [A].

Proof : True according to the results in the last two subsections. I
Since all our reductions and proofs are constructive, an intuitive algorithm to derive the semilinear

expressions of any given CAN is in the following four steps : (1) Transform the CAN to a CAN without

parameters. (2) Transform the CAN without parameters to a CAN without max-rules. (3) Transform

the CAN without max-rules to a BCAN in Parikh’s subclass. (4) Use Parikh’s result [15] to derive the

semilinear expressions of the BCAN.

5 Other possibilities for CAN

The parallel composition of CAN adopts the minimum and maximum semantics. One other possibility
is in the flavor of rendezvous. That is we can design a parallel rule P(X) — P;(X1)||P>(X3); such that
process P(X) has an execution tree if P;(X;) and P,(X5) has executions of the same execution time.
Intuitively, this means P(X) can be invoked by simultaneously invoking P;(X;) and P»(X5) and P(X)
is fulfilled when P;(X;) and P(X5) are fulfilled at the same time.

Along this semantics, we have designed two algebra, PCAN (Parallel CAN) and SCAN (Stratified
CAN). PCAN corresponds to the Basic Parallel Process (BPP) of process algebra in that the sequential
concatenation rules is forbidden except for the case of P — (c1)Pi(ce2); for some integer constants ¢y
and cy.

The second subclass, Stratified CAN (SCAN), merges advantage of both Parikh’s classic result
(BCAN) and that of PCAN to allow for the finite number of alternations between rendezvous and
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sequential concatenation.

We shall give constructive proof for the semilinearity of PCAN and SCAN. The algorithm for com-
puting the semilinear expressions of any PCAN or SCAN systems will also be described.

Finally we try to connect to the theory of recurrence theory through the device of integer parameter
sharing. The result is DRCAN which can be used to analyze the execution of complex loops. However
the execution time sets of DRCAN are not all semilinear.

With the technique presented in subsection 4.1, we can translate each of PCAN, SCAN, and DRCAN
into an equivalent algebra without Boolean parameters. Thus in the following discussion, we shall

assume that all algebrae given to us are without Boolean parameters.

5.1 Parallel CAN (PCAN)

Parallel CAN has the following syntax rules.
P — (C); P — (Cl)Pl(CQ); P — P1||P2;

Due to the similarity shared with the semantic definition of CAN, we shall only briefly describe the se-
mantics of PCAN. Given a rule like P — (c1) P (c2);, process P is executed by doing some preprocessing
of ¢; time units, then invoking P;, and finally after the fulfillment of P;, do some postprocessing of ¢y
time units. Given a rule like P — Py || Py;, process P is executed by invoking P; and P, simultaneously
and fulfilled by the simultaneous fulfillment of P; and P, respectively.

The semantics of PCAN can also be defined with execution trees. Not all execution trees are legal
because an internal node labeled with a parallel rule may have two subtrees of unequal execution times.

Due to the associativity and commutativity of additions, numerically (c¢1)P;(c2) is equivalently to
tail procedure-call (¢; + ¢2)P;. We use the following rewriting rules on PCAN to analyze its execution
time set.

1. (c1)(c2) = (c1 + ¢2)

2. Suppose we are given ¢ = min{ci,...,¢n} > 0 and for each 1 < i < m, Q; is either e (empty

process) or a process type name. ((¢1)Q1)]|- .- ||[((cm)Q@m) = (¢)(((c1 —c)Q1)]] - - - ||((cm — ) Qm))-

3. Given a rule P — (c), (0)P = (c).

4. Given a rule P — (c1)Pyi(c2), (0)P = (¢1 + c2) P;.

5. Given a rule P — Py|| Py, (0)P = ((0)P1)]|((0)P).

We let = be the transitive relation of =>. We let

(D (((e)QUI-- - 1((em)@m))] = {d' [ () (((c)QD--- I((em)Qm)) == (@) (0] .- [1(0))}
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The definition is general enough to cover that of execution time set of PCAN. Given a PCAN A =
(1,7, 5,0), if (0)S == (D)(((c)QVII- - |((cn)@m)); then ()@l |((cm)Q@um) Tepresents a global
snapshot of the process expansions of all concurrent threads. Let L4 be twice the biggest constant used
in rules in ©. According to the conditions of rewriting rules 2, 3, and 4, we find that ¢; is bounded by
Lyforalll<i<m.

Moreover, the following lemma gives the finite characteristic of the analysis of PCAN.

LEMMA 6 : Given a PCAN A= (I1,n,S,0), t e N, and T = (d)(((c1)Q1)|l - - - |((em)Qm)), t € [T]
iff /()@ - () @m)) = (£ — (O] 0))-

Proof : The backward direction is straightforward due to the soundness of the rewriting rules. For the
forward direction, assume there is a rewriting sequence for I'. We use induction on the lengths of all
rewriting sequences. In the basic case, (0)P = (¢)((0)) and the case is proven. We assume that the
lemma is true for all rewriting sequences of lengths < h. Now suppose we are given a rewriting sequence
of length h + 1. The following two case analyses complete the proof.

e Suppose at the beginning of the sequence, we have a rule like P — (c1)Pi(c2). According to
the inductive hypothesis, (0)P, == (d1)((0)|...]|(0)) for some d;. Thus (0)P == (c; + ¢ +
(O] 0)).

e Suppose at the beginning of the sequence, we have a rule like P — Pj||P, and for the two child
subtrees, we have (0)P; == (d1)((0)] ... [|(0)) and (0)P, == (d2)((0)]|... ||(0)) respectively. Then
according to the semantics, d; = dy. So we have (0)P == (d1)((0)] ... [|(0)). I

Note that in determining the emptiness of something like [(d)(((¢1)Q1)]l--- ||[((cm)@m))], the true
value of d does not matter. Furthermore, any duplication of (¢;)Q; is as good as a single copy of (¢;)Q;.
Thus we propose to build an edge-weighted graph A4 = (U, W) for PCAN A = (II, 5, S, ©) such that

e Each element in U is a nonempty subset of {(¢)P | c € N;¢ < La; P € I1}; and

o for cach v = {(()Q1)s- - ((en)@m)}so = {(@1Q1)s ., (En)@n)} € U and Ly > d € N,
(v,0) € W s Tabelled with d iff (1)@l - [((em)Q@m) = (@(@)QV)] . [((En)O0)).

Given a path vg ay U1 B N vy, the weight of the path is defined to be dy + ... + d,,. Thus the

following theorem shows the correctness of the graph-construction.

THEOREM 7 : Given a PCAN A = (II,n, S,0), with Ay = (U,W), and t € N, t € [S] 4 iff there is
a path of weight t in A4 from {(0)S} to {(0)((0))}.

Proof : Straightforward from definition of = and the construction of A 4. I
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Time_Expression(A) /* A = (II,n,S,0) */ {
(1) Construct A4 = (U, W).
(2) For each v € U, {
(1) For each u B v, v 3 w, v B v, and u 3 w, {

(1) replace u =3 w by u AT i W
}

}

(3) return the label of ((0)(S), (0)(0)) in W.

}

Table 8: Algorithm for PCAN semilinear expressions

Furthermore, since A 4 fully characterizes the pattern of process composition of A from S, we can use
a Kleene’s closure algorithm to calculate the semilinear expressions of [A] as in table 8. The number
of nodes in A 4 is O(2‘H|LL{[‘) = O((2L 4)™MN. Since the Kleene’s framework is of order three, the whole
algorithm should take at most O(((2L4)™)?) = O((2L 4)*") time units.

5.2 Stratified CAN (SCAN)

SCAN is designed to be a superclass of PCAN and BCAN. In an SCAN A, conceptually, we have a
sequence of PCAN’s and BCAN’s Ay = (11,11, 51,01),..., Ay, = (Il,, Ny, Sp, Oy ) such that
e for each 1 <1 <mn, A; is either BCAN or PCAN;
o forany 1 < i < j < mn, if II; NI; # 0, then II; N II; = {S;} and S; does not appear in the
left-hand-side of any rules in ©;.
Formally speaking, SCAN A = (U <;<,, i, U1 <i<n M5 S1, Ur<i<i ©4)-
The following example shows how the SCAN theory can be used to analyze the two well-accepted

formalisms, statechart[9] and modechart[13].

Example 7 : Statechart is a graphical language for the description of computer systems[9]. Modechart
is a real-time variation of statechart[13]. Both of them have been well-accepted and drawn much
attention from industry and academia. In statechart and modechart, a system is represented by a
mode and people may hierarchically construct their representations from smaller modes. Each mode
is either parallel or serial. Transitions between modes can be triggered by timeouts or other message
broadcasting.

For example, in figure 6, we have a three-layered system. Mode M is the parallel root mode with

two child modes, M7, M>. Mode M, is a serial mode with three children, M., M1y, My, with M;, as
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M, M,
Mg My, My, My,
Mlaa
Miag M. Msq My,

Figure 6: A statechart (modechart)

the starting child mode.

The modes with darkened boundaries are starting modes in serial modes. In the case that the
parallel modes do not interact with each other until their exitting, we find that the corresponding
analysis problems fall right in SCAN. I

We can show that SCAN is semilinear by the following lemma.

LEMMA 8 : Given an SCAN representable by sequence Ay, ..., A, such that A; = (I1;,n;, Si, ©;), for
all 1 <1 <n, (Uicj<n s Uicicn M5 Sis Uicj<p ©5) s semilinear.

Proof : It is without doubt that A,, is itself semilinear. Now we want to show that A; is semilinear
by assuming that (U;<p<p ks Uj<i<n > S5y Uj<k<n Ok) is semilinear for each i < j < n. Given a
semilinear set of integers 7 = 7y U U ... U 7, there is a construction of F; € BCAN N PCAN such
that [F;] = 7. The construction goes by working on each of 71,..., 7, and then uniting the results
together. Suppose for some 1 < h < m, we have 7, = {a + b1jy + ... + brjg | J1,-- -5k € N} for some
a,bi,...,by € N. It is easy to show that [F;, | = 7, with F,, = (II;,,ny,,Sr,,©7,) such that

o I, =1{S,,, D p? . D
k
o 01, (Sr,) = 1, (D)) = 1, (D) = ...y, (DY) = 0

e 0, =1{S, = (a)DPyu{DY = m)DY |1 <1 < k(DY = DI |1 <1< kYD - (0)}
Then [[FL]] = 7 with FT = ({S—,—} U Ulghgm HT}”STa {ST — STh | 1 S h S m} U Ulghgm @Th>.
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Now suppose we have established the semilinearity of [Siy1] 4, [Si+2]4,- .-, [Sn] 4 and are waiting to
show that of [S;] ,. Assume that we can use the just-mentioned construction to build F[[Si+1]] , F[[Si+2]]’ e F[[Sn]]
for [Sit1] 4, [Si+2l 45 - -, [Sn] 4 respectively. Furthermore, we assume that F[[Sj]] = (IL;,n;, S;,0;) for
each 7 < j <. The proof can be done by showing that (U;<;<, ILj, U1<;j<n 1), Sis Ui<j<n ©;) represents
the same set of integers as (IT; UU,;<;<p, ﬁj, ni U Uicj<n M5 56, ©i UUicj<n ®]) This is true because the
stratified structure of A;,..., A, and the equivalence between [S;] , and [[F[[ Sj]]]] for each ¢ < j < n.

The proof then completes by noting that A; is either BCAN or PCAN. I

The above-mentioned proof for the semilinearity of SCAN also depicts an iterative algorithm to

determine the emptiness of any given SCAN representation. Due to its straightforwardness, we shall

omit the algorithm presentation here.

5.3 DRCAN : connections to recurrence equations

The third possibility, called Deterministic Recurrence CAN (DRCAN), tries to connect to the rich
theory of recurrence equation and allows some strict integer parametric synchronization between the
child processes. Such a formulation can be useful in analyzing strongly heirarchical composition, like
nested loops. In DRCAN, we may request each procedure invociation comes with a natural number
parameter which tells how many more invocation levels there are to be done. A parallel rule does not

increase the invocation height while a sequential one does. The syntax of DRCAN rules is

PO = (0); pik — pl-lpFD. P — max(P", PM); P — min(P* | PM);

The three restriction we imposed on DRCAN for the simplicity of analysis are
e Recursion is only allowed when a procedure calls itself directly in a sequential rule.

h) with param-

e A procedure invocation (namely a nonterminal followed by a formal parameter) P
eter h € {0,k} can only appear on the left-hand-side of one rule.
e From the left-hand-side to the right-hand-side of a rule, integer parameters cannot increment.

A typical example of using DRCAN in analyzing execution is nested loops.

Example 8 : Suppose we have the following nested loops.

(1) for 1 <¢<n, do
(2) for 1<j<1i, do
(3) wait for 3 time units

The system can be described by

P - piE—b i, P — pfF—h i, pM - piFY, P = (3);
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It is easy to see that DRCAN is not semilinear. As for the execution time set, we found that due to
the strict restriction on recursion, we can do it in two steps. First, we arrange the nonterminals in a
sequence ordered by their invocation ordering. Then starting from the one that calls nobody else, we
analyze one-by-one their execution time patterns as single variable polynomial functions.

Second, the only difference from the traditional recurrence equation analysis is that we have to take
care of the max- and min-rules. Since the invocation sequence is deterministic, we can determine within
which intervals a single-variable polynomial is greater than another. There will be only finite number
of such intervals. So the outcome of a max-rule will be described as a set of polynomials with respect

to a set of respective integer intervals.

6 Conclusion

We have developed the theories of CAN, PCAN, SCAN, and DRCAN which allow the execution time
analysis of real-time specifications of nonregular real-time systems. We believe that the paradigms more
or less correspond to the engineering designing wisdom of abstraction and information-hiding and feel

hopeful that more insight to the issue of verifiability can be gained in the future along these lines.
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