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Abstract

This paper is concerned with the design of e�cient algorithms for generating global name�space
communication sets based on execution of array assignment statements on distributed�memory
parallel computers� For general cases� although the communication sets can be represented by the
union of a functional number of closed forms� these sets cannot be represented by a �xed number of
closed forms� Closed�form expressions for communication sets would reduce the associated packing
overhead at the sending processor and unpacking overhead at the receiving processor� In this paper�
we will �rst present a method using row�wise block�to�block intersections and an integer lattice
method to generate communication sets when data arrays are distributed in any arbitrary block�
cyclic fashion� After that� we will show that compiler or run�time support itself is more suitable for
determining the block sizes of the array distributions� We will also derive closed forms to represent
communication sets when data arrays are distributed in a restricted block�cyclic fashion� which can
be determined at compiling time� Our methods can be included in current compilers and used
when programmers don�t know how to use data distribution directives to assign suitable block sizes�
Experimental studies on a �	�node nCUBE
�E parallel computer are also presented�
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puters� forall statements� global name space� parallelizing compilers� run�time support�
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� Introduction

This paper is concerned with the design of e�cient algorithms for generating global name�space com�

munication sets based on execution of array assignment statements on distributed�memory parallel

computers� Data�parallel languages which adopt a �single� global name space allow programmers to

express their algorithms as is done on a shared memory architecture 	
��� Array assignment statements

are used to express data�parallelism in scientic languages such as Fortran ��D�HPF 	��� Fortran D

	��� and High Performance Fortran �HPF� 	
��� Because an array assignment statement is equivalent

to a special form of a forall statement as shown in Table �� di�erent iterations �loop bodies� can be

executed independently� Since data arrays are distributed among processing elements �PEs� in some

fashion� according to the owner computes rule� the owner of the left�hand side element executes the

assignment for that element� compiler or run�time support can group di�erent sets of iterations into

PEs� and PEs can execute their corresponding set of iterations independently� However� compiler or

run�time support has to provide e�cient algorithms for generating communication sets if the generated

data� which are on the left�hand side �LHS� of the assignment statement� are not stored in the same

PE as the used data� which are on the right�hand side �RHS� of the assignment statement� Otherwise�

the performance gain due to parallel computing will be degraded by software overhead�

array assignment statements forall statements

forall i � � bu��l�
s�

c
A�l� � u� � s�� � g�C�l� � u� � s��� A�l� � i � s�� � g�C�l� � i � s���

A�l� � l � s� � l� � l � s� � bu�l
s
c � s � s� � s � s�� � forall i � l� u� s

g�C�l� � l � s� � l� � l � s� � bu�l
s
c � s � s� � s � s��� A�l� � i � s�� � g�C�l� � i � s���

Table �� An array assignment statement is equivalent to a special form of a forall statement� where g
is a function of array C�

In this paper� we are interested in generating all the necessary communication sets in each PE when

an array assignment statement is executed on a distributed�memory machine� Let cyclic�b� distribution

be the most general regular distribution in which blocks of size b of the array are distributed among

PEs in a round�robin fashion� In the following� we will state the problem we want to solve in this paper�

For convenience� throughout this paper� we will use forall statements to represent array assignment

statements without confusion�
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Problem� In a distributed�memory machine� processors are numbered from � to N � �� Arrays
A�a� � a�� and C�c� � c�� are distributed in cyclic�b�� and cyclic�b��� respectively� Then� we
want to compute the necessary communication sets in each processor due to execution of the array
assignment statement A�l� � u� � s�� � g�C�l� � u� � s���� which is equivalent to the following
forall statement� where s� � �� s� � �� and g is a function�

forall i � �� bu��l�
s�

c

A�l� � i � s�� � g�C�l�� i � s����

The case where s� or s� is negative can be treated analogously� The degenerate case where s� � �

�reduction� or s� � � �broadcast� can be handled by other optimization method� For general cases

where b�� b�� s� and s� are arbitrary numbers� although the communication sets due to execution of

forall statements in each PE can be represented by the union of a functional number of closed forms�

these sets cannot be represented by a xed number of closed forms� For these cases� we will present

an e�cient algorithm based on row�wise block�to�block intersections and an integer lattice method to

generate communication sets�

While cyclic�b� �block�cyclic� distributions are important from an algorithmic standpoint 	�� 
���

the complicated arithmetical formulations of communication sets which result in the di�culty of e��

ciently compiling for such distributions has delayed the inclusion of this feature in commercial HPF

compilers� Indeed� there has ever been some discussion of removing cyclic�b� distribution from HPF

altogether 	���� This is all because communication sets cannot be represented by a xed number of

closed forms for the general cases�

However� we believe that block sizes b� and b� should be determined by compilers� and that pro�

grammers only need to concentrate on implementing their sequential programs� The way to determine

data alignment and data distribution can be implemented in compilers 	��� 
�� 
�� ���� The way to

choose the grain and granularity of a block size b for a specic array distribution also can be deter�

mined by an analytical model 	
�� or by certain experienced data distributions from a knowledge base

	
�� The following two oracles help decide the block size b� The load balance oracle suggests use of

cyclic �cyclic���� distribution if the iteration space is a pyramid �such as the iteration space of an LU

decomposition�� a triangle �such as the iteration space of a triangular linear system�� or any other

non�rectangular space� The communication oracle emphasizes not making the block size too small if

the computation in each iteration involves shift operations or if data of each array element depend on






data of neighboring array elements� otherwise� it will incur a high communication overhead� a high

bu�ering overhead and a high indexing overhead� These two oracles� unfortunately� are inconsistent�

For instance� Table 
 shows comparisons of using di�erent block sizes to execute a ve�stencil

problem with a triangular iteration space on a linear processor array� where the problem size m � 
��

and the number of PEs N � �� or m � 
�� and N � ��� Suppose that arrays A and C are both

distributed along rows by cyclic�b�� In an analytical model� we can formulate the total execution time

from the SPMD �Single Program Multiple Data� program which includes both the computation time

and the communication time� The total execution time T is a function of the problem size m� the

number of PEs N � and the block size b� When the problem size m and the number of PEs N are xed�

the optimal execution time can be obtained by requiring that �T
�b
� � or by substituting all possible

b into the formula� Alternatively� from experience� choosing a block size b � m
N��� or b �

m
N��� is also

an acceptable compromise for both load balance and communication overhead� Because the cost of

data re�distribution is high� in practice� block sizes are chosen not only for one statement but also for

a segment of a program� which includes a lot of statements� Thus� block sizes should be a compromise

for many statements� Therefore� it seems suitable to choose block sizes ranging from m
N���

or m
N���

for

a non�rectangular iteration space to m
N
for a rectangular iteration space�

We now continue to state the problem� If b� is close to b
�
� and b� is close to b

�
�� then the di�erence

due to the load balance requirement between using �cyclic�b�� and cyclic�b��� and using �cyclic�b
�
��

and cyclic�b���� is not signicant� but the di�erence due to the software overhead incurred in generating

communication sets may be signicant� When strides s� and s� are given� we will show how block

sizes b� and b� can be obtained� such that communication sets can be represented by closed forms�

Closed�form expressions for communication sets would reduce the associated packing overhead at the

sending PE and unpacking overhead at the receiving PE�

This paper is a continuation of our earlier work on compiling high�level languages to distributed�

memory parallel computers� The trend of currently parallelizing compiler research has emphasized al�

lowing programmers to specify the data distribution using language extensions� such that compilers can

then generate all the communication instructions according to these language extensions 	�� �� ��� 
���

For instance� in HPF� programmers have the obligation to provide TEMPLATE� ALIGN� and DIS�

TRIBUTE directives to specify data distribution� However� in order to use these three directives
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�do i � �� m� �do j � �� i� A�i� j� � � � �C�i� j� � C�i� �� j� � C�i� �� j� �C�i� j � �� � C�i� j � ����
�do i � �� m� �do j � �� i� C�i� j� � � � �A�i� j� �A�i � �� j� � A�i � �� j� � A�i� j � �� � A�i� j � ����

�a� A �ve�stencil program with a triangular iteration space�

diff � �mb�N���
N

� which means the di�erence in the work load between PE� and PEN���

ratio � m�bN�b��
m�bN�b�� � which means the ratio of the work load between PE� and PEN���

comm � �m� m
bN

� �� �
N
� �

bN
�� which means the communication overhead in PE��

b �� �� �� �� �� �	 �
 ��

diff ���� � ��� ���� � ��� ���� � ��� ���� � ��� ���� � ��	 ���� � ��
 ���� � ��� ���� � ���
ratio ��� ��� ��	 ���� ���� ��	� ���	 ����
comm ��� � �� ��� � ��� ��� � ��� ��	 � ��
 ���� � ��	 ���� � ��� ���� � ��� ���� � ���

�b� The case where m � ��� and N � ���

b �� �� � ��� ��� ��� ��� ���

diff ���� � ��� ���� � ��� ���� � �� ���� � ��� ���� � ��� ���� � ��� ���� � ��� ���� � ���
ratio �� �� ��	 ���� ���� ��	� ���� ��	���
comm �� � ��	 �� � ��� ��� � ��
 ��	 � ��	 ���� � ��� ���� � ��� ���� � ��� ���� � ���

�c� The case where m � ��� and N � �
�

Table 
� Comparisons of executing a ve�stencil problem using di�erent block sizes�

e�ciently� programmers have to know both architectures used and possible parallelism in the program

in advance� Unfortunately� many programmers maybe don�t know how to use these three directives to

assign suitable data distributions for the whole program because users of such multiprocessor systems

generally are non�computer scientists� who seek the maximum possible performance of their applica�

tions but don�t want to be involved in the parallelization process� In 	
��� we showed that it is possible

to use compiler techniques to automatically determine data alignment and dynamic data distribu�

tions of sequential programs on distributed�memory systems� In this paper� we will further show that

compiler or run�time support itself is more suitable for determining block sizes of array distributions�

The rest of this paper is organized as follows� In Section 
� we dene notations which will be used

later� In Section �� we derive formulas to represent communication sets with arbitrary block sizes bi�

In Section �� we present an integer lattice method to generate communication sets also with arbitrary

block sizes bi� In Section �� we propose algorithms to determine block sizes bi while giving strides si�

and we also derive closed forms to represent communication sets with these restricted block sizes� In

Section �� experimental studies on a ���node nCUBE�
E parallel computer are presented� Section �
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discusses related work in this area and illustrates that based on the two�level mapping model� there

has no closed�form expressions for communication sets for arbitrary strides s� and s�� Finally� some

concluding remarks are given in Section ��

� Nomenclature

The following closed forms �regular sections� will be used in this paper�

� 	a � e�� represents the set of consecutive integers from a to e�� For instance� 	� � ��
� �

f�� 
� �� � � � � ��
g�

� 	a � e� � s�� means the set of integers from a with stride �period� s� until a maximum integer

which is not greater than e�� For example� 	� � ��
 � ��� � f�� ��� ��g�

� 		a � e�� � e� � s�� species the set f	a � e��� 	a � e�� � s�� 	a � e�� � 
s�� � � �� until not greater

than e�g� Thus� 		� � ��� � ��
 � ��� � f�� 
� �� � � � � ��� ��� �
� ��� � � � � ��� ��� �
� ��� � � � � ��
g�

� 		a � e� � s�� � e� � s�� means the set f	a � e� � s��� 	a � e� � s�� � s�� 	a � e� � s�� � 
s�� � � ��

until not greater than e�g� Thus� 		� � �� � ��� � ��
 � ��� � f�� ��� 
�� ��� ��� ��� ��� ��� ���g�

� 			a � e�� � e� � s�� � e� � s�� stands for the set f		a � e�� � e� � s��� 		a � e�� � e� � s�� � s��

		a � e�� � e� � s�� � 
s�� � � �� until not greater than e�g� Thus� 		� � �� � �� � ��� � ��
 � ��� �

f�� 
� �� ��� �
� ��� 
�� 

� 
�� ��� �
� ��� ��� �
� ��� ��� �
� ��� ��� �
� ��� ��� �
� ��� ���� ��
g�

� 			a � e� � s�� � e� � s�� � e� � s�� illustrates the set f		a � e� � s�� � e� � s��� 		a � e� � s�� �

e� � s�� � s�� 		a � e� � s�� � e� � s�� � 
s�� � � �� until not greater than e�g� For instance� 		� �

� � 
� � �� � ��� � ��
 � ��� � f�� �� ��� ��� 
�� 
�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���g�

Suppose that array A�	a� � a��� is indexed from a� to a�� and that there are in total N PEs

numbered from � to N � �� Then� if we adopt cyclic�b� distribution� the set A�		a� � p � b � a� �

p � b � b � �� � a� � N � b�� is stored in PE p �PEp�� We will say that array A is distributed in a

cyclic fashion if b � �� in a block fashion if b � d�a� � a� � ���Ne� and in a block�cyclic fashion if

� � b � d�a� � a� � ���Ne�

The function nxt�x� y� z� which we use here is the smallest integer greater than x and is congruent

with y modulo z� that is� nxt�x� y� z� � x� ��y � x� mod z��
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� Generation of Communication Sets for Array Assignments

We will now analyze the problem� Let fk�i� � lk�i�sk� and let the inverse functions f
��
k �lk�i�sk� � i�

for k � � or 
�

��� Structure of Generated Code

Code on processing element p �PEp��

�� Generate iteration sets and processor sets�
��� exec�p� � f��� �localA�p�� 	l� � u� � s���� which species iterations to be performed on PEp�

where localA�p� � 		a� � p � b� � a� � p � b� � b� � �� � a� � N � b���
��� send pe�p� � fq j q �� p and PEp will send some data to PEqg�
��� recv pe�p� � fq j q �� p and PEp will receive some data from PEqg�

�� � q � send pe�p�� do
��� sendC�p� q� � localC�p� � f��exec�q��� which represents elements sent from PEp to PEq�

where localC�p� � 		c� � p � b� � c� � p � b� � b� � �� � c� � N � b���
��� send message containing sendC�p� q� to PEq�

�� perform computations for iterations in iter�p� p�� where iter�p� p� � f��� �localC�p� � 	l� � u� �
s����exec�p� � f��� �sendC�p� p�� � f��� �recvC�p� p��� which stands for iterations on PEp that
access only local data�

	� � q � recv pe�p�� do
	�� receive message containing recvC�p� q� from PEq� where recvC�p� q� � sendC�q� p�� which

speaks for elements sent from PEq to PEp�
	�� iter�p� q� � f��� �localC�q� � 	l� � u� � s��� � exec�p� � f��� �recvC�p� q��� which indicates

iterations on PEp that access local data and some message bu�ers whose contents are received
from PEq�

	�� execute computations for iterations in iter�p� q��

Figure �� Outline of implementing an array assignment statement�

Fig� � shows a detailed outline of the implementation of an array assignment statement �forall

statement� in each PE� which is a generalization based on formulas presented in 	
��� Step � of Fig� �

generates an iteration set which species iterations to be performed on PEp� and two processor sets

which represent PEs that PEp will send data to or receive data from� Step 
 calculates communication

sets and sends them to other PEs� Step � performs computations for iterations which access only local

data� Step � receives data messages from other PEs and executes computations for iterations which

�



access local data and some message bu�ers� Note that exec�p� in Substep ��� is only formulated to de�

rive other communication sets and processor sets� Since exec�p� � iter�p� p� 	 �
S
q�recv pe�p�iter�p� q��

and iter�p� q� � f��� �recvC�p� q��� we can combine Substep ��� and Step � as well as Substep ��� and

three substeps in Step � into a receive�execute loop� Therefore� in practice� iteration sets exec�p� and

iter�p� q� need not be calculated� It is also instructive to point out that� in order to gain e�ciency

by allowing overlapping execution� we have arranged communication and computation tasks in an

interleaved manner�

��� Derivation of Communication Sets

We now derive communication sets and processor sets with arbitrary block sizes b� and b�� Without

loss of generality� we assume that �a��a���� is a multiple ofNb�� and that �c��c���� is a multiple of

Nb�� Since arrayA adopts cyclic�b�� distribution� localA�p� � 		a��pb� � a��pb��b���� � a� � Nb���

Since array C adopts cyclic�b�� distribution� localC�p� � 		c� � pb� � c� � pb� � b� � �� � c� � Nb���

We also assume that �u� � l�� is a multiple of s�� and that u� � l� � ��u� � l���s�� � s�� In Table ��

we introduce some notations which will be used later� The function name �bot� means the rst element

in a block� �top� means the last element in a block� The triple ��A� p� j�� means the jth block data of

array A in PEp� The subscript
�l� means local data� �a� means accessed data� �e� means iterations to

be executed� and �f � means the corresponding referenced data between array A and array C�

Let jpf and jpl be the rst j and the last j such that 	botl�A� p� j� � topl�A� p� j��� 	l� � u� � s�� �� ��

respectively� and let kpf and kpl be the rst k and the last k such that 	botl�C� p� k� � topl�C� p� k��� 	l� �

u� � s�� �� �� respectively� Fig� 
 shows an algorithm for computing jpf and jpl� kpf and kpl also can be

computed similarly� In Fig� 
� the value jstart � d�l��a�� pb�� b������Nb��e is the rst j such that

topl�A� p� j�
 l�� The value jfinal � b�u��a��pb����Nb��c is the last j such that botl�A� p� j�� u�� If

s� � b�� then jstart � jpf and jfinal � jpl� If s� � b�� we need to check other details� Because the access

pattern of A�l� � u� � s�� in PEp appears periodically� the worst case complexity of computing jpf and

jpl in Fig� 
 is O�s�� gcd�Nb�� s���� Alternatively� in Section ��
��� we will give another algorithm for

computing the rst element of A�l� � u� � s�� stored in PEp based on solving O�b�� gcd�Nb�� s��� linear

Diophantine equations� According to our experiments� in a majority of cases� the algorithm in Fig� 


was more e�cient than was solving O�b�� gcd�Nb�� s��� linear Diophantine equations�

�



botl�A� p� j� � a� � pb� � jNb�

topl�A� p� j� � a� � pb� � b� � � � jNb�

bota�A� p� j� � nxt�maxfbotl�A� p� j�� l�g� l�� s��

topa�A� p� j� � nxt�minftopl�A� p� j�� u�g � s� � �� l�� s��

bote�A� p� j� � �bota�A� p� j�� l���s�

tope�A� p� j� � �topa�A� p� j�� l���s�

botf �A� p� j� � bote�A� p� j�s�� l�

topf �A� p� j� � tope�A� p� j�s�� l�

botl�C� p� k� � c� � pb� � kNb�

topl�C� p� k� � c� � pb� � b� � � � kNb�

bota�C� p� k� � nxt�maxfbotl�C� p� k�� l�g� l�� s��

topa�C� p� k� � nxt�minftopl�C� p� k�� u�g � s� � �� l�� s��

bote�C� p� k� � �bota�C� p� k�� l���s�

tope�C� p� k� � �topa�C� p� k�� l���s�

botf �C� p� k� � bote�C� p� k�s�� l�

topf �C� p� k� � tope�C� p� k�s�� l��

Table �� Notations which will be used to derive communication sets�

We now return to the derivation� Because exec�p� will be used to derive other communication sets

and processor sets� we formulate it rst� We have the following relations�

localA�p� �
Sa��a���

Nb�
��

j�� 	botl�A� p� j� � topl�A� p� j��

exec�p� � f��� �localA�p�� 	l� � u� � s���

� f���

�Sjpl
j�jpf

	bota�A� p� j� � topa�A� p� j� � s��
�

�
Sjpl
j�jpf

	bote�A� p� j� � tope�A� p� j���

Note that� in the expression 	bote�A� p� j� � tope�A� p� j��� it may happen that bote�A� p� j�� tope�A� p� j�

when s� � b�� Throughout this paper� if � � 	� then 	� � 	� is empty� Next� according to the order

of appearance in Fig� �� after deriving exec�p�� we should present the processor sets send pe�p� and

recv pe�p�� However� since exact solutions of these two sets are tedious� we prefer to present the

communication sets sendC�p� q� and recvC�p� q� rst�
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jstart � d�l� � a� � pb� � b� � ����Nb��e� if �j � jfinal� then
jfinal � b�u� � a� � pb����Nb��c� exec�p� � ��
if �s� � b�� then else f� jpf � jfinal �g
jpf � jstart� j � jfinal�
jpl � jfinal� while �j 
 jpf� do

else f� s� � b� �g if �bota�A� p� j�� topa�A� p� j��
j � jstart� jpl � j�
while �j � jfinal� do break�
if �bota�A� p� j�� topa�A� p� j�� else

jpf � j� j � j � ��
break� endif

else endwhile
j � j � �� endif

endif endif
endwhile

Figure 
� An algorithm for computing jpf and jpl�

����� Derivation of sendC�p� q� and recvC�p� q�

We now introduce a set f��exec�q��� which will be used in deriving sendC�p� q� �� localC�p��f��exec�q����

f��exec�q�� �
Sjql
j�jqf

f��	bote�A� q� j� � tope�A� q� j���

�
Sjql
j�jqf

	bote�A� q� j�s�� l� � tope�A� q� j�s�� l� � s��

�
Sjql
j�jqf

	botf�A� q� j� � topf �A� q� j� � s���

We now dene the periodic coe�cients of the communication set sendC�p� q�� Let period
A
e be the

period of the iteration pattern in exec�p� such that periodAe �s� is a multiple of Nb�� let periodAeb be the

number of blocks of local elements of array A whose access pattern appears periodically� let periodCeb

be the number of blocks of local elements of array C whose access pattern appears periodically� let

periods be the period of the reference pattern of array C in sendC�p� q� whose value is a multiple of

Nb�� let periodCsb be the number of blocks of local elements of array C whose reference pattern in

sendC�p� q� appears periodically� and let period
A
sb be the number of blocks of local elements of array

A� whose reference pattern of local elements of array C in sendC�p� q� �based on f��exec�q��� appears

�



periodically� Then� we have the following equations�

periodAe � �lcm�Nb�� s����s�� periods � lcm�Nb�� period
A
e � s���

periodAeb � �lcm�Nb�� s�����Nb��� periodCsb � periods��Nb���

periodCeb � �lcm�Nb�� s�����Nb��� periodAsb � �periods � s����Nb�s���

We will now study the intersection of localC�p��f��exec�q��� which is equal to
�Skpl

k�kpf
	botl�C� p� k� �

topl�C� p� k��
�
�
�Sjql

j�jqf
	botf�A� q� j� � topf �A� q� j� � s��

�
� We found that if d b�

s�
e � d �N���b���

s�
e� then

each referenced block of array A in PEq �	botf�A� q� j� � topf �A� q� j� � s��� will intersect with at most

one local block of array C in PEp �	botl�C� p� k� � topl�C� p� k���� Similarly� if d
b�
s�
e � d �N���b���

s�
e� then

each local block of array C in PEp will also intersect with at most one referenced block of array A in

PEq� The following two properties are used to generate sendC�p� q� and recvC�p� q��

Property � When N 
 
� at least one of the following two conditions is true� �a� d b�
s�
e � d �N���b���

s�
e

and �b� d b�
s�
e � d �N���b���

s�
e�

Proof � First� we want to show that if �a� fails� then �b� must be true� If �a� fails� then d b�
s�
e �

d �N���b���
s�

e� We have d �N���b���
s�

e 
 d b�
s�
e � d �N���b���

s�
e 
 d b�

s�
e� Therefore� d b�

s�
e � d �N���b���

s�
e�

Similarly� we can show that� if �b� fails� then �a� must be true�

Property � Let L and R be the left boundary and the right boundary of 		a � a� b� �� � e � Nb�� 	� �

	 � 
�� respectively� Suppose that d�����
�

e � d �N���b��
�

e� Then�

		a � a� b� �� � e � Nb�� 	� � 	 � 
� � 	L � R � 
��

where

L �

�
�� if � � 		a � a� b� �� � e � Nb�
nxt�nxt�maxfa� �g� a� Nb�� �� 
�� otherwise�

R �

�
	� if 	 � 		a � a� b� �� � e � Nb�
nxt�nxt�minfe� 	g� a� Nb��Nb� b� 
� �� 
�� otherwise�

Proof � Let L� and R� be the left boundary and the right boundary of 		a � a� b� �� � e � Nb�� 	� � 	��

respectively� Then�

L� �

�
�� if � � 		a � a� b� �� � e � Nb�
nxt�maxfa� �g� a� Nb�� otherwise�

R� �

�
	� if 	 � 		a � a� b� �� � e � Nb�
nxt�minfe� 	g� a� Nb��Nb� b� �� otherwise�

��



Since d�����
�

e � d �N���b��
�

e� 	� � 	 � 
� will intersect with at most one local block of 		a � a� b� �� � e �

Nb�� Thus� 		a � a� b� �� � e � Nb�� 	� � 	 � 
� � 	nxt�L�� �� 
� � nxt�R� � 
 � �� �� 
� � 
� � 	L � R � 
��

Based on Properties � and 
� we can show that sendC�p� q� can be represented by the union of

a functional number of closed forms� First� if d b�
s�
e � d �N���b���

s�
e� sendC�p� q� can be represented as

follows�

sendC�p� q� � localC�p� � f��exec�q��

� 		c� � pb� � c� � pb� � b� � �� � c� � Nb�� �
�Sjql

j�jqf
	botf�A� q� j� � topf �A� q� j� � s��

�
�

Sjql
j�jqf

�
		c� � pb� � c� � pb� � b� � �� � c� � Nb�� � 	botf�A� q� j� � topf �A� q� j� � s��

�
�

Sjql
j�jqf

	L�j� � R�j� � s��

� 	L�jqf� � R�jqf� � s��	
�Sminfjql�jqf�period

A
sb
g

j�jqf��
		L�j� � R�j� � s�� � u� � periods�

�
� 	L�jqf� � R�jqf� � s��	 	

�Sminfjql�jqf�periodAsbg
j�jqf��

	L�j� � R�j� � s��
�
� u� � periods��

where

L�j� �

�
botf�A� q� j�� if botf �A� q� j� � localC�p�
nxt�nxt�maxfc� � pb�� botf�A� q� j�g� c�� pb�� Nb��� l�� s��� otherwise�

R�j� �

�
topf �A� q� j�� if topf �A� q� j�� localC�p�
nxt�nxt�minfc�� topf�A� q� j�g� c�� pb�� Nb���Nb�� b� � s�� l�� s��� otherwise�

Second� if d b�
s�
e � d �N���b���

s�
e� sendC�p� q� can be represented as follows�

sendC�p� q� � f��exec�q��� localC�p�

� f�f
��
�

�
f�f

��
� �f��exec�q��� localC�p��

�
� f�f

��
�

�
		a� � qb� � a� � qb� � b� � �� � a� � Nb�� �

�Skpl
k�kpf

	botf�C� p� k� � topf �C� p� k� � s��
��

�
Skpl
k�kpf

f�f
��
�

�
		a� � qb� � a� � qb� � b� � �� � a� � Nb�� � 	botf�C� p� k� � topf �C� p� k� � s��

�
�

Skpl
k�kpf

	f�f
��
� �L�k�� � f�f

��
� �R�k�� � s��

� 	f�f
��
� �L�kpf�� � f�f

��
� �R�kpf�� � s�� 	�Sminfkpl�kpf�period

C
sb
g

k�kpf��
		f�f

��
� �L�k�� � f�f

��
� �R�k�� � s�� � u� � periods�

�
� 	f�f

��
� �L�kpf�� � f�f

��
� �R�kpf�� � s�� 	

	
�Sminfkpl�kpf�periodCsbg

k�kpf��
	f�f

��
� �L�k�� � f�f

��
� �R�k�� � s��

�
� u� � periods��

��



where

L�k� �

�
botf�C� p� k�� if botf �C� p� k�� localA�q�
nxt�nxt�maxfa� � qb�� botf�C� p� k�g� a�� qb�� Nb��� l�� s��� otherwise�

R�k� �

�
topf �C� p� k�� if topf �C� p� k� � localA�q�
nxt�nxt�minfa�� topf�C� p� k�g� a�� qb�� Nb���Nb� � b� � s�� l�� s��� otherwise�

Next� we deal with recvC�p� q�� Because recvC�p� q� is equal to sendC�q� p�� recvC�p� q� also can

be represented by the union of a functional number of closed forms� Although recvC�p� q� species

a set of indices of array C� in practice� we prefer that recvC�p� q� be represented based on indices of

array A� For instance� the loop body of the forall statement A�f��i�� � g�C�f��i��� is equivalent to

A�f��i�� � g�C�f�f
��
� �f��i����� Thus� the forall statement can be executed e�ciently after receiving

data messages from other PEs once we fetch elements of array A� Therefore� our goal is to generate the

set corresponding to indices of array A� which is equal to f��f
��
� �recvC�p� q��� because recvC�p� q� �

f�f
��
� �f�f

��
� �recvC�p� q���� Since the derivation of recvC�p� q� is similar to that of sendC�p� q�� we omit

all of the middle steps and only present the nal formulas�

First� if d b�
s�
e � d �N���b���

s�
e� recvC�p� q� can be represented as follows�

recvC�p� q� � f�f
��
� �f�f

��
� �recvC�p� q��� � f�f

��
� �f�f

��
� �sendC�q� p���

� f�f
��
�

�
	f�f

��
� �L�jpf�� � f�f

��
� �R�jpf�� � s��	�Sminfjpl�jpf�period

A
sb
g

j�jpf��
		f�f

��
� �L�j�� � f�f

��
� �R�j�� � s�� � u� � periods � s��s��

��
� f�f

��
�

�
	f�f

��
� �L�jpf�� � f�f

��
� �R�jpf�� � s��	

	
�Sminfjpl�jpf�periodAsbg

j�jpf��
	f�f

��
� �L�j�� � f�f

��
� �R�j�� � s��

�
� u� � periods � s��s��

�
�

where

L�j� �

�
botf�A� p� j�� if botf �A� p� j� � localC�q�
nxt�nxt�maxfc� � qb�� botf�A� p� j�g� c�� qb�� Nb��� l�� s��� otherwise�

R�j� �

�
topf �A� p� j�� if topf �A� p� j�� localC�q�
nxt�nxt�minfc�� topf�A� p� j�g� c�� qb�� Nb���Nb�� b� � s�� l�� s��� otherwise�

Second� if d b�
s�
e � d �N���b���

s�
e� recvC�p� q� can be represented as follows�

recvC�p� q� � f�f
��
� �f�f

��
� �recvC�p� q��� � f�f

��
� �f�f

��
� �sendC�q� p���

� f�f
��
�

�
	L�kqf� � R�kqf� � s�� 	

�




�Sminfkql�kqf�period
C
sb
g

k�kqf��
		L�k� � R�k� � s�� � u� � periods � s��s��

��
� f�f

��
�

�
	L�kqf� � R�kqf� � s�� 	

	
�Sminfkql�kqf�period

C
sb
g

k�kqf��
	L�k� � R�k� � s��

�
� u� � periods � s��s��

�
�

where

L�k� �

�
botf�C� q� k�� if botf �C� q� k�� localA�p�
nxt�nxt�maxfa� � pb�� botf�C� q� k�g� a�� pb�� Nb��� l�� s��� otherwise�

R�k� �

�
topf �C� q� k�� if topf �C� q� k� � localA�p�
nxt�nxt�minfa�� topf�C� q� k�g� a�� pb�� Nb���Nb� � b� � s�� l�� s��� otherwise�

����� Derivation of send pe�p� and recv pe�p�

We now formulate send pe�p� and recv pe�p�� It is possible to derive exact solutions for send pe�p� and

recv pe�p�� However� the computation cost is very expensive in a general case� This is because testing

whether q is in send pe�p� or whether q is in recv pe�p� is equivalent to testing whether sendC�p� q� �� �

or whether sendC�q� p� �� �� respectively� For this reason� we consider inexact solutions for send pe�p�

and recv pe�p�� The following property will be used to derive send pe�p� and recv pe�p��

Property � Suppose that array A is distributed by cyclic�b��� fA�i� � �b
i�a�
b�

c mod N�� which speci�es

the PE that stores A�i�� is the data distribution function of array A� x and y are two indices of array

A� where x � y� Then� we have

fA�	x � y�� �

����
���
	� � N � ��� if y � x� � � �N � �� � b��

	fA�x� � fA�y��� if y � x� � � �N � �� � b� and fA�x� � fA�y��

	� � fA�y��	 	fA�x� � N � ��� if y � x� � � �N � �� � b� and fA�x� � fA�y��

Property � also holds for array C with its corresponding distribution by cyclic�b�� and its data distri�

bution function fC � We now process send pe�p�� which is equal to fA�f��f
��
� �localC�p��	l� � u� � s������

send pe�p� � fA�f��f
��
� �localC�p� � 	l� � u� � s�����

�
Skpl
k�kpf

fA�f��	bote�C� p� k� � tope�C� p� k����

�
Sminfkpl�kpf�period

C
sb
g

k�kpf
fA�	botf�C� p� k� � topf �C� p� k� � s���

�
Sminfkpl�kpf�periodCsbg
k�kpf

fA�	botf�C� p� k� � topf �C� p� k����

��



Note that the above formula is an equation only when s� � b�� Next� we are concerned with recv pe�p��

which is equal to fC�f��exec�p����

recv pe�p� � fC�f��exec�p���

�
Sjpl
j�jpf

fC�f��	bote�A� p� j� � tope�A� p� j����

�
Sminfjpl�jpf�period

A
sb
g

j�jpf
fC�	botf�A� p� j� � topf �A� p� j� � s���

�
Sminfjpl�jpf�period

A
sb
g

j�jpf
fC�	botf�A� p� j� � topf �A� p� j����

Note that the above formula is also an equation only when s� � b��

��



� Integer Lattice Method for Generating Communication Sets

In the last section� we derived communication sets which can be represented by the union of �periodAsb�

�� or �periodCsb � �� closed forms� However� as one can see from a preliminary example in Figure ��

for many cases� L�j� � R�j� for some j � 	jqf � � � minfjql� jqf � periodAsbg�� therefore� 		L�j� � R�j� �

s�� � u� � periods� is an empty set� Similarly� for many cases� L�k� � R�k� for some k � 	kpf � � �

minfkpl� kpf�periodCsbg�� therefore� 		f�f
��
� �L�k�� � f�f

��
� �R�k�� � s�� � u� � periods� is an empty set� In

these cases� we actually need not compute L�j�� R�j�� L�k�� and R�k�� In the following� we present an

integer lattice method� which adopts a variant of Kennedy� Nedeljkovi�c and Sethi�s algorithm 	
�� 

�

as a subroutine to generate communication sets�

��� A Result by Kennedy et al� and Its Variations

Let A�a� � a�� be an array distributed overN processing elements with cyclic�b�� distribution� Kennedy

et al� treated each array element as a point �x� y� in Z� space 	
�� 

�� such that the value x is the

number of the row to which an index belongs� and the value y is its o�set within that row� For instance�

a one�dimensional array index i corresponds to a two�dimensional index �x� y� in processing element

PEp� then� x � �i � a����Nb��� y � ��i � a�� mod �Nb���� and p � ���i� a���b�� mod N�� Figure �

presents an example when a� � �� N � �� and b� � �� Kennedy et al� show that regular section

indices A�l� � u� � s�� within a processing element PEp form a lattice which can be enumerated in

increasing order by a specic pair of basis vectors Rv � �ar� br� and Lv � �al� bl� �assuming that stride

s� is positive��

Vectors Rv and Lv can be found from the initial cycle of memory accesses in processing element

PE� when a� � � and the lower bound l� is �� Vector Rv is the distance between index � and the

next smallest index accessed by PE�� vector Lv is the distance between the largest index in the initial

cycle and the index that starts the next cycle� both accessed by PE�� For instance� in Figure ���a��

Rv � ��� �� and Lv � ����
�� in Figure ���b�� Rv � ��� �� and Lv � ����
�� They also have the

following result�

Theorem 	 	
�� 

� Given an array element indexed by �x� y� that belongs to processing element PEp�

��



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21

40 41 42 545352515049484746454443

27 28 29 30 31 32 33 34 35 36 37 38 3922 23 24 25 26

55 56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 949392919089888786858483 95 96 97 98 99

123 124 125 126 127 128 129 130 131 132 133121 122

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

134

163 164 165 166 167 168 169 170 171 172 173160 161 162 174

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 156 157 158 159

135 136 137 138 139

175 176 177 178 179

203 204 205 206 207 208 209 210 211 212 213200 201 202 214

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

215 216 217 218 219

155

p = 1 p = 2 p = 3p = 0

180

120

(b)

R

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21

40 41 42 545352515049484746454443

27 28 29 30 31 32 33 34 35 36 37 38 3922 23 24 25 26

55 56 57 58 59

60 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 949392919089888786858483 95 96 97 98 99

p = 1 p = 2 p = 3p = 0

(a)

0

61

v

v

Rv

Lv

Figure �� Array A�� � a�� with cyclic��� distribution on � processing elements� in which a one�
dimensional array index i of A�i� in processing element ��i��� mod �� corresponds to a two�dimensional
index �i�
�� imod 
�� � Z�� �a� Rectangles mark elements A�j � �� for j � 	� � ���� In this case� stride
�s� � �� � block size �b� � ��� �b� Rectangles mark elements A�j � �� for j � 	� � 
��� In this case�
stride �s� � �� � block size �b� � ���

the next element accessed by the same processing element must have one of the following three distances�

Rv if y � br � pb� � b� � ��
Lv if y � br � pb� � b� � � and y � bl 
 pb��

Rv � Lv otherwise�

Because we need to generate global addresses in the global name space� we have to modify their

algorithm� which only generates local addresses� We have found that it is enough to use two scales�

R and L� to represent two distance vectors �basis vectors�� Rv and Lv � For instance� in Figure ���a��

R � � and L � ��� in Figure ���b�� R � �� and L � ��� Therefore� Theorem � can be modied into

the following equivalent theorem�

Theorem 
 Let an array A�a� � a�� be distributed over N processing elements with cyclic�b�� distri�

bution� Suppose that under the constraint that a� � �� and that elements A�� � u� � s�� are accessed� we

let R be the distance between index � and the next smallest index accessed by PE�� let L be the distance

between the largest index in the initial cycle and the index that starts the next cycle� both accessed by

PE�� Then� for arbitrary a� and for an arbitrary access pattern A�l� � u� � s��� given an array element

indexed by i that belongs to processing element PEp� the next element accessed by the same processing

��



element must have one of the following three distances�

R if pb� � go right � pb� � b� � ��
L if �not �pb� � go right � pb� � b� � ��� and �pb� � go left � pb� � b� � ���

R� L otherwise�

where go right � ��i� a� �R� mod �Nb���� and go left � ��i� a� � L� mod �Nb����

Theorem � and Theorem � also can be applied to the following variant case� which we will use

to derive communication sets� Suppose that an array A�a� � a�� is stored in a two�dimensional table

according to a row�major rule� in addition� the size of the second dimension of the table is Nb��

If we wrap�around connect the right boundary and the left boundary of the table so that elements

A�a� � xNb� � �� are neighbors of elements A�a� � xNb��� then this table becomes a spiral cylinder�

Figure � shows an example of how to wrap�around connect the left boundary and the right boundary

when a� � � and Nb� � ��� On a spiral cylinder� between any two columns� Theorem � and Theorem �

are also true�

Corollary � Let an array A�a� � a�� be stored in a two�dimensional table according to a row�major

rule� in addition� let the size of the second dimension of the table be Nb�� Then� on a spiral cylinder�

among the columns from lb to rb� the following two cases are true�

��� Suppose that lb � rb� Then� the access pattern of A�l� � u� � s�� among the columns from lb

to rb forms a lattice� Suppose again that� under the constraint that a� � �� and that elements

A�� � u� � s�� are accessed� we let R be the distance between index � and the next smallest index

accessed among the columns from � to rb� lb� let L be the distance between the largest index in

the initial cycle and the index that starts the next cycle� both accessed among the columns from

� to rb� lb� Then� for arbitrary a� and for an arbitrary access pattern A�l� � u� � s��� given an

index i located among the columns from lb to rb� the next index accessed among the columns from

lb to rb must have one of the following three distances�

R if �lb � go right � rb��
L if �not �lb � go right � rb�� and �lb � go left � rb��

R� L otherwise�

where go right � ��i� a� � R� mod �Nb���� and go left � ��i� a� � L� mod �Nb����

��� Suppose that lb � rb� Then� the access pattern of A�l� � u� � s�� among the columns from lb to

Nb� � � and � to rb forms a lattice� Suppose again that� under the constraint that a� � �� and

��



that elements A�� � u� � s�� are accessed� we let R be the distance between index � and the next

smallest index accessed among the columns from � to Nb�� rb� lb� let L be the distance between

the largest index in the initial cycle and the index that starts the next cycle both accessed among

the columns from � to Nb� � rb� lb� Then� for arbitrary a� and for an arbitrary access pattern

A�l� � u� � s��� given an index i located among the columns from lb to Nb� � � and � to rb� the

next index accessed among the columns from lb to Nb� � � and � to rb must have one of the

following three distances�

R if �not �rb � go right � lb���
L if �rb � go right � lb� and �not �rb � go left � lb���

R� L otherwise�

where go right � ��i� a� � R� mod �Nb���� and go left � ��i� a� � L� mod �Nb����

��� Algorithms for Calculating the Memory Access Sequence

In order to nd a starting accessed element and two distance vectors� Rv and Lv� Kennedy et al� solved


��b�� gcd�Nb�� s����� linear Diophantine equations� However� we notice that when s� � b�� each block

contains at least one accessed address� In addition� the memory access sequence can be represented by

a union of �periodAeb��� closed forms� where period
A
eb � �s�� gcd�Nb�� s��� � �b�� gcd�Nb�� s���� Thus�

in this case� it is better to use �periodAeb � �� closed forms to represent the memory access sequence�

On the other hand� when s� � b�� each block may not contain any accessed address� thus� it is better

to nd the distance vectors for generating the memory access sequence in this case� We will show that�

for two especially interesting cases� the distance vectors R and L can be found in constant time�

	���� Cases Where s� � b�

localA�p�� 	l� � u� � s��

�
Sjpl
j�jpf

	bota�A� p� j� � topa�A� p� j� � s��

� 	bota�A� p� jpf� � topa�A� p� jpf� � s�� 	�Sminfjpl�jpf�periodAebg
j�jpf��

		bota�A� p� j� � topa�A� p� j� � s�� � u� � period
A
e � s��

�
� 	bota�A� p� jpf� � topa�A� p� jpf� � s�� 	

	
�Sminfjpl�jpf�period

A
eb
g

j�jpf��
	bota�A� p� j� � topa�A� p� j� � s��

�
� u� � period

A
e � s���

��



When s� � b�� each local block of arrayA contains at least one element referenced by A�l� � u� � s���

in addition� using the algorithm in Figure 
� both jpf and jpl can be computed in constant time� Since

the memory access sequence can be represented by a union of �periodAeb� �� closed forms� the number

of time units of the calculating boundary coe�cients is O�periodAeb� � O�s�� gcd�Nb�� s����

	���� Cases Where �N � ��b� � �s� mod Nb�� � Nb�

These cases include interesting cases where s� � yNb� � � for every integer y 
 �� First� the next

smallest index x in the initial cycle accessed by PE� can be computed using an extrapolation method�

Since �N���b� � �s� mod Nb�� � Nb�� index s� appears in column �s� mod Nb�� in PEN��� index 
s�

appears in column 
�s� mod Nb���Nb�� index �s� appears in column ��s� mod Nb���
Nb�� and so on�

Suppose that y is the smallest integer such that y��s� mod Nb����y����Nb� � b�� then� x � y�s�� We

have y � d�Nb��b������Nb���s� mod Nb���e and R � x � d�Nb��b������Nb���s� mod Nb���e�s��

Second� since �N���b� � �s� mod Nb�� � Nb�� index �periodAe ����s� appears in PE�� Therefore�

the largest index in the initial cycle accessed by PE� is �period
A
e � �� � s�� Thus� we have L �

periodAe � s� � �period
A
e � �� � s� � s��

	���� Cases Where � � �s� mod Nb�� � b�

These cases are dual cases where �N � ��b� � �s� mod Nb�� � Nb�� and they include interesting cases

where s� � yNb� � � for every integer y 
 �� First� since � � �s� mod Nb�� � b�� index s� appears

in PE�� Therefore� the next smallest index in the initial cycle accessed by PE� is s�� Thus� we have

R � s��

Second� the largest index x in the initial cycle accessed by PE� can be computed using an ex�

trapolation method� Since � � �s� mod Nb�� � b�� index �period
A
e � �� � s� appears in column

Nb� � �s� mod Nb�� in PEN��� index �period
A
e � 
� � s� appears in column Nb� � 
�s� mod Nb���

and so on� Suppose that y is the smallest integer such that Nb� � y � �s� mod Nb�� � b�� then�

x � �periodAe � y� � s�� We have y � d�Nb�� b������s� mod Nb��e and L � periodAe � s�� x � y � s�

� d�Nb�� b� � ����s� mod Nb��e � s��

��



Input� a� a� �the range of an array A�a� � a��� l� u� s� �the parameters of the access pattern A�l� � u� � s���
N �number of PEs� b� �block size� and p �a processing element ID��

Output� The �M table�

�� �de�ne nxt�x� y� z� � x� ��y� x� mod z��
�� �d� x� y� �� Extended�Euclid�Nb�� s���

f� d � gcd�Nb�� s�� � x �Nb� � y � s�� �g
�� periodAe � Nb��d�
�� lp � a� � pb�� rp � a� � pb� � b� � ��

Step �� f� Handle the special cases where s� � b�� �g

� if �s� � b�� return �M �
�� �bota�A� p� jpf � � topa�A�p� jpf� � s�� �

	� �
�Sminfjpl�jpf�period

A
eb
g

j�jpf��
�bota�A� p� j� �

�� topa�A� p� j� � s��
�
� u� � period

A
e � s���

Step �� f� Check whether �M is empty or not� �g
�� if �nxt�lp� l�� d� d� � rp � l�� return �M � ��

Step �� f� Find the starting point accessed by PEp� �g
��� start ��� length � ��
��� for i � nxt�lp� l�� d� d� rp� l� d
��� loc � l� � �s��d��iy �Nb�d�iy��Nb��e��
��� start � min�start� loc��
��� length � length� ��
�
� endfor

Step �� f� Derive distance vectors R and L� �g
��� if ��N � ��b� � �s� mod Nb�� � Nb�� then
�	� R � d�Nb� � b� � ����Nb� � �s� mod Nb���e � s��
��� L � s��
��� else if �� � �s� mod Nb�� � b�� then
��� R � s��
��� L � d�Nb� � b� � ����s� mod Nb��e � s��

��� else

��� R ��� L� � ��
��� for i � d b� � � d
�
� loc � �s��d��iy �Nb�d�iy��Nb��e��
��� R � min�R� loc��
�	� L� � max�L�� loc��
��� endfor

��� L � Nb� � s��d� L��
��� endif endif

Step 
� f� Calculate the �rst cycle of the memory
access sequence �M� �g

��� now � start�
��� �M��� � now� i � ��
��� while �i � length� do
��� if �pb� � ��now� a� �R� mod �Nb���

� pb� � b� � �� then
�
� now � now� R�
��� else if �pb� � ��now � a� � L� mod �Nb���

� pb� � b� � �� then
�	� now � now� L�
��� else now � now� R � L�
��� endif endif

��� �M�i� � now� i � i� ��
��� endwhile

Step �� f� Formulate the memory access sequence
�M� �g

��� return �M � ��M � u� � period
A
e � s���

Figure �� An algorithm for deriving the memory access sequence based on Theorem ��

	���	 An Algorithm for Deriving the Memory Access Sequence

Let �M represent the memory access sequence of A�l� � u� � s�� in PEp and �M represent the rst

cycle of the memory access sequence of A�l� � u� � s�� in PEp� Figure � presents an algorithm for

deriving �M� This algorithm contains six steps as follows�

Step �� f� Lines � to �� �g

Deal with special cases where s� � b� as follows�

if s� �stride� � b� �block size� then �M � 	bota�A� p� jpf� � topa�A� p� jpf� � s�� 	

	
�Sminfjpl�jpf�period

A
eb
g

j�jpf��
	bota�A� p� j� � topa�A� p� j� � s��

�
� u� � periodAe � s��� and then STOP�


�



f� In the following� s� � b�� �g

Step �� f� Line �� �g

check whether �M is empty or not in constant time�

if �M � � then STOP�

Step �� f� Lines �� to ��� �g

nd the starting point accessed by PEp�

Step 	� f� Lines �� to ��� �g

derive the distance vectors R and L using a variant algorithm proposed by Kennedy et al�

	
�� 

��

Step 
� f� Lines �� to ��� �g

calculate the rst cycle of the memory access sequence �M according to Theorem ��

Step �� f� Line �
� �g

formulate the memory access sequence �M � 	�M � u� � period
A
e � s��� STOP�

��� Relation Between Memory Access Sequence Generation and Communication
Set Generation

We will now analyze the set sendC�p� q� again�

sendC�p� q�

� localC�p� � f��exec�q��

� localC�p� �
�
	botf�A� q� jqf� � topf �A� q� jqf� � s�� 	�Sminfjql�jqf�period

A
eb
g

j�jqf��
		botf�A� q� j� � topf �A� q� j� � s�� � u� � period

A
e � s��

��
�

Since for every j � 	jqf � � � minfjql� jqf � periodAebg�� the set 	botf �A� q� j� � u� � period
A
e � s�� forms

a lattice� the problem of solving localC�p� � 	botf�A� q� j� � u� � periodAe � s�� is reduced to a variant

problem of generating the memory access sequence� However� this new variant problem is di�erent

from the original one because� even if index botf�A� q� j�� i�periodAe � s� is not in localC�p� for some j

and i� it is still possible that localC�p� � 	botf �A� q� j��i�periodAe �s� � topf �A� q� j��i�period
A
e �s� � s��


�



is not empty� In this case� we need to consider index botf�A� q� j� � i � periodAe � s� for the further

process of sendC�p� q��

Similar to the discussion in Section ��
��� in order to guarantee that the regular section 	botf �A� q� j��

i�periodAe �s� � topf �A� q� j��i�period
A
e �s� � s�� will intersect with at most one local block of localC�p��

we will deal with the two cases� d b�
s�
e � d �N���b���

s�
e and d b�

s�
e � d �N���b���

s�
e� separately as described

in Property �� In this presentation� we will only present the case where d b�
s�
e � d �N���b���

s�
e� the other

case where d b�
s�
e � d

�N���b���
s�

e can be solved in a similar way� Under this constraint� the condition

Nb� � pb� � topf �A� q� j� � botf �A� q� j� � pb� � b� � � is always true� The reason why we need this

constraint will become clear in the next paragraph�

We will extend the left boundary of PEp from column pb� to a virtual left boundary lb � pb� �

topf �A� q� j� � botf�A� q� j� if pb� � topf �A� q� j� � botf �A� q� j� 
 � or to a virtual left boundary lb �

Nb��pb��topf �A� q� j��botf�A� q� j� if pb��topf �A� q� j��botf�A� q� j�� �� Let local�C�p� contain data

from column lb to column pb��b��� on a spiral cylinder� Then� all the lattice points in the set local�C�p�

� 	botf�A� q� j� � u� � period
A
e � s�� can be enumerated according to Corollary �� in addition� for each

element botf �A� q� j�� i �periodAe � s� in the mentioned set� localC�p� � 	botf �A� q� j�� i� periodAe � s� �

topf �A� q� j�� i � periodAe � s� � s�� �� ��

Example �� Suppose that A�� � a�� and C�� � c�� are distributed over three processing elements with

cyclic��� and cyclic��� distributions� respectively� the loop body of a doall statement is A�� � i � 
� �

g�C�
� i��� where g is a function� and u� � �
�� Then� a� � �� c� � �� N � �� b� � �� b� � �� l� � ��

s� � 
� l� � 
� s� � �� and u� � ���� Figure ���a� shows the memory access sequence of A�� � i � 
�

by PE�� Figure ���b� illustrates sendC�p� �� for � � p � 
� which represents elements of array C and

will be sent to PE�� Readers can check that for every p� sendC�p� �� cannot be represented by a closed

form in this case�

However� periodAeb � s�� gcd�Nb�� s�� � 
� First� the set 	botf�A� �� �� � u� � period
A
e � s�� � 	�� �

��� � 
�� forms a lattice as shown in Figure �� �a�� Although index botf�A� �� ���
�period
A
e �s� � ��

is not in localC�
�� localC�
� � 	botf�A� �� �� � 
 � periodAe � s� � topf �A� �� �� � 
 � periodAe � s� � s��

� localC�
� � 	�� � �� � �� � 	�� � �� � ��� Therefore� we need to consider the regular section

	�� � �� � �� for the process of sendC�
� ��� In this case� for processing elements p � � and 
� the

virtual left boundary of PEp is lb � pb� � topf �A� �� �� � botf �A� �� �� � 
 and �� respectively� as







shown in Figure ���a�� For processing element p � �� the virtual left boundary of PEp is lb �

Nb� � pb� � topf �A� �� ��� botf�A� �� �� � �
� as shown in Figure ���b��
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Figure �� When dealing with the lattice 	botf�A� �� �� � u� � period
A
e � s��� �a� for processing elements

p � � and 
� the virtual left boundary of PEp is pb��topf �A� �� ���botf�A� �� �� � 
 and �� respectively�
�b� for processing element p � �� the virtual left boundary of PEp is Nb� � pb� � topf �A� �� �� �
botf �A� �� �� � �
�

Similarly� the set 	botf �A� �� 
� � u� � periodAe � s�� � 	
� � ��� � 
�� forms a lattice as shown in

Figure � � �b�� Although index botf�A� �� 
� � 
 � period
A
e � s� � �� is not in localC�
�� localC�
� �

	botf�A� �� 
� � 
 � periodAe � s� � topf �A� �� 
� � 
 � periodAe � s� � s�� � localC�
� � 	�� � �� � �� �

	�� � �� � ��� Therefore� we need to consider the regular section 	�� � �� � �� for the process of

sendC�
� ��� In this case� for processing elements p � � and 
� the virtual left boundary of PEp is

lb � pb�� topf �A� �� 
�� botf�A� �� 
� � � and �� respectively� as shown in Figure ���a�� For processing

element p � �� the virtual left boundary of PEp is lb � Nb� � pb� � topf �A� �� 
�� botf �A� �� 
� � ���

as shown in Figure ���b��
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( b )

Figure �� When dealing with the lattice 	botf�A� �� 
� � u� � period
A
e � s��� �a� for processing elements

p � � and 
� the virtual left boundary of PEp is pb��topf �A� �� 
��botf�A� �� 
� � � and �� respectively�
�b� for processing element p � �� the virtual left boundary of PEp is Nb� � pb� � topf �A� �� 
� �
botf �A� �� 
� � ���

	���� The Cases When periodAe � s� � b� � topf �A� q� j�� botf �A� q� j�

Suppose that local�C�p� includes elements among the columns from lb to rb on a spiral cylinder�

Dene
l � botf�A� q� j�� u � u�� s � periodAe � s��
d � gcd�Nb�� s�� periodCsb � s�d� periods � Nb� � s�d�
len � topf �A� q� j�� botf�A� q� j�� b � b� � len�

lb �

�
pb� � len� if pb� � len 
 ��
Nb� � pb� � len� otherwise�

rb � pb� � b� � ��

lp � c� � lb� rp � c� � rb�
k�pf � d�l � rp���Nb��e� k�pl � b�u� lp���Nb��c�

bot�a�C� p� k� � nxt�maxflp� kNb�� lg� l� s��
top�a�C� p� k� � nxt�minfrp� kNb�� ug � s� �� l� s��

�k �

�
k� if lb � rb�
k � �� if lb � rb�

	k �

�
k� if lb � rb�
k � �� if lb � rb�

localC�p�� 	bot�a�C� p� k� � bot
�
a�C� p� k�� len � s�� �

	bota�C� p� 	k� � minftopa�C� p� 	k�� bot
�
a�C� p� k�� leng � s���


�



Since s � b� similar to the derivation in Section ��
��� each local block of local�C�p� contains at least

one lattice point in 	l � u � s�� Thus� we have

local�C�p� � 	l � u � s� � 	bot
�
a�C� p� �k�pf� � top

�
a�C� p� k

�
pf� � s� 	

	
�Sminf�k�

pl
�k�
pf
�periodC

sb
g

k�k�
pf
�� 	bot�a�C� p� �k� � top

�
a�C� p� k� � s�

�
� u � periods��

Therefore�

localC�p�� 		botf�A� q� j� � topf �A� q� j� � s�� � u� � period
A
e � s��

� localC�p�� 		l � l� len � s�� � u � s�

� localC�p�� 	�local
�
C�p� � 	l � u � s�� � �local

�
C�p�� 	l � u � s�� � len � s��

� 	bota�C� p� k
�
pf� � minftopa�C� p� k

�
pf�� bot

�
a�C� p� �k�pf� � leng � s�� 	

		bot�a�C� p� �k�pf� � s � minftopa�C� p� k
�
pf�� bot

�
a�C� p� �k�pf� � s� leng � s�� �

minftopa�C� p� k
�
pf�� top

�
a�C� p� k

�
pf� � leng � s� 	

	
�Sminf�k�

pl
�k�
pf
�periodC

sb
g

k�k�
pf
��

�
	bota�C� p� k� � minftopa�C� p� k�� bot

�
a�C� p� �k� � leng � s�� 	

		bot�a�C� p� �k� � s � minftopa�C� p� k�� bot
�
a�C� p� �k� � s� leng � s�� �

minftopa�C� p� k�� top
�
a�C� p� k�� leng � s�

��
� u � periods��

	���� Other Interesting Cases

The following two cases correspond to two cases in Sections ��
�
 and ��
���

�� When Nb� � b � �s mod Nb�� � Nb�� Similar to the derivation in Section ��
�
� we have

R � d�Nb� � b� ����Nb�� �s mod Nb���e � s and L � s�


� When � � �s mod Nb�� � b� Similar to the derivation in Section ��
��� we have R � s and

L � d�Nb� � b� ����s mod Nb��e � s�

��� An Algorithm for Deriving the Communication Sets

In this subsection� we will present an algorithm for calculating localC�p�� 		botf�A� q� j� � topf �A� q� j� �

s�� � u� � period
A
e � s��� We will rst use the algorithm described in Section ��
��� according to

Corollary �� to enumerate all indices botf �A� q� j�� i�periodAe �s� such that localC�p� � 	botf�A� q� j��

i � periodAe � s� � topf �A� q� j� � i � periodAe � s� � s�� �� �� Then� the communication set localC�p� �


�



		botf�A� q� j� � topf �A� q� j� � s�� � u� � period
A
e � s�� can be derived incrementally according to these

indices� We will now present the cases where lb � pb� � topf �A� q� j� � botf �A� q� j� 
 �� thus lb �

pb�� b�� � � rb� We will illustrate certain modied code in Figure �� so that the modied algorithm

can handle the cases where pb� � topf �A� q� j�� botf�A� q� j�� � and lb � Nb� � pb� � topf �A� q� j��

botf �A� q� j�� pb� � b� � � � rb at the end of this section�

Let �M represent the rst cycle of the memory access sequence of C�botf�A� q� j� � u� � period
A
e �s��

in local�C�p�� let �Z represent the communication set of localC�p�� 		botf�A� q� j� � topf �A� q� j� � s�� �

u� � period
A
e � s�� in PEp� and let �Z represent the rst cycle of the communication set of localC�p� �

		botf�A� q� j� � topf �A� q� j� � s�� � u� � period
A
e �s�� in PEp� Figure � presents an algorithm for deriving

�Z � This algorithm also contains six steps as follows�

Step �� f� Line �� �g

Handle the special cases where periodAe � s� � b� � topf �A� q� j�� botf �A� q� j� as follows�

if periodAe � s� � b� � topf �A� q� j�� botf�A� q� j� then �Z can be represented by the formula

mentioned in Section ������ and then STOP�

f� In the following� periodAe � s� � b� � topf �A� q� j�� botf�A� q� j�� �g

Step �� f� Line ��� �g

check whether �Z is empty or not in constant time�

if �Z � � then STOP�

Step �� f� Lines �� to ��� �g

nd the starting point accessed among the columns from lb to rb�

Step 	� f� Lines �� to ��� �g

derive distance vectors R and L using a variant algorithm proposed by Kennedy et al� 	
�� 

��

Step 
� f� Lines �
 to ��� �g

calculate the rst cycle of the memory access sequence �M according to Corollary ��

compute the rst cycle of the communication set �Z according to �M�

Step �� f� Line ��� �g

formulate the communication set �Z � 	�Z � u� � periods�� STOP�


�



Input� a� a� �the range of a generated array A�a� � a��� l� u� s� �parameters of the access pattern A�l� � u� � s���
c� c� �the range of a used array C�c� � c��� l� u� s� �parameters of the access pattern C�l� � u� � s���
N �number of PEs� b� b� �block sizes of A and C� p and q �processing element ID��

Output� The �Z table� f� �Z � localC�p� � ��botf�A� q� j� � topf �A� q� j� � s�� � u� � period
A
e � s��� �g

�� �de�ne nxt�x� y� z� � x� ��y � x� mod z��
�� if �botf �A� q� j� � topf �A� q� j�� return �Z � ��
�� l � botf �A� q� j�� s � periodAe � s��
�� �d� x�y� �� Extended�Euclid�Nb�� s��

f� d � gcd�Nb�� s� � x �Nb� � y � s� �g


� periodC
�

e � Nb��d� periods � periodC
�

e � s�
�� len � topf �A�q� j�� botf�A� q� j�� b � b� � len�
	� lb � pb� � len� rb � pb� � b� � ��
�� lp � c� � lb� rp � c� � rb�

Step �� f� Handle the special cases where s � b� �g
�� if �s � b� return �Z � the formula in Section ������

Step �� f� Check whether �Z is empty or not� �g
��� if �nxt�lp � l� d� d� � rp� l� return �Z � ��

Step �� f� Find the starting point accessed
among the columns from lb to rb� �g

��� start ��� length � ��
��� for i � nxt�lp� l� d� d� rp� l d
��� loc � l � �s�d��iy �Nb�d�iy��Nb��e��
��� start � min�start� loc��
�
� length � length � ��
��� endfor

Step �� f� Derive distance vectors R and L� �g
�	� if �Nb� � b � �s mod Nb�� � Nb�� then
��� R � d�Nb� � b� ����Nb� � �s mod Nb���e � s�
��� L � s�
��� else if �� � �s mod Nb�� � b� then
��� R � s�
��� L � d�Nb� � b� ����s mod Nb��e � s�
��� else

��� R ��� L� � ��
�
� for i � d b� � d
��� loc � �s�d��iy �Nb�d�iy��Nb��e��
�	� R � min�R� loc��
��� L� � max�L�� loc��
��� endfor

��� L � Nb� � s�d� L��
��� endif endif

Step 
� f� Calculate the �rst cycle of both the
memory access sequence and the
communication set �Z� �g

��� �Z � �� now � start�
��� k � �now� c����Nb��� i � ��
��� �Z � �Z � �max�bota�C� p� k�� now� �

min�topa�C� p� k�� now� len� � s���
�
� while �i � length� do
��� if �lb � ��now� c� � R� mod �Nb��� � rb� then
�	� now � now�R�
��� else if �lb � ��now� c� � L� mod �Nb���

� rb� then
��� now � now� L�
��� else now � now�R� L�
��� endif endif

��� k � �now� c����Nb��� i � i� ��
��� �Z � �Z � �max�bota�C� p� k�� now� �

min�topa�C� p� k�� now� len� � s���
��� endwhile

Step �� f� Formulate the communication set �Z� �g
�
� return �Z � ��Z � u� � periods��

Figure �� An algorithm for deriving the communication set based on Corollary � where � � lb � rb�

	�� lb � Nb� � pb� � len� rb � pb� � b� � ��
���� if �nxt�lp� l� d� d� � Nb� � rp � l�

return �Z � ��
���� for i� � nxt�lp� l� d� d� Nb� � rp� l d

i � �i� mod Nb���
���� if ��now mod Nb�� � rb� then

k � �now� c����Nb���
else k � �now � c����Nb�� � ��
endif

i � ��

���� if �not �rb � ��now� c� �R� mod �Nb��� � lb�� then
���� else if �not �rb � ��now � c� � L� mod �Nb���

� lb�� then
���� if ��now mod Nb�� � rb� then

k � �now� c����Nb���
else k � �now� c����Nb�� � ��
endif

i � i� ��

Figure ��� Corresponding modied code for deriving the communication set where lb � rb�
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� Representation of Communication Sets by Closed Forms

In Sections � and �� we derived communication sets and processor sets with arbitrary block sizes

b� and b�� These sets� however� cannot be represented by a constant number of closed forms� For

instance� each of these sets only can be represented by a union of �periodAsb��� or �period
C
sb��� closed

forms in Section �� otherwise� we must apply an e�cient algorithm periodAeb or period
C
eb times in order

to generate the communication set sendC�p� q� for some p and q in Section �� Since the number of

boundary indices of these closed forms or the number of times that we apply an e�cient algorithm to

generate communication sets which we need to calculate is proportional to the corresponding variables�

periodAsb� period
C
sb� period

A
eb� or period

C
eb� the computation overhead becomes serious if the corresponding

periodAsb� period
C
sb� period

A
eb� or period

C
eb is large�

In this section� we will return to analysis of the block sizes of b� and b�� Our goal is to choose

reasonable block sizes b� and b� so that processor sets and communication sets can be represented by

a constant number of closed forms� In the following� we will use closed forms to represent a constant

number of closed forms�

��� Determination of Suitable Block Sizes

Consider the target forall statement again� We will rst present an ideal case� Suppose that we

assign the entry A�j� to PEp� where p � �b j�l�
s��h

c mod N�� and the entry C�j�� to PEp� � where p
� �

�b j
��l�
s��h

c mod N�� Then� for i � f�� �� � � � � h � �g� A�l� � i � s�� and C�l� � i � s�� are in PE�� for

i � fh� h��� � � � � 
 � h� �g� A�l�� i � s�� and C�l�� i � s�� are in PE�� and so on� In addition� there is

no communication overhead in implementing the target forall statement� In this ideal case� we notice

that b� � s� � h and b� � s� � h�

We will now consider the general case� Suppose that the data distribution functions �dened

in Property � in Section ��
�
� for arrays A and C are fA�j� � �b j�offset�
b�

c mod N� and fC�j
�� �

�b j
��offset�

b�
c mod N�� respectively� We nd that� if b��s� is a factor of b��s� or b��s� is a multiple of

b��s�� then the communication sets can be represented by closed forms� However� if the condition fails�

computation and communication overheads will be incurred due to random access patterns whose costs

are relatively high� Table � summarizes certain conditions where processor sets and communication

sets have closed forms�


�



cases conditions send peC �p� recv peC�p� sendC �p� q� recvC�p� q�

� arbitrary b� and b�
� b��s� is a factor of b��s�

p p p
� b��s� is a multiple of b��s�

p p p
� all�closed�forms condition�

p p p p

Table �� Conditions where processor sets and communication sets have closed forms� All�closed�forms
condition occurs when b��s� is a factor of b��s� and �b� � s����b� � s�� is a factor or a multiple of N �
or when b��s� is a multiple of b��s� and �b� � s����b� � s�� is a factor or a multiple of N �

If these sets can be represented by closed forms� then they can be implemented e�ciently� In

addition� only a constant time is required to test whether any one of these sets is empty or not�

Otherwise� we only can use ad hoc methods to enumerate these sets or use indirect memory access

methods to get their corresponding data� The latter case� of course� will incur a certain computation

overhead� Therefore� our goal is to determine suitable block sizes such that� the more sets can be

represented by closed forms� the better�

Since optimal data distribution schema between two Do�loops may be di�erent� some data commu�

nication between them may be required� However� frequent data re�distribution is expensive� Thus�

it is a compromise to let several consecutive Do�loops share a common data distribution scheme if

arrays in these Do�loops are aligned together 	
��� We will now present an algorithm for determining

suitable block sizes� We will consider the following general cases� Suppose that in the loop bodies of a

consecutive forall statements� there are a total of n di�erent arrays� among which m di�erent generated

arrays appear in both the LHS and the RHS of the assignment ���� and n �m di�erent used arrays

only appear in the RHS of the assignment as follows� where statements can appear in any permuted

order �because we are only concerned with strides and block sizes��

A��l�� � i � s��� � f��� � � � ��
A��l�� � i � s��� � f��� � � � ��

���
A��l�x� � i � s�x�� � f�x�� � � � ��
A��l�� � i � s��� � f��� � � � ��

���
Am�lm� � i � sm�� � fm�� � � � ��

���
Am�lmxm � i � smxm� � fmxm� � � � ��

In the above statements� fij�� is a function of
�
A��l��� i � s���� A��l��� i � s���� � � �� A��l�x�� i � s�x���

��



A��l���i�s���� � � ��Am�lm��i�sm��� � � ��Am�lmxm�i�smxm�� � � ��An�ln��i�sn��� � � �� An�lnxn�i�snxn�
�
�

It is reasonable to assume that each stride sij is a small integer 	��� 	���� We nd that the block size bi

of array Ai is a multiple of lcm�si�� si�� � � � � sixi� because bi must be a multiple of all sij � for � � j � xi�

The following algorithm can determine suitable block sizes�

An Algorithm for determining suitable block sizes�

Step �� f� Assign an initial block size� �g

We rst construct a directed graph� Each node Ai represents a one�dimensional array� whose

initial block size bi is lcm�si�� si�� � � � � sixi�� Each edge �Ai� Aj� species that in a statement� the

variables of array Ai are in the LHS of the assignment� and that the variables of array Aj are in

the RHS of the assignment�

Step �� f� Determine block sizes so that they satisfy Case 
 or Case � in Table �� �g

Each maximal strongly connected component in the graph is treated as a unit or a ��block� The

graph then includes an acyclic partial ordering on the ��blocks� We will now dene a new level

for each ��block below� where � is a ��block� � is a source ��block� and  is a sink ��block�

nlevel��� � minfmax�� source 	�fdistance������ �g� max�� sink 
�fdistance��� �� �gg�

Suppose that the nlevel of the acyclic ��blocks graph �arising from the directed graph� is nl�

Then� we determine block sizes in this order�

for i � � to nl do

if a ��block in nlevel i contains more than one node� that is� these nodes form a strongly

connected component� then we break the cycle by randomly letting a node Aj be a child

of its neighboring node Ak �by changing the direction of all the edges !from Ak to Aj" to

!from Aj to Ak"� and recursively apply Step 
 again�

According to an ordering from child to parent by topological sorting in nlevel i�

for each Aj in nlevel i do

for all edges �Ak� Aj� and �Aj � Ak�� where Ak are in nlevel i� and i� � i� and

all edges �Aj � Ak� from Ak to Aj � where Ak are also in nlevel i do

bj � lcm��k��bj � �bk�sky�sjx�� where Aj�ljx � sjx� and Ak�lky � sky� appear in the

same statement�

��



Step �� f� Adjust block sizes so that as many block sizes can satisfy Case � in Table � as possible�

�g

We now adjust each block size according to the reverse direction in Step 
 as follows�

for i � nl down to � do

According to an ordering from parent to child by topological sorting in nlevel i�

for each Ak in nlevel i do

for all edges �Aj � Ak� from Ak to Aj � where Aj are also in nlevel i� and

all edges �Ak� Aj� and �Aj � Ak�� where Aj are in nlevel i� and i� � i do

bk � gcd�� j���bj�sjx�sky�� where Ak�lky � sky� and Aj�ljx � sjx� appear in the

same statement� f� Note that� gcd�x� � x� �g

Step 	� f� Add a granularity factor� �g

for each bi do bi � bi � h� where h is a granularity factor�

In the above algorithm� the constructed directed graph is identical to the component a�nity

graph 	
��� which is used to determine data alignment and data distribution� if we ignore the weight of

each edge in the component a�nity graph� After Step 
� block sizes guarantee satisfaction of Case 
 or

Case � in Table �� This is because bj�sjx is a multiple of bk�sky � where Aj�ljx� sjx� and Ak�lky � sky�

appear in the same statement� The purpose of Step � is to adjust the block sizes so that they can

satisfy Case � in Table �� If there is only one edge from Ak to Aj or fromAj to Ak � and bj�sjx � bk�sky �

then block sizes bj and bk satisfy Case � in Table � for calculating the forall statement which involves

Aj�ljx � sjx� and Ak�lky � sky�� The granularity factor h in Step � can be determined by using an

analytical model 	
�� or some knowledge bases� In the following� we will give an example to illustrate

the idea of choosing block sizes� We assume that the iteration space of a forall statement is large

enough such that each PE has to execute roughly the same number of iterations�

Example �� Suppose that the loop bodies of nine consecutive forall statements are those shown below�

where statements can appear in any permuted order�

��� A��l�� � i � s��� � A��l�� � i � s��� �A��l�� � i � s����

�
� A��l�� � i � s��� � A��l�� � i � s����A��l�� � i � s����

��� A��l�� � i � s��� � A��l�� � i � s��� �A��l�� � i � s����

��� A��l�� � i � s��� � A��l�� � i � s��� �A��l�� � i � s����

�




��� A��l�� � i � s��� � A��l�� � i � s����A��l�� � i � s����

��� A��l�� � i � s��� � A��l�� � i � s��� �A��l�� � i � s����

��� A��l�� � i � s��� � A��l�� � i � s��� �A�l� � i � s���

��� A�l� � i � s�� � A�l� � i � s���A��l�� � i � s����

��� A�l� � i � s�� � A�l� � i � s�� �A��l�� � i � s����

Fig� ����a� shows the corresponding directed graph of these nine statements� In the graph� A� and A�

form a maximal strongly connected component� and each of the remaining Ai forms a maximal strongly

connected component� Fig� ����b� presents the nlevel of each node� When we break the cycle of the

strongly connected component by A� and A�� we randomly let A� be a child of A� in this example�

Fig� ����c� also traces the mentioned algorithm� which includes four steps� Finally� statements �� 
�

and � satisfy Case 
 in Table �� statement � satises Case � in Table �� and statements �� �� �� � and

� satisfy Case � in Table ��

A1

A2 A3

5AA4

A6

A7 A8

(8) (9)

A1

A4

(2)

(5)
(4)(3)

(7)

(1)

(6)

(a)

nlevel 1

nlevel 2

nlevel 3

(b)

A7 A8

A6A3

A5

A2

(c) Step �

b�� � lcm�s��� s���
b�� � lcm�s��� s��� s��� s���
b�� � lcm�s��� s���
b�� � lcm�s��� s���
b�	 � lcm�s	�� s	�� s	��
b�
 � lcm�s
�� s
�� s
��
b�� � s��
b�� � s��

Step � Step � Step �

b�� � b�� b�	 � b�	 b�� � b��h
b�� � b�� b�
 � �b�	�s	��s
� b�� � b��h
b�� � b�� b�� � �b�	�s	��s�� b�� � b��h
b�� � b�� b�� � �b�	�s	��s�� b�� � b��h
b�� � lcm�b��� �b

�
��s���s��� �b

�
��s���s��� �b

�
��s���s��� b�� � gcd��b��s���s��� �b��s���s��� b�	 � b�	h

b�� � lcm�b��� �b
�
��s���s��� b�� � �b�
�s
��s�� b�
 � b�
h

b�
 � lcm�b�
� �b
�
��s���s
�� �b

�
��s���s
�� b�� � �b�
�s
��s�� b�� � b��h

b�	 � lcm�b�	� �b
�
��s���s	�� �b

�
��s���s	�� �b

�

�s
��s	�� b�� � gcd��b��s���s��� �b��s���s��� b�� � b��h

Figure ��� �a� The corresponding directed graph of the nine statements� where �i� in each edge
represents the i�th statement� �b� The corresponding nlevel for each node� �c� Block sizes bi of Ai

which are determined by four steps in sequence� bji means the temporary value of bi after Step j� and
the nal bi is equal to b

�
i �

In the following subsections� we will derive processor sets and communication sets for Cases 
� ��

and � in Table ��

��



��� The Case Where b� � s� � h� and b� � s� � h� � h�

In this case� b��s� is a factor of b��s�� Therefore� send peC�p�� sendC�p� q�� and recvC�p� q� have closed

forms� First� we process send pe�p�� which is equal to fA�f��f
��
� �localC�p� � 	l� � u� � s������ Since

periods � Nb� and periodCsb � periods��Nb�� � �� it is su�cient to analyze the set of PEs which use

elements of array C within a block of size b�� We nd that� if h� 
 N � then every PE will use some

elements of array C within a block of size b�� If h� � N � then the left boundary element and the

right boundary element of array C within a block of size b� are referenced by fA�botf �C� p� kpl�� and

fA�topf�C� p� kpf��� respectively� Note that� if nxt�botl�C� p� kpf�� l�� s�� � l�� then fA�botf �C� p� kpf��

may not be equal to fA�botf �C� p� kpl��� Based on Property �� we have the following closed form�

send pe�p� �

���������������
��������������

	� � N � ��� if u� � l� � � 
 Nb� and h� 
 N �

	fA�botf �C� p� kpl�� � fA�topf �C� p� kpf����
if u� � l� � � 
 Nb�� h� � N� and fA�botf�C� p� kpl�� � fA�topf �C� p� kpf���

	� � fA�topf �C� p� kpf���	 	fA�botf�C� p� kpl�� � N � ���
if u� � l� � � 
 Nb�� h� � N� and fA�botf�C� p� kpl�� � fA�topf �C� p� kpf���

fA�	botf�C� p� kpf� � topf �C� p� kpf���	 fA�	botf�C� p� kpl� � topf �C� p� kpl����
if u� � l� � � � Nb��

Second� we formulate recv pe�p�� which is equal to fC�f��exec�p���� We start from exec�p� and

check the elements of array C that these iterations will refer to� Recall that exec�p� �
Sjpl
j�jpf

	bote�A� p�

j� � tope�A� p� j��� Then� f��exec�p�� �
Sjpl
j�jpf

	botf �A� p� j� � topf �A� p� j� � s��� which represents the

elements of array C that are referenced by iterations executed in PEp� and fC�f��exec�p��� indicates

the set of PEs that store these elements of array C� Since periodAsb � �periods � s����Nb�s�� � h��

recv pe�p� can be represented by a union of at most h� � � closed forms�

recv pe�p� �

�����������������
����������������

	� � N � ��� if u� � l� � � 
 Nb� and h� 
 N �Sjpf�h���
j�jpf

fC�	botf�A� p� j� � topf �A� p� j����

if u� � l� � � 
 Nb�� h� � N� and nxt�botl�A� p� jpf�� l�� s�� 
 l���Sjpf�h���
j�jpf

fC�	botf�A� p� j� � topf �A� p� j���
�
	

fC�	botf�A� p� jpf � h�� � nxt�l� � periods � s�� l�� s�����
if u� � l� � � 
 Nb�� h� � N� and nxt�botl�A� p� jpf�� l�� s�� � l��Sjpl

j�jpf
fC�	botf�A� p� j� � topf �A� p� j���� if u� � l� � � � Nb��

Note that� in the above formula� the set fC�	botf�A� p� j� � topf �A� p� j��� consists of only one or two

PEs� In addition� all these PEs are distinct� However� in spite of these facts� recv pe�p� still cannot

be represented by a constant number of closed forms independent of h��

��



Third� we deal with sendC�p� q�� which is equal to localC�p�� f��exec�q��� This set will be repre�

sented by a union of three closed forms� sheadC�p� q�� sbody
�
C�p� q�� and sbody�C�p� q�� Before deriving

sendC�p� q�� we will give an example to explain where these three closed forms come from�

Example �� Suppose that the number of PEs is �� that a� � c� � �� that the loop body of a forall

statement is A��� � i � 
� � g�C�
 � i��� where g is a function� and that u� � ���� Then� l� � ���

s� � 
� l� � 
� s� � �� and u� � ���� If we let h� � 
 and h� � ��� then b� � s� � h� � � and

b� � s� � h� � h� � 

�

Fig� �
 shows elements of array C in PE� and the corresponding PEs which will refer to these

elements� Among them� sendC��� �� � sheadC��� ��	sbody
�
C��� ��	sbody

�
C��� ��� where sheadC��� �� �

	� � � � �� 	 		�� � �� � �� � 
� � ��� sbody�C��� �� � 		�� � �� � �� � ��� � ���� and sbody�C��� �� � 			�� �

�� � �� � ��� � �� � ��� � ���� sendC��� 
� � sheadC��� 
�	 sbody�C��� 
�� where sheadC��� 
� � 	
 � 
 �

�� 	 		� � �� � �� � 
� � �� and sbody�C��� 
� � 			�� � �� � �� � ��� � �� � ��� � ���� Note that� sheadC��� ��

is deliberately written as a union of two closed forms� as we will derive a unied formula to represent

shead�p� q�� Next� sbody�C��� 
� � ��
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Figure �
� Elements of array C in PE�� where array C is distributed by cyclic�

� over four processors�
In addition� sendC��� q� � sheadC��� q�	 sbody�C��� q�	 sbody�C��� q�� for � � q � ��

We notice that sheadC�p� q� is not empty if nxt�botl�C� p� kpf�� l�� s�� � l�� sbody
�
C�p� q� includes

some elements if botl�C� p� k� is in between botf �A� q� j� � � and topf �A� q� j� for some j and k� and

��



sbody�C�p� q� will be evaluated without any conditions� In addition� the period of f��exec�q�� is

�lcm�Nb�� s���s�� � s� � Ns�h� and periods � Nb�� Let k
�

pf � kpf � � if nxt�botl�C� p� kpf�� l�� s��

� l�� k
�

pf � kpf otherwise� Then� we have

sheadC�p� q� �

������
�����

	botf�A� q� jqf� � minftopf �A� q� jqf�� topa�C� p� kpf�g � s�� 	
		botf�A� q� jqf � �� � topf �A� q� jqf � �� � s�� � topa�C� p� kpf� � Ns�h���
if nxt�botl�C� p� kpf�� l�� s�� � l��

�� otherwise�

sbody�C�p� q� �

���������
��������

		bota�C� p� k
�

pf� � nxt�bota�C� p� k
�

pf�� topf�A� q� jqf�� Ns�h�� � s�� � u� � Nb���

if botf�A� q� jqf� � bota�C� p� k
�

pf� � topf �A� q� jqf� or

nxt�bota�C� p� k
�

pf�� topf�A� q� jqf�� Ns�h��� s��h� � �� � bota�C� p� k
�

pf�

� minfnxt�bota�C� p� k
�

pf�� topf�A� q� jqf�� Ns�h��� topf�A� q� jql�g�

�� otherwise�

sbody�C�p� q� � 			nxt�bota�C� p� k
�

pf�� botf�A� q� jqf � ��� Ns�h�� �

nxt�bota�C� p� k
�

pf�� botf�A� q� jqf � ��� Ns�h�� � s��h� � �� � s�� �

topa�C� p� k
�

pf� � Ns�h�� � u� � Nb���

sendC�p� q� � sheadC�p� q�	 sbody�C�p� q�	 sbody�C�p� q��

In summary� it is only necessary to determine two conditions and at most eight boundary variables

to calculate sendC�p� q� as shown in Table �� Similarly� recvC�p� q� also has this property� and we will

not repeat another Table � again in the following�

Conditions sendC�p� q�

� and � 	�� � �� � s�� 	 		�� � �� � s��h� � �� � s�� � �� � Ns�h�� 	
	�	�� � � � s�� 	 		�� � �� � s��h� � �� � s�� � �� � Ns�h��� � u� � Nb��

� and �not �� 	�� � �� � s�� 	 		�� � �� � s��h� � �� � s�� � �� � Ns�h�� 	
			�� � �� � s��h� � �� � s�� � �� � Ns�h�� � u� � Nb��

�not �� and � 	�	�� � � � s�� 	 		�� � �� � s��h� � �� � s�� � �� � Ns�h��� � u� � Nb��

�not �� and �not �� 			�� � �� � s��h� � �� � s�� � �� � Ns�h�� � u� � Nb��

� � �nxt�botl�C� p� kpf�� l�� s�� � l��� � � ���� � �� � topf �A� q� jqf�� or �� � s��h� �
�� � �� � minf�� topf �A� q� jql�g��� �� � botf �A� q� jqf�� �� � minftopf �A� q� jqf�� ��g� �� �
botf �A� q� jqf � ��� �� � topa�C� p� kpf�� �� � bota�C� p� k

�

pf�� � � nxt���� topf �A� q� jqf�� Ns�h���

�� � nxt���� ��� Ns�h��� and �� � topa�C� p� k
�

pf��

Table �� It is only necessary to determine two conditions and at most eight boundary variables to
calculate sendC�p� q��

Fourth� we are concerned with recvC�p� q�� which is equal to sendC�q� p�� Hence� recvC�p� q� also

can be represented by a union of three closed forms� As indicated in Section �� we prefer that recvC�p� q�

��



be represented based on indices of array A� In addition� there is a one�to�one correspondence between

rheadC�p� q�	 rbody
�
C�p� q�	 rbody

�
C�p� q� and f�f

��
�

�
f��f

��
� �rheadC�p� q��� 	 f��f

��
� �rbody�C�p� q��� 	

f��f
��
� �rbody�C�p� q���

�
� Let k

�

qf � kqf �� if nxt�botl�C� q� kqf�� l�� s�� � l�� k
�

qf � kqf otherwise� Then�

recvC�p� q� can be represented as follows�

rheadC�p� q� �

�������
������

f�f
��
�

�
	bota�A� p� jpf� � minftopa�A� p� jpf�� topf�C� q� kqf�g � s�� 	

		bota�A� p� jpf � �� � topa�A� p� jpf � �� � s�� � topf �C� q� kqf� � Nb��
�
�

if nxt�botl�C� q� kqf�� l�� s�� � l��

�� otherwise�

rbody�C�p� q� �

������������
�����������

f�f
��
�

�
		botf�C� q� k

�
qf� � nxt�botf �C� q� k

�
qf�� topa�A� p� jpf�� Nb�� � s�� �

u� � Nb�h��
�
�

if botf �A� p� jpf� � bota�C� q� k
�

qf� � topf �A� p� jpf� or

nxt�bota�C� q� k
�

qf�� topf�A� p� jpf�� Ns�h��� s��h� � �� � bota�C� q� k
�

qf�

� minfnxt�bota�C� q� k
�

qf�� topf�A� p� jpf�� Ns�h��� topf�A� p� jpl�g�

�� otherwise�

rbody�C�p� q� � f�f
��
�

�
			nxt�botf�C� q� k

�
qf�� bota�A� p� jpf � ��� Nb�� �

nxt�botf �C� q� k
�
qf�� bota�A� p� jpf � ��� Nb�� � s��h� � �� � s�� �

topf �C� q� k
�
qf� � Nb�� � u� � Nb�h��

�
�

recvC�p� q� � rheadC�p� q�	 rbody�C�p� q�	 rbody�C�p� q��

In the following� we will give an example to explain how indices of arrayA can be related to recvC�p� q��

Example 	� We continue with Example �� Fig� �� shows elements of array A in PE� through PE�

and the corresponding PEs that store elements of array C� which will be used to modify elements

of array A� Among them� f��f
��
� �recvC��� ���� � f��f

��
� �rheadC��� ���� 	 f��f

��
� �rbody�C��� ���� 	

f��f
��
� �rbody�C��� ����� where f��f

��
� �rheadC��� ���� � 	
� � 
� � 
� 	 		�� � �� � 
� � �� � ����

f��f
��
� �rbody�C��� ���� � 		��� � ��� � 
� � ��� � ����� and f��f

��
� �rbody�C��� ���� � 			��� � ��� � 
� �



� � ��� � ��� � ����� f��f
��
� �recvC�
� ���� � f��f

��
� �rheadC�
� ���� 	 f��f

��
� �rbody�C�
� ����� where

f��f
��
� �rheadC�
� ���� � 	�� � �� � 
� 	 		
� � 
� � 
� � �� � ��� and f��f

��
� �rbody�C�
� ���� � 			��� � ��� �


� � 

� � ��� � ��� � �����

��� The Case Where b� � s� � h� � h� and b� � s� � h�

This case is a symmetrical case as did in the last subsection because b��s� is a multiple of b��s��

Therefore� recv peC�p�� sendC�p� q�� and recvC�p� q� have closed forms� First� we process send pe�p��

��
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Figure ��� Elements of array A in PE� through PE�� where array A is distributed by cyclic��� over
four processors� In addition� f��f

��
� �recvC�p� ���� � f��f

��
� �rheadC�p� ���� 	 f��f

��
� �rbody�C�p� ���� 	

f��f
��
� �rbody�C�p� ����� for � � p � ��

which is equal to fA�f��f
��
� �localC�p� � 	l� � u� � s������ Since periodCsb � periods��Nb�� � h��

send pe�p� can be represented by a union of at most h� � � closed forms�

send pe�p� �

�����������������
����������������

	� � N � ��� if u� � l� � � 
 Nb� and h� 
 N �Skpf�h���
k�kpf

fA�	botf�C� p� k� � topf �C� p� k����

if u� � l� � � 
 Nb�� h� � N� and nxt�botl�C� p� kpf�� l�� s�� 
 l��Skpf�h���
k�kpf

fA�	botf�C� p� k� � topf �C� p� k��� 	

fA�	botf�C� p� kpf � h�� � f���nxt�l� � periods � s�� l�� s��� l���s�����
if u� � l� � � 
 Nb�� h� � N� and nxt�botl�C� p� kpf�� l�� s�� � l��Skpl

k�kpf
fA�	botf�C� p� k� � topf �C� p� k���� if u� � l� � � � Nb��

Note that send pe�p� cannot be represented by a constant number of closed forms independent of h��

��



Second� we formulate recv pe�p�� which is equal to fC�f��exec�p���� Since period
A
sb � �periods �

s����Nb�s�� � �� it is su�cient to analyze the set of PEs which store elements of array C that will be

accessed by elements of array A within a block of size b��

recv pe�p� �

���������������
��������������

	� � N � ��� if u� � l� � � 
 Nb� and h� 
 N �

	fC�botf �A� p� jpl�� � fC�topf �A� p� jpf����
if u� � l� � � 
 Nb�� h� � N� and fC�botf�A� p� jpl�� � fC�topf�A� p� jpf���

	� � fC�topf �A� p� jpf��� 	 	fC�botf�A� p� jpl�� � N � ���
if u� � l� � � 
 Nb�� h� � N� and fC�botf�A� p� jpl�� � fC�topf�A� p� jpf���

fC�	botf�A� p� jpf� � topf �A� p� jpf���	 fC�	botf�A� p� jpl� � topf �A� p� jpl����
if u� � l� � � � Nb��

Third� we deal with sendC�p� q�� which is equal to localC�p� � f��exec�q��� This set can be repre�

sented by a union of three closed forms� sheadC�p� q�� sbody
�
C�p� q�� and sbody

�
C�p� q�� Let j

�

qf � jqf ��

if nxt�botl�A� q� jqf�� l�� s�� � l�� j
�

qf � jqf otherwise�

sheadC�p� q� �

������
�����

	bota�C� p� kpf� � minftopa�C� p� kpf�� topf�A� q� jqf�g � s�� 	
		bota�C� p� kpf � �� � topa�C� p� kpf � �� � s�� � topf �A� q� jqf� � Nb���
if nxt�botl�A� q� jqf�� l�� s�� � l��

�� otherwise�

sbody�C�p� q� �

���������
��������

		botf�A� q� j
�

qf� � nxt�botf �A� q� j
�

qf�� topa�C� p� kpf�� Nb�� � s�� � u� � Nb�h���

if bota�C� p� kpf� � botf �A� q� j
�

qf� � topa�C� p� kpf� or

nxt�botf �A� q� j
�

qf�� topa�C� p� kpf�� Nb��� s��h� � �� � botf�A� q� j
�

qf�

� minfnxt�botf�A� q� j
�

qf�� topa�C� p� kpf�� Nb��� topa�C� p� kpl�g�

�� otherwise�

sbody�C�p� q� � 			nxt�botf�A� q� j
�

qf�� bota�C� p� kpf � ��� Nb�� �

nxt�botf �A� q� j
�

qf�� bota�C� p� kpf � ��� Nb�� � s��h� � �� � s�� �

topf �A� q� j
�

qf� � Nb�� � u� � Nb�h���

sendC�p� q� � sheadC�p� q�	 sbody�C�p� q�	 sbody�C�p� q��

Fourth� we manage recvC�p� q�� which is equal to sendC�q� p�� Hence� it also can be represented

by a union of three closed forms� As stated before� we prefer that recvC�p� q� be represented based on

indices of array A� Let j
�

pf � jpf � � if nxt�botl�A� p� jpf�� l�� s�� � l�� j
�

pf � jpf otherwise� Then� we

have

rheadC�p� q� �

�������
������

f�f
��
�

�
	botf �C� q� kqf� � minftopf �C� q� kqf�� topa�A� p� jpf�g � s�� 	

		botf�C� q� kqf � �� � topf �C� q� kqf � �� � s�� � topa�A� p� jpf� � Ns�h��
�
�

if nxt�botl�A� p� jpf�� l�� s�� � l��

�� otherwise�

��



rbody�C�p� q� �

������������
�����������

f�f
��
�

�
		bota�A� p� j

�

pf� � nxt�bota�A� p� j
�

pf�� topf�C� q� kqf�� Ns�h�� � s�� �

u� � Nb��
�
�

if bota�C� q� kqf� � botf�A� p� j
�

pf��� topa�C� q� kqf� or

nxt�botf �A� p� j
�

pf�� topa�C� q� kqf�� Nb��� s��h� � �� � botf �A� p� j
�

pf�

� minfnxt�botf �A� p� j
�

pf�� topa�C� q� kqf�� Nb��� topa�C� q� kql�g�

�� otherwise�

rbody�C�p� q� � f�f
��
�

�
			nxt�bota�A� p� j

�

pf�� botf�C� q� kqf � ��� Ns�h�� �

nxt�bota�A� p� j
�

pf�� botf�C� q� kqf � ��� Ns�h�� � s��h� � �� � s�� �

topa�A� p� j
�
pf� � Ns�h�� � u� � Nb��

�
�

recvC�p� q� � rheadC�p� q�	 rbody�C�p� q�	 rbody�C�p� q��

��� The Case Where Both send pe
p� and recv pe
p� Have Closed Forms

When b��s� is a factor of b��s� and �b� � s����b� � s�� is a factor or a multiple of N � or when b��s� is a

multiple of b��s� and �b� � s����b� � s�� is a factor or a multiple of N � both send pe�p� and recv pe�p�

have closed forms�

In the rst case� let b� � s� � h�� b� � s� � h� � h�� and let h� be either a factor of N or a multiple

of N � In this case� send pe�p� can be represented by closed forms as presented in Section ��
� In the

following� we will show that recv pe�p� also can be represented by closed forms�

recv pe�p� �

��������������
�������������

	� � N � ��� if u� � l� � � 
 Nb� and h� 
 N �

	fC�botf�A� p� jpf�� �
fC�botf�A� p� jpf�� � minfN � �� �jpl � jpf�N�h�g � N�h�� mod N�

if h� � N and fC�botf�A� p� j�� � fC�topf �A� p� j��� for all jpf � j � jpf � ��

		fC�topf�A� p� jpf��� � � fC�topf �A� p� jpf��� �
fC�topf�A� p� jpf�� � minfN � 
� �jpl� jpf �N�h�g � N�h�� mod N�

if h� � N and fC�botf�A� p� j�� �� fC�topf �A� p� j��� for some jpf � j � jpf � ��

Note that the above closed form has two exceptions� First� when fC�botf�A� p� jpf�� � fC�topf �A� p�

jpf��� ��fC�topf �A� p� jpf�� � �� mod N� is not in recv pe�p�� Second� when u� � l� � � � Nb� and

fC�botf�A� p� jpl�� � fC�topf �A� p� jpl��� then ��fC�topf�A� p� jpf�� � �jpl � jpf�N�h�� mod N� is not in

recv pe�p��

In the second case� let b� � s� �h� �h�� b� � s� �h�� and let h� be either a factor of N or a multiple

of N � In this case� recv pe�p� can be represented by closed forms as presented in Section ���� In the

��



following� we will show that send pe�p� also can be represented by closed forms�

send pe�p� �

��������������
�������������

	� � N � ��� if u� � l� � � 
 Nb� and h� 
 N �

	fA�botf�C� p� kpf�� �
fA�botf �C� p� kpf�� � minfN � �� �kpl � kpf�N�h�g � N�h�� mod N�

if h� � N and fA�botf�C� p� k�� � fA�topf �C� p� k��� for all kpf � k � kpf � ��

		fA�topf�C� p� kpf��� � � fA�topf �C� p� kpf��� �
fA�topf �C� p� kpf�� � minfN � 
� �kpl� kpf�N�h� � N�h�� mod N�

if h� � N and fA�botf�C� p� k�� �� fA�topf �C� p� k��� for some kpf � k � kpf � ��

Note that the above closed form also has two exceptions� First� when fA�botf �C� p� kpf�� � fA�topf �C�

p� kpf��� ��fA�topf �C� p� kpf�� � �� mod N� is not in send pe�p�� Second� when u� � l� � � � Nb�

and fA�botf �C� p� kpl�� � fA�topf �C� p� kpl��� ��fA�topf �C� p� kpf�� � �kpl� kpf�N�h�� mod N� is not in

send pe�p��

� Experimental Studies

In this section� we will present three experimental studies implemented on a ���node nCUBE�
E paral�

lel computer� In each experimental study� the execution time required by each processor to execute the

node program was measured� and the maximum nish time was reported� The rst experimental study

compared pros and cons of three proposed algorithms� the row�wise version described in Section �� the

lattice method in Section �� and the closed�form version in Section �� We adopted two communication

models� rst� a conventional model that only packs data values of RHS array elements into send bu�ers

and generates corresponding addresses of LHS array entries at the receiving end� Second� a deposit

model� which was also suggested by 	�� 	���� that packs elements using an address�value pair before

sending� where value is the value of a RHS array element and address is the corresponding address

of a LHS array entry� After that� at the receiving end� there is no need to unpack messages� and

PEs use message bu�ers for the combined received�execute phase� This method� however� will incur

additional communication time because the size of each message is doubled� The second experimental

study calculated a saxpy operation on two data arrays� and the third experimental study performed a

data re�distribution operation on a specic data array� both based on the closed�form version algorithm

using the conventional communication model� In e�ect� the data re�distribution operation can be seen

as a special case of the saxpy operation�

��



��� Comparisons of Three Proposed Algorithms

We compare the three proposed algorithms using the following benchmark code�

forall i � �� �����

A������ i � s�� � C�� � i � s���

where array A is distributed by a cyclic�b�� distribution and array C is distributed by a cyclic�b��

distribution� Table � and Table � list experimental results of implementing this forall statement with

various block sizes b� and b� as well as strides s� and s� on �� PEs� Note that in this experimental

study� we only present the cases where d b�
s�
e � d �N���b���

s�
e� and where N is the number of PEs� the

other cases where d b�
s�
e � d �N���b���

s�
e can be presented in a similar way� The experimental results can

be summarized as follows�

row�wise method lattice method closed�form method

b� b� �I� �II� conventional deposit conventional deposit conventional deposit

� 
 �
 � ��� ����� ��� ����� �	 ���� ��� ���
�
y� � � � �� ���� �	 ��
� �� ���� �� ���� 
� ��	� 	� ����
�� 	 �� � ��
 ����� ��� ����� �� ���� ��� ����

�� �� ��� � ��� ���	� ��� ����� �� ��
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y�� �� � � �
 ���� 
� ���� �
 ���� 
� �
�� �� ���� 
� �
��
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�
��� ��� �	 �� 
� �
�� 
� ���� 	� ��	� �� �
��
y��
 ��� � � �� ���� �� ��
� �� ���� �� ��	� �� ���� �� ��
�
��� ��� �	 �� 
� �
�� 
	 ���� 	� ���� �	 ����
��� �
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 �
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� �
�� �� �	�� �� ���� 	
 ���� �	 ���� 	� ����
��� �
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� �
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Table �� Experimental study � when s� � � and s� � 
� The simulation time� !execution time �pure
computation time��" of solving the forall statement on �� PEs is expressed in units of milliseconds� com�

munication overhead � execution time � pure computation time� Factor �I� � minfjpl� jpf � period
A
sbg

and factor �II� � minfjpl� jpf � period
A
ebg � dperiods��period

A
e �N�e� Cases indicated by y have closed�

form expressions�

�� As shown in Table �� all the studies computed the same forall statement with strides s� � �

and s� � 
� However� the execution time varied quite a bit for di�erent block sizes bi� In

�




addition� total execution time is dominated by generating indices and by packing and unpacking

of messages�


� If block sizes satisfy conditions having closed�form expressions� then the execution time is better

than in cases with similar block sizes but without closed�form expressions� In addition� it is better

to use the conventional communication model and to generate LHS indices at the receiving end

in these cases� this is due to the simplicity of closed�form expressions� We will study how to

choose a suitable granularity size if block sizes satisfy conditions having closed�form expressions

for Experimental studies 
 and � again�

�� In the following� we will study cases without closed�form expressions� therefore� these cases are

implemented using the row�wise version algorithm and the lattice method� Factor �I� � minfjpl�

jpf � period
A
sbg� which represents the complexity of the row�wise version algorithm� indicates that

sendC�p� q� can be represented by a union of Factor �I� number of closed forms� Factor �II� �

minfjpl� jpf � period
A
ebg � dperiods��period

A
e �N�e� which represents the complexity of the lattice

method� indicates that the algorithm in Fig� � or �� has to be run minfjpl� jpf � period
A
ebg times

for computing sendC�p� q�� and for each time roughly dperiods��periodAe �N�e lattice points will

be retrieved in the rst period� We nd that� if factor �I� � ��� � factor �II�� then the lattice

method is more e�ective than the row�wise version algorithm� otherwise� if factor �I� � ��� �

factor �II�� then the row�wise version algorithm is more e�ective� The other observation is that�

when block sizes are small� the lattice method is better because factor �II� is relatively small�

when block sizes are large� the row�wise version algorithm is better because factor �I� is relatively

small�

�� If factor �I� or factor �II� is large� which means that the cost of generating indices is high� then

the deposit communication model to pack messages by address�value pairs is more e�ective� on

the other hand� if factor �I� or factor �II� is small� then the conventional communication model

is more e�ective� The threshold value depends on problem sizes� strides� and block sizes� In this

experimental study� the threshold value of the row�wise method is around factor �I� � ��� the

threshold value of the lattice method is around factor �II� � ��� The other observation is that�

when strides � block sizes and block sizes are small� the deposit communication model should

not be used because a lot of block�boundary indices of RHS array entries have to be changed to

��



corresponding indices of LHS array entries in the code generation phase� which need to compute

Indices of A � g
lAff�f
��
� 	l
gC�indices of C at PEp��g�

where l
gC�i� p� � �bi�b�c � N � p� � b� � �i mod b�� � c� means the function of transforming

an index of array C at PEp from a local name space to a global name space� g
lA�i� � b�i �

a����N � b��c � b� � ��i � a�� mod b�� means the function of transforming an index of array A

from a global name space to a local name space�

�� In Table �� for cases where strides � block sizes� the lattice method is always better than the

row�wise version algorithm� in addition� the deposit communication model is more e�ective than

the conventional communication model for almost all cases� This is because elements in the sets

sendC�p� q� and recvC�p� q� are sparse� thus� it is better to combine the computation of both the

indices of the RHS array entries and the corresponding indices of the the LHS array entries at

the sending end�

row�wise method lattice method
s� b� s� b� �I� �II� conventional deposit conventional deposit

� � � � � � ��
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�
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� �
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��

Table �� Experimental study � when strides si � block sizes bi�

��� Saxpy Operation

We study the e�ectiveness of di�erent block sizes using the following benchmark code� which performs

a saxpy operation�

forall i � �� �����

A������ i � �� � A����� � i � �� � saxpy con � C�� � i � 
��

where saxpy con is a #oating�point constant� In addition� array A is distributed by a cyclic�b��

distribution� array C is distributed by a cyclic�b�� distribution� Table � lists the experimental results

��



for implementing this saxpy operation with various block sizes� b� and b�� using the closed�form version

algorithm� The experimental results can be summarized as follows�

b� � � �� ��
 ��
 �	�� 	
�� �
���
b�

� PE �	� ���� �	� ��� ��� ��� ��� ���
� � PE ��� ��� �	� ��� ��� ��	 ��	 ��	

� PE ��� ��	 �	� ��
 ��	 ��� ��� ���
�� PE ��� ��� �	� ��
 ��	 ��� ��� ��
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 �
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Table �� Execution time �millisecond� of computing the saxpy operation using 
 PEs� � PEs� � PEs�
and �� PEs� respectively� Array A was distributed by a cyclic�b�� distribution� array C was distributed
by a cyclic�b�� distribution�

�� The execution time of computing the cases where b� � s� � h and b� � s� � h � h
� was close to

that of cases where b� � s� � h � h� and b� � s� � h�


� When h� was less than the number of PEs� the execution time became better when h� was close

to �� This is because� in these cases� each block of array C in PEp �	botl�C� p� k� � topl�C� p� k���

intersected with at most one referenced block of arrayA in PEq �	botf�A� q� j� � topf �A� q� j� � s����

��



and vice versa� Therefore� some optimization could be obtained by using two�nested closed forms

to represent sendC�p� q� and recvC�p� q� instead of using the proposed formulas� which use three�

nested closed forms to represent the above two sets� sendC�p� q� and recvC�p� q�� In addition�

each PE needed to send data messages to at most �h� � �� PEs� Therefore� the communication

time was reduced when h� became smaller�

�� When h� was larger than or equal to the number of PEs� the execution time improved when

the block sizes b� and b� increased in size� This may demonstrate that our algorithm favors

cases where block sizes are large because in these cases the indexing overhead for packing data

messages is not signicant�

�� All the cases except three showed scalable improvement when the number of PEs grew� Three

exception cases were when the number of PEs was ��� b� � ���
� and b� � 
 or b� � �� and

b� � � and b� � ������ This is because� in these extreme block to cyclic cases or cyclic to

block cases� the indexing overhead for packing data messages was signicant� in addition� the

communication overhead also became worse when the number of PEs grew because of certain

all�to�all communications�

�� Because the iteration space was linear and each PE executed roughly the same number of itera�

tions� there was no load unbalance problem� Therefore� according to the communication oracle�

it was preferable to choose large block sizes b� and b�� From Table �� we can summarize that it

is preferable to choose block sizes b� 
 �� and b� 
 �
 for this saxpy operation�

�� The cases where b��� � b��
 ran faster than did other cases where b� 
 �� and b� 
 �
� This

result is consistent with the suggestion concerning the algorithm in Section ����

��� Data Re�distribution

Consider the following data re�distribution operation�

forall i � �� 
�����

A�i� � OLD A�i��

where array A is distributed by a cyclic�b�� distribution� array OLD A is distributed by a cyclic�b��

distribution� Table � lists the experimental results of implementing this data re�distribution operation

��



with various block sizes� b� and b�� The experimental results show that the behavior of the execution

time of this data re�distribution operation was similar to that of the saxpy operation� From Table ��

we can summarize that it is preferable to choose block sizes b� 
 �� and b� 
 �� for this data

re�distribution operation�
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Table �� Execution time �millisecond� of performing the data re�distribution operation using 
 PEs�
� PEs� � PEs� and �� PEs� respectively� Array A was distributed by a cyclic�b�� distribution� array
OLD A was distributed by a cyclic�b�� distribution�

In the above three experimental studies� we assumed that the problem variables and the number of

PEs were given at run time� Therefore� each node had to compute all the boundary indices of closed

forms at run time� In practice� for many applications� problem variables and the number of PEs are

known at compiling time� Then� boundary indices of closed forms can be computed in advance at

��



compiling time� and the resulting execution time can� thus� be even better than expected�

	 Related Work

Koelbel and Mehrotra rst provided closed�form representations for special cases where l� � � and s� �

�� and where arrays are distributed in block or cyclic distributions 	
�� 
��� The following researchers

were concerned with block�cyclic �cyclic�bi�� distributions� however� none of them obtained closed�

form representations� Stichnoth et al� pointed out that a cyclic�bi� distribution can be regarded as a

union of bi cyclic��� �cyclic� distributions� Since there exist closed forms to represent communication

sets for cyclic distributions� communication sets for block�cyclic distributions can be represented by a

union of b� � b� closed forms 	���� Gupta et al� proposed closed forms for representing communication

sets for arrays that are distributed using block or cyclic distributions� These closed forms are then

used with a virtual processor approach to give a solution for arrays with block�cyclic distributions�

The virtual�block �or virtual�cyclic� approach views a block�cyclic distribution as a block �or cyclic�

distribution on a set of virtual processors� which are then cyclically �or block�wise� mapped to the

physical processors 	�
� ���� The virtual�block approach is suitable for cases where block sizes are

large� the virtual�cyclic approach is suitable for cases where block sizes are small� Kaushik et al�

extended the virtual processor approach to array statements involving arrays aligned with distributed

template arrays and mapped using a two�level mapping 	���� The above two approaches did not uncover

periodic patterns in communication sets� Benkner et al�� instead� utilizing periodic properties� also

proposed a technique similar to 	��� which was implemented in their Vienna Fortran compiler 	�� and

Prepare HPF compiler 	���

The following researchers derived communication sets based on their proposed algorithms for com�

puting the memory access sequence of A�l� � u� � s�� in each PE� where array A is distributed by

cyclic�b��� Chatterjee et al� enumerated the local memory access sequence based on a nite�state

machine �FSM�� Their run�time algorithm involves a solution of b� linear Diophantine equations to

determine the pattern of accessed addresses� followed by sorting of these addresses to derive the ac�

cesses in a linear order� The time complexity of determining the rst period of accessed addresses is

O�b� log b� � log�minfNb�� s�g��� which is dominated by the sorting phase� and O�log�minfNb�� s�g��

time is needed to perform an extended�Euclid algorithm� which is used to solve b� linear Diophantine

��



equations� To generate communication sets� each PE makes a single pass over the RHS data in its local

memory using the FSM technique� determines the destination of each data element� and packs ele�

ments using an address�value pair 	��� Their approach� however� requires an explicit local�to�global and

global�to�local index translation for each referenced address�value pair� In addition� the computation

phase and the communication phase of their method cannot be overlapped because communication

between PEs can take place only after all the data to be sent has been packed into the send bu�ers�

and the receive�execute step can be performed only after each PE has received all the communication

sets�

Hiranandani et al� also presented algorithms which were based on an FSM for computing the

local memory access sequence� They did not sort accessed addresses� instead� they constructed a

memory�access�gap table and solved additional b� linear Diophantine equations to determine a start�

ing point� After that� the memory access sequence can be enumerated in linear time� The time

complexity of constructing their memory�access�gap table and of determining a starting point is

O�b� � log�minfNb�� s�g��� To calculate communication sets� they used a scanning technique simi�

lar to the merge sort to compute the intersection of two reference patterns corresponding to the LHS

and the RHS array subscripts 	���� Their methods� however� incur certain run�time overheads due to

indirect addressing of data�

Kennedy et al� adopted an integer lattice method to generate the memory access sequence� They

solved O�b�� gcd�Nb�� s��� linear Diophantine equations to determine the distance vectors Rv and Lv �

after that� the memory access sequence could be enumerated in a linear time 	
�� 

�� The time

complexity of deriving the distance vectors is O�b�� gcd�Nb�� s��� log�minfNb�� s�g��� We notice that

the pair of distance vectors found by Kennedy et al� is the best� However� they did not provide closed�

form expressions of the distance vectors for certain interesting cases� To compute communication sets�

they went through one pass over the locally owned RHS �LHS� data using their integer lattice method�

then� they packed elements into send �receive� bu�ers according to a processor table 	
��� According

to the results of their experimental studies� the table construction overhead of their technique is

signicantly smaller than that incurred by the virtual processor approach 	���� which incurs substantial

overhead in mapping communication sets from virtual processors to physical processors� Their method�

however� like that in 	��� cannot overlap the computation phase and the communication phase�

��



Thirumalai et al� presented closed�form expressions for distance vectors for certain cases while

deriving the memory access sequence 	���� According to their experimental study� they were able to

improve the execution time when s� � b�� however� when stride s� is larger than block size b�� their

method may be worse than the methods in 	
�� 

�� This is because their method cannot always

nd the best pair of distance vectors for certain cases� To deal with communication sets� they only

handled a special case where b� � b� � b� They found that the send pattern of the RHS array repeated

after every r� � r � s���Nb� rows� and that the access pattern of the LHS array repeated after every

r� � r � s���Nb� rows� where r � lcm�Nb� gcd�s�� Nb�� Nb� gcd�s�� Nb��� Each PE scans the memory

access sequence of the RHS �and LHS� array of the rst r� �and r�� rows to accumulate send �and

receive� sets 	��� ���� They also proposed course �row� padding and column padding techniques to

enhance the data locality of references 	���� Their method� however� requires additional memory to

store processor indices� addresses and corresponding data� In addition� as in 	��� the computation

phase and the communication phase cannot be overlapped�

Furthermore� Ancourt et al� 	��� van Dongen 	��� and Le Fur et al� 	��� expressed the communication

sets and the iteration sets as sets of integer linear constraints� which correspond to polyhedrons� Then�

the execution of generated code consists in scanning these polyhedrons� Midki� formulated the local

iteration set by means of linear Diophantine equations� which� then� are converted as a nested loop�

the bounds of which have closed�form expressions 	�
�� His method� however� requires computation of

all the loop bounds� even when some bounds may be not necessary when strides � blocksizes� van

Reeuwijk et al� also presented a technique� based on resolution of the associated linear Diophantine

equations� to illustrate row�wise and column�wise data allocation and addressing schemes 	�
�� Coelho

et al� 	�� discussed the pros and cons of using closed forms� FSM or the integer lattice method� and

polyhedron theory�

For experimental studies� Wang et al� 	��� presented a comprehensive study of the run�time perfor�

mance of the code generated from three classes of published algorithms� linear algebraic methods 	�
��

table�driven methods 	�� 
�� 
�� 

� ���� and set�theoretic methods 	�
� ���� Their conclusion is that

for the array assignment statement A�� � n � s� � s�� � B�� � n � s� � s��� the best rule of thumb is

to use the LSU 	��� algorithm for small block sizes� and the OSU 	�
� algorithm for large block sizes�

In addition� Li and Chen proposed methods to generate aggregate communication operations based on

��



pattern matching techniques 	���� Wu presented an algebraic transformation framework which allows

a compiler to optimize data movement for a sequence of Do loops at an abstract level without going

into machine�dependent details 	���� Wolfe gave a detailed tutorial for message�passing machines 	����

Next� for the special case where the parameters a� � c�� a� � c�� l� � l� � �� and s� � s� � ��

the target problem is reduced to a data re�distribution problem� Research on this data re�distribution

problem also has been reported 	��� 	��� 	��� 	��� 	��� 	��� 	����

	�� Comparison with Two�level Mapping Model

It is instructive to illustrate that under the two�level mapping model� there are no closed�form expres�

sions for communication sets for arbitrary accessed strides� and under our model� we can represent

communication sets by closed forms�

Two�level mapping model�

For instance� HPF provides directives which allow programmers to specify the data distribution�

Consider the following directives�

REAL A��a�� � a���� � � �� An�an� � an��
$HPF% PROCESSORS PES�N�
$HPF% TEMPLATE T � � �
$HPF% ALIGN A��i� WITH T �d� � i� e��
���

���
$HPF% ALIGN An�i� WITH T �dn � i� en�
$HPF% DISTRIBUTE T �cyclic�b�� ONTO PES�

In the rst level� array element Aj�i� is aligned to a template cell dj � i � ej � where dj is called an

alignment factor and ej is called an alignment o�set� In the second level� the template is distributed

across N PEs using a cyclic�b� distribution� Then� elements of array Aj are mapped onto processors

according to this two�level mapping�

The corresponding local address for element Aj�i� is summarized in Table ��� Readers can check

that one requires six parameters �i� dj � ej � N � b� and t� for referencing one element Aj�i� under the two�

level mapping model� where t � min�� j�fdj �aj��ejg� which is the smallest index of the template 	����

However� we only require four parameters �i� aj�� N � and bj� for referencing one element Aj�i� under

our model� Thus� the two�level mapping model is more complicated than our method� Furthermore�

under the two�level mapping model� the numbers of elements between two local blocks may be di�erent�

��



which prevents use of closed�form representations for communication sets�

local address two�level mapping our method

processor ID b��dj � i� ej � t� mod �bN ���bc b��i � aj�� mod �bjN ���bjc
block b�dj � i � ej � t���bN �c b�i � aj����bjN �c
o�set b��dj � i � ej � t� mod b��djc �i � aj�� mod bj

max block size db�dje bj

Table ��� The corresponding local address for element Aj�i� based on two models� where t �
min��j�fdj � aj� � ejg� which is the smallest index of the template�

For an array assignment statement A��l� � u� � s�� � A��l� � u� � s��� closed�form expressions

for communication sets exist only when b��d� � s�� is a multiple of b��d� � s�� or when b��d� � s�� is

a factor of b��d� � s��� That is� b must be a multiple of both d� � s� and d� � s�� in addition� either

d� � s� is a factor of d� � s�� or d� � s� is a multiple of d� � s�� However� d� � s� and d� � s� generally

do not have any factor or multiple relationship between each other� That is� for arbitrary accessed

strides s� and s�� closed�form representations for communication sets are not guaranteed� As shown

in experimental studies described in Section �� if communication sets cannot be represented by closed

forms� the software overhead due to packing and unpacking of communication sets is high�

Our model�

Unlike the two�level mapping model� this paper only considers cases which can be interpreted as

each array Aj is aligned to a separate template� For example� the rst array element Aj�aj�� is aligned

to the rst element of the corresponding template� When dealing with HPF� if the alignment factor

dj is equal to �� there has a one�to�one correspondence between elements of the physical array Aj and

cells of the virtual template array� However� if the alignment factor dj is not equal to �� there are holes

for a factor of dj � � when the physical array Aj is aligned to the virtual template array� The o�set

alignment can be improved in a preprocessing phase as follows� Let t � min��j�fdj � aj� � ejg� If the

alignment factor dj is equal to �� we can extend the left boundary of array Aj from aj� to a�j� � t� ej �

That is� we can extend array Aj�aj� � aj�� to Aj�t�ej � aj��� so that the rst array element Aj�t�ej �

is aligned to the rst template cell T �t��

On the other hand� if the alignment factor dj is not equal to �� we can extend the left boundary of

array Aj from aj� to a�j� � �aj��b�dj �aj��ej � t��djc�� That is� we can extend array Aj�aj� � aj�� to

Aj�aj��b�dj �aj��ej � t��djc � aj��� so that the rst array element Aj�aj��b�dj �aj��ej � t��djc� is

�




aligned to the template cell T �dj �aj�� ej �dj � b�dj �aj�� ej � t��djc�� which is very close to the rst

template cell T �t�� Note that� the additional boundary array elements Aj�a
�
j� � aj� � �� need not be

allocated physical memory space� Since most alignment constraints are satised� especially� for those

arrays whose alignment factors dj are equal to �� thus� communication overhead may be reduced�

After the preprocessing phase� depending on accessed strides sj � block sizes bj can be determined

by compilers as indicated in Section ���� where the closed�form conditions in Table � can be changed

to a set of more restricted ones that b���d� � s�� is a factor or a multiple of b���d� � s��� �For instance�

let s�� � d� � s� and s�� � d� � s� in Table ��� Note that� the closed�form conditions shown in Table �

have already guaranteed that communication sets can be represented by closed�form expressions� The

new su�cient conditions� which emphasize that b���d� � s�� is a factor or a multiple of b���d� � s��� are

dealing with alignments having arbitrary alignment factors d� and d�� Note that our model is powerful

enough to deal with the ScaLAPACK library 	��� in which all alignment factors dj are equal to ��


 Conclusions

We have presented three methods for deriving communication sets� all three of which utilize periodical

properties of communication sets� The rst and the second methods deal with cases where data arrays

are distributed in the most general regular data distribution� The rst method adopts row�wise block�

to�block intersections� the second method adopts an integer lattice method� But none of them can

derive communication sets using a constant number of closed forms� The third method emphasizes

that compilers can assign suitable block sizes for data distribution� so that communication sets can be

represented using a constant number of closed forms� For example� sendC�p� q� can be represented by

the union of at most three closed�form expressions with at most eight boundary unknowns�

We have carried out experimental studies on a ���node nCUBE�
E parallel computer� The results

of these experimental studies support the idea that block sizes should be determined by compilers�

then� software overhead for generating communication sets will not be signicant� As for cases where

block sizes are arbitrary� each of the proposed row�wise version method and the lattice method has its

special niche� as has been summarized in Section ���� However� these two methods require from ��&

up to 
��& more software overhead than does the �third� closed�form version method for similar block

sizes�

��



In order to give an easy�to�understand presentation� although in this paper we derived communi�

cation sets using the global name space� it was straightforward to map these sets to corresponding sets

using the local addresses when we implemented experimental studies on a ���node nCUBE�
E parallel

computer� Our experimental studies also showed that the indexing overhead of the proposed meth�

ods scaled well as the number of PEs increased� Our rst and third methods� basically� are row�wise

approaches� which are especially e�cient when block sizes are �not too small� medium size or large�

However� if block sizes are very small� then the method of Stichnoth et al� 	��� is recommended�

We have studied array assignment statements in this paper� If the alignments and distribu�

tions of each dimension in a multi�dimensional array are independent of one another� extension of

our approach to multi�dimensional arrays is straightforward� For instance� suppose that the two�

dimensional data arrays A and C are distributed on an NN processor mesh by �cyclic�b��� cyclic�b���

and �cyclic�b��� cyclic�b���� respectively� Then� for a two dimensional array assignment statement

A�l� � u� � s�� l� � u� � s�� � C�l� � u� � s�� l� � u� � s��� sendC��p�� p��� �q�� q��� �

sendC��p�� q��  sendC��p�� q��� where sendCk
�pk� qk� means send sets in order to perform the array

assignment statement Ak�lk � uk � sk� � Ck�lk�� � uk�� � sk���� for k � � or 
� Ak and Ck are the

k�th dimensions of A and C� respectively� and �� is a Cartesian product operator�
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Figure �� �a� The memory access sequence of A�� � i � 
�� for i 
 �� by PE�� �b� sendC�p� ��� for
� � p � 
� which represent elements of array C and will be sent to PE��
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