
In�Kernel Policy Interpretation for

Application�Speci�c Memory Caching Management�

Paul C� H� Leey Meng Chang Chenz Ruei�Chuan Changx

Department of Computer and Information Scienceyx

National Chiao Tung University

Hsinchu� Taiwan ������ R�O�C�

Institute of Information Sciencezx

Academia Sinica� Taipei ���	
� R�O�C�

�This research work was partially supported by the National Science Council of Republic of
China under grants No� NSC��������E�������� and NSC���		���E�������
�

yPaul C� H� Lee is a full time Ph�D student at the Department of Computer and Information
Science� National Chiao Tung University� Hsinchu� Taiwan� R�O�C�

zMeng Chang Chen is with the Institute of Information Science� Academia Sinica� Taipei�
Taiwan� R�O�C�

xRuei�Chuan Chang is with the Department of Computer and Information Science� National
Chiao Tung University� Hsinchu� Taiwan� R�O�C� and the Institute of Information Science�
Academia Sinica� Taipei� Taiwan� R�O�C�

SUMMARY

Traditional operating systems manage the page frame pool with the LRU�like

policies which cannot properly serve all types of memory access patterns of various

applications� As a result� many memory�intensive applications induce excessive

page faults and page replacements when running with access behaviors other than

the LRU�like patterns� This paper presents a high performance external virtual

memory caching mechanism �hipec� to allow user applications to run with their

own speci�c page frame management policies� The user applications inform the

operating system of their speci�c management policies by loading a set of macro�

like commands to the kernel� When page faults or page replacements happen�

the operating system will interpret the commands and perform the corresponding

speci�c management policies� The empirical evaluations show that the hipec

mechanism induces little overhead and signi�cantly increase the application and

system performance�

Keywords� hipec� resource management� page replacement� caching� FIFO	�SP�

� INTRODUCTION

The advances in computer technologies have increased the processor speed sev�

eral times in the passed decade� However� the disk I
O performance is little

improved to catch up with the processor speed� As a result� the main memory

is used as the bu�er cache to reduce the performance gap between the processor

and the storage device� Traditionally� the operating system manages the bu�er

cache pool with the LRU�like policies �
�� which can serve applications in time�

sharing environments with satisfactory performance� but not for those speci�c�

memory�intensive applications� such as the database management systems �	���

the multimedia applications �	�� and the scienti�c simulators �
��� These spe�

ci�c applications with access behaviors other than the LRU�like patterns would

induce excessive page faults and page replacements when running on top of ex�

isting operating systems� Since page replacement operations usually involve disk

I
O activities� the performance of these memory�intensive applications degrades�

The mismatch between the application access behaviors and the operating

system page frame management policy can be improved by delegating the page

frame management policies to user applications� Since the user applications know

their access behaviors� when page faults or page replacements happen� the user

applications can decide to return the least important page frames� Traditionally�

such delegating mechanism is implemented in Upcall �	�
�� or IPC �
�� 		� by

transferring control from the operating system kernel to the user applications�

These traditional domain�crossing techniques creates evident overhead in trans�

ferring control and passing messages� which compromise system performance�

In this paper� we challenge the necessity of domain crossing for delegating the

page frame management policies to applications� A high performance external

virtual memory caching mechanism �hipec� �
��
�� is proposed to allow user

applications to prepare and perform their own speci�c page frame management

policies� By loading a set of macro�like commands to the operating system�

the user applications inform the operating system of their speci�c management

policies� When page faults or page replacements happen� the operating system

will interpret the commands and perform the corresponding speci�c management

policies to suit the access patterns of user applications� Hipec does not create any

domain�crossing overhead which is more e�cient than the traditional domain�

crossing techniques�

� MOTIVATION AND DESIGN ISSUES

When compared to the traditional in�kernel page frame management mechanism�

the overhead created from the domain�crossing techniques can be characterized

as follows� First� transferring control from kernel to user applications needs to

save the current kernel mode context and load the new user mode context� The

overhead includes saving and loading the register set� changing the stacks� passing

	

arguments� and executing the speci�c management routines� Second� the applica�

tions need to invoke system calls to obtain system status in making speci�c page

frame management decisions� since direct accesses from user applications of the

kernel data structures are prohibited� For example� when determining the dirty

page frames to be �ushed� the user applications need to invoke system calls to get

the modi�ed bits information �
��� Third� extra scheduling overhead is generated

if the operating system has to reclaim page frames from a bundle of speci�c ap�

plications� Previous implementations �
�� 		� extending page frame management

policies created
�� to
�� overhead that follow the above observations�

Unlike the domain�crossing techniques� the hipecmechanism uses the in�kernel

policy interpretation approach to extend the page frame management policies�

Figure
 illustrates the sketch of the hipec mechanism� Initially� �
� each speci�c

policy� represented by a set of macro�like commands� is loaded into the kernel�

Later on� when any page fault happens� as �	�� the page fault handler asks the

frame manager for a free page frame� shown in ���� This request is satis�ed

immediately when there remain free page frames in the system� If the free page

frames are exhausted� the frame manager starts to reclaim page frames from

the user applications� The frame manager selects victim applications and ���

interprets their speci�c management policies to decide the page frames to be

reclaimed� When enough page frames are reclaimed� the frame manager stops

the reclamation operations and ��� transfers control to the originally faulted

application� This design has several advantages�

� Performance� Application performance and overall system throughput

are increased� if all the applications know their access patterns and manage

their resources accordingly for which hipec is intended� As there is no

domain�crossing in the hipec mechanism� the overhead is nominal�

� System safety� The speci�c page frame management policies of user ap�

plications� written in the hipec commands� are performed by the operating

systems� The kernel resources are protected from direct accesses of user

�

Frame Manager Fault Handler
D

ev
ic

e
D

ri
ve

r

Applications

Kernel

Multimedia

....
application

Scientific
Simulator

DBMS

....policy commands

storage

(1) (1) (2) (1) (5)

(4) (4)

(3)

Figure
� The proposed hipec approach�

applications which keeps the system safe from malicious applications� Ad�

ditional mechanisms of the hipec implementation further protect the op�

erating system from misbehaved policies� The detail of these protection

mechanisms are described in Section ��

� Generality� The set of hipec commands can be treated as an interface

between the user applications and operating systems� The hardware archi�

tecture and the detail of the operating system internals are shielded from

the application designers when program their speci�c page frame manage�

ment policies� The applications and their speci�c page frame management

policies can be ported to other systems support hipec�

� Flexibility� Though the number of current hipec commands is small� vari�

ous policies can be implemented using the commands without any problem�

The hipec approach is �exible as additional commands can be added into

the hipec command set� In addition� a language�like pseudo code trans�

lator is implemented to provide convenience and further �exibility for the

application designers�

�

We present the design and implementation of hipec in Section �� The mech�

anisms of hipec to keep the system safe are described in Section �� Section �

shows the performance evaluations� We review the related works in Section �

and conclude the paper in Section ��

� DESIGN AND IMPLEMENTATION

The hipec implementation is built on the OSF

 MK� operating system�� Hipec

works with the Mach external memory management �EMM� interface to fully

support application�controlled external memory caching management� With this

extension� user applications can control the paging activities of virtual memory�

mapped data via the EMM interface and handle the caching management of that

virtual memory region� However� the concept and implementation of hipec are in�

dependent of EMM interface and can be easily applied to other operating systems�

��� Overview

The primary components of hipec implementation are the hipec commands� the

application�speci�c page frame management policies and the hipec container�

They are described respectively in the following sections�

Two kinds of hipec interface are exported to the user applications� One is

for the privileged applications and the other is for the general �i�e� unprivileged�

applications� For the privileged invocations� the frame manager allocates the re�

quested size of page frames to the applications� Before the privileged application

is terminated� no page frame reclamation is allowed to the allocated page frames�

If the remaining free page frames cannot satisfy the privileged requests� an error

indicator is returned to the applications� For the unprivileged applications� the

frame manager will not allocate any page frame to them until page faults happen�

and the page frames are subject to be selected for reclamation� When the system

�OSF�� MK
 is a microkernel operating system that uses the Mach nmk���� kernel and runs
the OSF��
���	 server�

�

No� Command Binary Operations

�� Return �������� The end of execution�
	� Arith �������� Arithmetic operations for Integer�

�� Comp �������� Comparison operations for Integer�
�� Logic �������� Logical operations�

� EmptQ �������� Test if the speci�ed queue is empty�

�� InQ �������� Test if the speci�ed page is in the speci�ed queue�
�� Jump �������� Branch to next command�
�� Dequeue �������� Move the speci�ed page from a speci�ed queue�

� EnQueue �������� Add a speci�ed page to one queue�

��� Request �������� Request page frames from the system�
��� Release �������� Release page frames to the system�
�	� Flush �������� Flush page content to disk�

��� Set �������� Set or reset the referenced or modi�ed bits�
��� Ref �������� Test if speci�ed page is referenced�
�
� Mod �������� Test if speci�ed page is modi�ed�

��� Find �������� Find the speci�ed page if giving the virtual address�
��� Activate �������� Invoke another policy event�

Table
� The hipec command set�

free page frames are exhausted� the frame manager will select the victim applica�

tions to reclaim the page frames and perform page replacements� The page frame

reclamation policy is described in Section ����

��� Hipec commands

The hipec commands are a set of �	�bits commands which consist of an ��bits

operator code and up to two operands� There are four data types for the operand

variables� the Integer� �Integer� �Page and �Queue�� Each command is imple�

mented as a macro or a procedure call of the virtual memory management oper�

ations� such as adding a page frame to a speci�ed queue or �ushing page frames�

The details of operating system internals are shielded behind the exported hipec

commands� The application designers program their page frame management

policies in the hipec commands and need not pay attention to the kernel imple�

mentations� Table
 lists the currently implemented hipec commands� The detail

syntax and usage of the hipec commands are described in the hipec document �
���

�The ��� means the pointer to the speci�ed data type�

�

��� Application�speci�c page frame management policy

The application�speci�c page frame management policies are programmed in the

hipec commands� Each policy contains at least three mandatory segments of pol�

icy commands� named the Initial event� the PageFault event and the Replace

event� When the hipec interface is invoked� the commands of the Initial event

are interpreted to initiate the operand variables by building a new kernel data

structure� called the container� to store the operand variables� The container is

introduced in next section�

The PageFault segment is interpreted when page fault occurs� After the page

fault handler grants a page frame and maps the physical address to the faulted

address� the PageFault event is interpreted by the page fault handler to perform

housekeeping operations� such as recording the physical and virtual address of

the mapped page frame for future uses� The Replace event is interpreted when

the application is requested to return page frames� Applications use the Replace

event to select the least important page frames� according to their access patterns�

to be reclaimed� As the allocated page frames of the privileged applications can

not be reclaimed by the operating systems� the Replace event of privileged appli�

cations is invoked by the PageFault to select one of its allocated page frames to

locate to the faulted address� when the allocated free page frames are exhausted�

Alternately� for the unprivileged applications selected to return page frames� the

Replace event is interpreted by the frame manager to reclaim page frames and

do page replacement operations� In addition to the mandatory events� applica�

tion may de�ne 	�� events in maximum� The non�mandatory events are used as

subroutines and are invoked by other events by the Activate command� A user

level pseudo code translator is implemented to help the application designers with

designing the high level� language�like page frame management policies� Figure 	

is an example of the speci�c page frame management policy in the pseudo code

and translated code�

�

Figure 	� Example of implementing the First In First Out with Second chance
page frame management policy�

�

��� Hipec container

On the Mach operating system� the virtual address space of each application is

divided into a set of virtual memory regions that each can be represented as a

VM object� A VM object can be a memory�mapped data �le or a segment of

address space with the same protection attributes� A new kernel object� called

the hipec container� is introduced that is mounted under the corresponding VM

object that requires speci�c page frame management policy to store the hipec

related information� The container data structure is allocated from the zone

system �	
��

The hipec container is primarily used to store the operand variables of hipec

commands� The operand variables and the pointers to the operand variables

are stored in the operand array of the container� When the hipec invocation is

initialized� the hipec commands are loaded into the operating system kernel and

the Initial event is interpreted to allocate the operand variables from the hipec

container and assign the index number to the operand array for each operand

variable� Figure � shows the relationship among the hipec commands� the con�

tainer and the operand variables�

(*queue)

0 8 16 24

Container

...

operand
array

(int)

(*page)

Kernel

User Application

Multimedia

ApplicationsSimulator

Scientific
DBMS

(*int)

...

Command Operand Operand Flag

Figure �� The hipec container�

�

vm_pageout_scan(){
while(vm_page_free_count < vm_page_free_target) {

page = dequeue(vm_page_inactive_queue);
if(page->referenced | |

pmap_is_referenced(page->phys_addr)) {
enqueue(vm_page_active_queue, page);

} else {

if (page->hipec == TRUE) {

reclaim_page = interpreter(current_task->map->object->container->Replace);

if(reclaim_page != page) {

set_timeout(timeout_detecting_function, TimeQuantiumOfScheduling);

reset_timeout(timeout_detecting_function);

}

swap_location(*page, *reclaim_page);
insert_holder(page, reclaim_page);
page = reclaim_page;

}
}

}
}

enqueue(vm_page_inactive_queue);
page->referenced = FALSE;
pmap_clear_reference(page->phys_addr);
page = dequeue(vm_page_active_queue);

while (vm_page_inactive_count < vm_page_inactive_target) {
}

if (page->dirty) flush(page);
enqueue_(vm_page_free_queue, page);

Figure �� The FIFO	�SP page frame reclamation policy� The FIFO	�SP policy is
modi�ed from the FIFO	 policy� The added components are boxed by the dashed line�

�

��	 Page frame reclamation policy

Mach kernel uses the FIFO	� policy to manage the system page frame pool

by maintaining the active� inactive and free queues �
��� Page frames that are

allocated to user applications are linked either to the active or the inactive queues�

while the free page frames are linked to the free queue� Each time as the free page

frames are exhausted� the frame manager is waken up to reclaim pages from the

head of the inactive queue� Page frames that have been referenced since the last

page reclamation activity get the second chance and still reside in the inactive

queue� Otherwise� the victim pages are reclaimed and moved to the free queue�

The FIFO��SP page frame reclamation policy

Hipec uses the FIFO	�SP� policy� modi�ed from the FIFO	 policy in the Mach op�

erating system� for the frame manager to select victim unprivileged applications�

to reclaim page frames� The FIFO	�SP policy is listed in Figure � and is de�

scribed as follows� When to reclaim page frames� the frame manager is waken

up to examine the page frames in the same order as the original FIFO	 policy�

i�e� page frames in the head of the inactive queue are selected as the victim page

frames� However� the hipec frame manager does not directly reclaim the victim

page frame� rather it select the application owns the page frame as the victim ap�

plication� The frame manager will interpret the Replace commands of the victim

application and reclaim the page frame suggested by the Replace commands�

Swapping locations of the selected page and the reclaimed page

Before reclaiming the application�suggested page� the frame manager�selected

victim page is removed from the inactive queue and inserted to the location of the

reclaimed page� This movement is called Swapping that prevents the same page

�First In First Out with Second chance page frame reclamation policy�
�The First In First Out with Second chance� Swapping page locations and Holder policy�
�Page frames belonging to privileged hipec applications will not appear on the FIFO	 queues�

Those page frames are under the control of the privileged applications�

frame repeatedly selected as victim page and the same application repeatedly

selected for reclaiming page frames� Swapping locations makes the FIFO	�SP

policy as fair as the original Mach FIFO	 policy�

Building holder to record reclamation decision

The reason to have speci�c applications to decide the page frames to be reclaimed

is that applications should know their access patterns better� However� appli�

cation designers might make mistake in designing the page frame reclamation

policy� I�e� the application�suggested reclaimed page will be referenced before

the frame manager�selected victim page� which should have been replaced� Two

major problems occur due to the bad replacement decisions�

� The bad application�speci�c page replacement decision will incur extra page

faults to that application that cause the frame manager to allocate extra

free page frames to that application� This problem should be avoided since

the system resource should not be monopolized by some applications�

� When the number of remaining free page frames is small� the excessive page

faults and page frame allocations tends to incur the page reclamation oper�

ations� As a result� other applications with pages in the head of the inactive

queue will be requested to return pages and are in�uenced or penalized for

the bad page frame replacement decisions of other applications�

Above mentioned problems can be avoided by introducing the holder table�

A holder is a data structure used to record the discrepancy between the frame

manager�selected page and the application�suggested reclaimed page� When

application�speci�c page replacement decision is di�erent from the frame man�

ager� a holder is built within the holder hash table� The virtual address of the

reclaimed page is used as the hash key value that is recorded in the holder to�

gether with the pointer to the frame manager�selected page� Later on� when

page fault happens� if the page fault handler �nds a holder hashed by the faulted

	

frame manager

R

S

free queue

active queue

inactive queue

R

S

free queue

inactive queue

active queue

free queue

inactive queue

active queue

free queue

inactive queue

active queue

R

selected
page

reclaimed
page

holder hash table

holder hash table

holder hash table

holder hash table

(1)

(2)

(3)

(4)

(R, pmap)hash key:

S

R

...

...

...

...

...

...

...

R

page fault handler

Figure �� Example of using swapping and holder of the FIFO	�SP reclamation
policy� ��� When the selected page�S� is to be reclaimed� the frame manager interprets the

Replace event of the victim application and reclaims the R page instead� �	� R and S pages are

swapped� Then� the R page is reclaimed into the free queue� In addition� a holder is inserted

into the holder hash table to indicate the exchange� ��� Later on� when page fault happens� the

page fault handler will check the holder of the faulted address� ��� If the faulted virtual address

R is found in the hash table and the referenced bit of the pointed page�S� has not been set�

the page fault handler amends the previous bad decision by reclaiming the S page frame and

mapping that physical page frame to the faulted virtual address �R��

address� it checks the referenced bit of the page pointed by the holder� If the

pointed page is not accessed since the holder is built� the previous application�

speci�c page replacement decision is wrong� The page fault handler will unmap

the previous frame manager�selected page� map the physical page frame to the

faulted address and clears the holder� Figure � gives an example of the swapping

and holder mechanisms of the FIFO	�SP policy�

� SYSTEM SAFETY

To keep the system safe is one of the fundamental functionalities of the operating

system� Hipec is e�cient in delegating the page frame management policies to

user applications� nevertheless� hipec invocation of bad application�speci�c poli�

cies may crash or monopolize the system and� thus� induce safety problem� The

safety problems and the solutions of the hipec approach are described as follows�

�

Syntax checking for dangling references

The operand �elds of the hipec commands may have reference of non�existent

variables or with wrong data type� Interpreting the erroneous commands will

reference the wrong operands or destroy other kernel data structures� Our so�

lution to avoid the dangling references is to check the syntax of the commands

before loading the policy into the kernel� Since each operand variable is initialized

before loading the hipec commands� the existence and data type of each operand

can be easily checked�

Runtime checking

Though static syntax checking can avoid the dangling references� some dynamic

errors are hard or even impossible to be discovered from the syntax checking� For

example� one application may have the Arith command to divide an integer by

an operand with zero value� Or an application may try to get a page frame from

an empty queue by DeQueue command� In hipec� before executing each hipec

command� its corresponding conditions are dynamically checked�

Timeout of policy execution

The other safety problem of hipec is long or in�nite execution time for interpreting

the application�speci�c policies� Since the policy is interpreted in kernel mode by

the page fault handler or the frame manager� the interpretation operations cannot

be preempted until �nished� Consequently� a long or in�nite policy interpretation�

resulting from a badly written policy� will monopolize the system�

Two mechanisms are designed to prevent the problems� When a page fault

happens� the page fault handler will interpret the PageFault event of the faulted

application� Before starting to interpret any command� a timeout function is in�

serted into the clock timeout list� When the inserted timeout duration is expired�

the clock interrupts the interpretation and sets the timeout �ag in the container�

The page fault handler checks the timeout �ag before every command interpre�

tation that it will detect the timeout� move to invoke the blocking routines to

�

give up the processor and perform context switching� As the page fault handler

runs in the context of the faulted application� the blocking invocation causes the

faulted application to be blocked� The blocked application will be awaken to con�

tinue its policy interpretation in next scheduling time quantum and be arranged

to the right location of the run queue by calculating the priority according to its

system resource consuming� The timeout detection mechanism is active in each

scheduling time quantum as long as the interpretation continues� The design

limits the burden of long policy interpretation to the application itself only�

For the frame manager� the timeout detection mechanism is similar to that

of page fault handler� When a page fault happens and the number of remaining

free page frames is low� the page fault handler will wake up the frame manager to

reclaim page frames� The frame manager starts to reclaim page frames following

the FIFO	�SP policy to select a victim application� Then� interprets the Replace

event of the application to reclaim page frames� An timeout function is inserted

to the clock timeout list before policy interpretation� If the interpretation is not

�nished within the timeout duration� the frame manager will �nd out that the

timeout �ag is set and proceed to terminate the interpretation� reclaim the orig�

inal selected page frame and record the reclamation information in the container

of the long policy� The time spent in interpreting the commands are accounted

for each application and is used in calculating the scheduling priority� After suf�

�cient page frames are reclaimed� the frame manager wakes up the scheduler to

select the next application to run� Currently� the timeout duration is set to a

unit of scheduling time slice�

Flushing pages

As I
O operations are far slower than the processor� the CPU will be idle if a

sequence of page �ushing operations are interpreted since the interpreting routines

are not preemptive�� Hipec solves this problem by reserving a small free page

frame pool� When an application has pages to be �ushed� the system trades the

application with new free page frames from the reserved pool for the dirty pages�

�

Thus� the application needs not to wait for completion of the page �ushing� The

traded dirty pages are listed in a FIFO� queue which are �ushed to the disk

storage by the original Mach kernel pageout daemon�

� PERFORMANCE EVALUATIONS

The performance of hipec is evaluated in three aspects� First� we measure the

overhead created from hipec mechanism and give a comparison with previous

domain�crossing techniques� Second� we compare the elapsed time for single

applications running under the Mach kernel and the hipec mechanism� Third�

multiple applications are running simultaneously to compare the system perfor�

mance with and without the hipec mechanism� The Acer Altos
���� machine is

used as our experimental platform� which is an Intel ������ processor� EISA bus

based machine with
	� Kbytes on�board cache memory� The primary storage

devices are the Segate �
	��N disks attached to the AHA�
��	 SCSI adapter�

The network adapter is D�link ne		�CT Ethernet card�

	�� Measure hipec Mechanism

First� we measure the page fault handling time for accessing �� Mega bytes vir�

tual address space under both the Mach kernel and the hipec environment� A

experimental program is implemented to sequentially read
write �� Mega bytes

virtual memory of its addressing space� The read operation will cause the free

page frames to be mapped to the speci�ed virtual address space and does not

cause any disk I
O activities� while the write operations will create dirty pages

which will be paged out to the swapping storage during page replacement oper�

ation� The experimental program allocates �� Mega bytes physical memory in

the privileged hipec environment� When running under the Mach environment�

there are �� Mega bytes physical memory allocated under the Mach kernel�� To

�The First In First Out policy�
�When the OSF�� MK is booted� the OSF�� MK
 allocates about
�
� Mega bytes physical

memory in our platform to store the operating system and kernel data structures� In comparing

�

Averaged Time
Evaluations Overhead

�� Mega bytes sequential page fault
without disk I�O activities �Read operation�
Running under original Mach kernel �����
 msec
Running with hipec mechanism ���	�� msec
hipec Overhead 	����

�� Mega bytes sequential page faults
with disk I�O activities �Write operation�
Running under original Mach kernel �	��
�
 msec
Running with hipec mechanism �	��
�	 msec
hipec Overhead ��	��

Table 	� Measurement of hipec overhead�

make the comparison fair� the experimental program uses the same FIFO	 page

frame management policy when it invokes the privileged hipec service� Table 	

lists the evaluated elapsed time for the experimental program running under both

the Mach and privileged hipec environments�� Since the experimental program

running under both environments with the same FIFO	 management policy� the

di�erence of the evaluated time is considered as the hipec overhead including the

time to interpret the hipec commands and the time for hipec operations� such as

dynamic checking� The overhead of hipec� with or without disk I
O activities�

is so small that can be compensated by reducing as few as one or two disk page

I
O operations�

The hipec overhead is averaged	 to compare with IPC or Upcall� listed in Ta�

ble �� Upcalls are implemented as procedure invocations from the kernel to user

applications� The overhead is mainly in allocating new user stack and changing

control to the stack� In Mach� the IPC mechanism is implemented by message

passing� Messages are copied from the address space of the sender to the receiver�

As we do not have Upcall implementation� the cost for the system call is used

to represent the Upcall overhead� As described in previous sections� user appli�

cations using the domain�crossing techniques to implement their speci�c policies

with �� Mega bytes in privileged hipec environment� allocating �� Mega bytes physical memory
in this experiment favors the evaluation under the Mach kernel which at least has �	 Mega bytes
physical memory available for the experimental program�

�The time to initiate the invocation is not counted in the listed values�
	By �averaged�� the overhead of hipec in Table 	 is divided by the total number of pages

that is the averaged overhead per page incurred from hipec mechanism�

�

Evaluations Averaged Time
averaged overhead for hipec approach ����� � sec�page
Context Switch Overhead ���� � sec
Single Null System Call ���� � sec
Single System Call with �	 byte arguments 	��� � sec
Single Null IPC Call 	
	�� � sec
Single IPC Call with �	 byte arguments ����
 � sec

Table �� Comparison of hipec to domain�crossing techniques�

need extra system call invocations to get information in deciding their page frame

management decisions� The overhead of extending page frame management poli�

cies using Upcall or IPC is far larger than the values listed in Table �� Because

of the domain�crossing techniques usually requires context switching� the cost for

context switching is also listed�
�

	�� Performance evaluations of single applications

An instructional database management system �DBMS� and a MPEG video

player are ported to the experimental platform to evaluate the hipec mechanism�

Instead of using the traditional �le I
Os� both applications are modi�ed to use

the virtual memory mapped I
O� Three most common access patterns ��� are

presented in the evaluations�

Nested loop join operator

The join operator is one of the most important operations of relational database

management systems� Traditional LRU�like policies select the least recently used

pages to be replaced that do not match the sequential loop access pattern of the

nested join operator and cause repeated page replacements� In this evaluation�

the nested join operator runs as a hipec privilege application with a MRU�like

application�speci�c policy� The inner relation of the nested join operator is �

K bytes and the size of the outer relation is �� Mega bytes� Each tuple in the

relations is �� bytes long� The evaluation is conditioned under di�erent size of

allocated page frames�

�
The listed cost of context switching does not include the time to search through the run
queue to �nd the next thread to run�

�

Data retrieval from binary index tree

Many data retrieval systems use the hierarchical index to speed up the data access

of random stored data� The tree index �le is accessed more frequently than the

data �les because each data retrieval accesses the tree index �le �rst� Particularly�

the ancestor nodes of the index tree have higher probability to be accessed than

the descendant nodes� In this evaluation� the DBMS query randomly accessing

data tuples from the binary tree index �le is evaluated� The index �le has
�

Mega bytes and the data �le has �� Mega bytes� Each index record is
� bytes

long consisting of primary index key� pointer to the data tuple and pointers to

the left child and right child index records� Each data tuple is �� bytes� The

index tree is highly balanced with the height of 	��

The data retrieval query operator uses a simple management policy for the

memory�mapped index �le and the data �le� Page frames are classi�ed into

di�erent priority queues according to the index tree levels of the page frames�

Queues of each level are managed with the FIFO	 policy� The queues with

smaller index tree levels have higher priorities that will not be selected to return

page frames when there exist page frames in the lower priority queues� The pages

with level number larger than 		 and the data �le pages are treated as the same

priority� The elapsed times of the query randomly accessing sets of tuples of

various size are recorded�

The sequential MPEG video player

Though a fully sequential access pattern can be served e�ciently by the tradi�

tional LRU�like policy� we show here that the hipec implementation can be used

to reduce the unnecessary competition of page frames of various applications� In

this experiment� a software MPEG video player is used to play the MPEG video

data� The video data �le has
	��� Mega bytes� A database data generator is

running in background to build a �� Mega bytes database� The MPEG player

accesses the video data in sequential read pattern and the database generator is

�

a sequential write application� The video player runs as a privileged application

in hipec environment� uses a FIFO page frame management policy and is only

allocated with �� Kbytes physical memory� The database generator is unmodi�ed

for both environments�

Analysis

As the Mach kernel consumes about � Mega bytes physical memory� the size of

available physical memory for user applications is ��� ��� 	� and
� Mega bytes

respectively when the Mach kernel is booted with ��� ��� �	 and
� Mega bytes

physical memory� To make the comparison fair� when running under the hipec

environment� the applications are allocated � Mega bytes physical memory less

when under hipec environment� Table �� �� and � list the elapsed time for

applications running under the Mach and the privileged hipec environments� All

the values are the average from � independent evaluations�

Nested join operator creates an interesting phenomenon� When the size of

available physical memory is smaller than the data working set of the LRU�

like management policy� regardless the size of available physical memory� the

nested join operator causes repeated page replacements� Though the size of

physical memory is varied from �� Mega bytes to
� Mega bytes� the elapsed

time evaluated under the Mach kernel is close in each evaluation� The results

in Table � show the phenomenon� When the nested join operator invokes the

hipec interface to run the application�speci�c MRU�like policy to suit its access

patterns� the performance is improved largely from
�� to ����

For the tree index query application� when the number of the random access

records is small� the hipec approach gains little in reducing the number of page

faults and page replacements� since most of the data can be cached in physical

memory� Table � shows that the overhead of hipecmechanism does not slow down

the application when record number is small� and the performance is increased

by �� to
�� when the access record is
�������

	�

The evaluation results in Table � shows that the hipec approach is suitable in

reducing the competitions among applications� even if the Mach LRU�like policy

match the access patterns of applications� The video data is accessed in the

sequential read�only pattern that each page frame will be referenced only once�

Thus� the video player can reuse the recently accessed page frames and does

not need to request more free page frames from the system� Consequently� the

number of the �ushing operations will be reduced because the system needs not

to reclaim pages from the database generator� Most of the performance gain in

Table � is obtained from reducing the number of �ushing dirty pages from the

database generator� There are �� to
�� improvements for the video server in

the hipec environment over the Mach environment� even with much less physical

memory� Many real world applications have the similar sequential access pattern�

such as compiler� linker and Latex word processing applications that can bene�t

from hipec� Figure � shows the normalized results of Table �� �� � by assuming

that the elapsed time evaluated under the Mach kernel is
����

Allocated Page Frame Size
��MBs ��MBs �	MBs ��MBs

Elapsed Time �in seconds�

Mach LRU �	
����� �	��
�
� �	��
��	 �	��
���
hipec MRU

���
 �����
	 �	�
�
� ���
��	

ratio ���	� 	
�
��
���
� ����
�

Table �� Elapsed time for the nested join operator running under the Mach and
the privileged hipec environments�

	�� Performance evaluations of multiple applications

In this section� the applications� presented in the previous section� run simulta�

neously under both of the Mach and the unprivileged hipec environments to show

that the hipec mechanism not only can speed up single application� but also im�

prove the overall system performance� The co�running applications are� J�� the

nested join operator with �� Mega bytes outer relation and � K bytes inner rela�

tion� T�� the binary tree index access query for randomly accessing
����� tuples�

M�� the sequential MPEG video player playing
	���� Mega bytes MPEG video

	

Allocated Page Frame Size
Access Size ��MBs ��MBs �	MBs ��MBs

Elapsed Time �in seconds�

original �	��� �	��� ���
� �
�

��� hipec �	��� �	��� �	��� �����

ratio ����
��
��

� ������� ���
��

original
	�
�
���
 ����� �	��

���� hipec
����
���� ����� �����

ratio
��
�� ������� �������
��

�
original 	����� ��
��
 ��
�
	 �	����

����� hipec 	�
�	
 �	���
 ����	� ����
�
ratio
����� ����

�

����

����

original ��
���
 	������ ��
���
 �������
������ hipec ��	���� 		

��� ��	����

����	

ratio
���
�
�����
�����
���
�

original �
	�
�
� 		������ ���
���	 �������	
������� hipec ��

���
 �

���� 	�
����	
�	
����

ratio
���	� �
�
	� ������ �
��
�

Table �� Elapsed time for the tree indexed data access query running under the
Mach and the privileged hipec environments�

Allocated Page Frame Size
��MBs ��MBs �	MBs ��MBs

Elapsed Time �in seconds�

Mach LRU ������	 ��
��
	 �	���
� ���
�	�
hipec FIFO ������� ��

�
� ������� ���
�
�

ratio

�
��
�����
	���� ������

Table �� Elapsed time for mpeg play�database generator running under the
Mach and the privileged hipec environments�

		

64 Mega bytes 48 Mega bytes 32 Mega bytes 16 Mega bytes

Allocated Page Frame Size

0.00

20.00

40.00

60.00

80.00

100.00

120.00

E
la

ps
ed

 T
im

e
(%

)

Mach

Join operator

Tree index search (1000000)

MPEG play

Figure �� Normalized elapsed time for single application running under the Mach
and the privileged hipec environments�

data with �
�
� Kbytes
sec access rate� G�� the database generator sequentially

generating a �� Mega bytes database� When running under the unprivileged hipec

environment� the nested join operator implements the MRU�like policy for the

outer relation� The tree index access query operator implements the prioritized

FIFO	 policy for the memory mapped index �le and the data �le� The MPEG

video player implements the FIFO policy� while the database generator is left

without modi�cation� There are � combinations for evaluation� Table � lists the

evaluating results�

Analysis

Since all the applications are unprivileged� the page frames are competed among

the applications� More page faults and page replacements occur when compared

to the previous evaluated results that only single application runs under the

privileged hipec mechanism� However� when running under the unprivileged hipec

environment� the system performance is improved from �� to ��� in di�erent

application combinations than under the Mach environment� Figure � shows the

normalized result by assuming the elapsed time measured under the Mach kernel

	�

Allocated Page Frame Size
AP combination ��MBs ��MBs �	MBs ��MBs

Elapsed Time �in minute�

original 	�
��� 	�
��� 	�
��� ������
J�M hipec ������ 	���	
 	
���� ������

ratio �	�	�� �	�	
� ���

�
	�	��
original �����	 �	��	� ����

 	���

T�M hipec ����
� ������ �	��
� ������
ratio
����� ���
�� �
�
�� ������

original ������ �
���� ������ ��
���
J�T�M hipec 	����� 	���	� ������ �����

ratio ������ ���
�� ���
�� ����
�

original 	�
��� 	
���� 	����� 	�����
J�G hipec ������ ������ �
���� 	
	�

ratio ������ ����	� ���	��
��
��
original ����� ������ ��
��� 	�	���

T�G hipec ����
 �����
���� �����

ratio ������ �	���� ������ ����	�

original 	���
� ������ �
���
 ����
�
J�T�G hipec ������ 		
��� 	����� �
��
�

ratio �	���� �	�

� �
���� �
�
	�
original ��
�

 �		�

 �
����
�	���

J�T�M�G hipec 	�
�
� ������ ������ ��	��

ratio ������ ����	� ���
�� ������

Table �� Elapsed time for co�running multiple applications under the Mach and
the unprivileged hipec environments� All the values are the averages from �
independent evaluations�

64 Mega bytes 48 Mega bytes 32 Mega bytes 16 Mega bytes

Allocated Page Frame Size

0.00

20.00

40.00

60.00

80.00

100.00

E
la

ps
ed

 T
im

e
(%

)

Mach

Join+MPEG

Tree index+MPEG

Join+Tree index+MPEG

Join+Generator

Tree index+Generator

Join+Tree index+Generator

Join+Tree index+MPEG+Generator

Figure �� Normalized elapsed time for co�running multiple applications under the
Mach and the unprivileged hipec environments�

	�

is
����

� RELATED WORK

Many research prototypes and developing systems have addressed memory caching

problems� Mach �
� exports the external memory management �EMM� to user

applications� EMM interface is powerful in moving data between the storage de�

vice and the application virtual address� but it lacks interfaces for applications

to handle page replacement policy for the memory�mapped data� McNamee�s

PREMO �
�� extends the EMM interface to export the page replacement facil�

ities to applications� The kernel�maintained information�� can be obtained by

invoking their system calls� Sechrest�s POD �		� extends the Mach system fur�

ther in exporting the physical memory management to user applications� An

application�speci�c PageOut Daemon �POD� is created to handle the physical

memory management for external memory object� As the the kernel data struc�

tures are shared between the kernel and the user applications� which poses a

potential safety problem� only trusted applications can invoke the exported inter�

face� Neither PREMO nor POD have addressed system performance and resource

management issues� such as the page frame reclamation policy� Both implemen�

tations use the Mach IPC mechanism to export the service which creates
�� to

�� overhead in their evaluations�

Spring �
	� has an external paging interface similar to Mach except it separat�

ing the caching object from the pager object� The caching objects are controlled

by the kernel without any participation of user applications� V�� ��� uses the

segment manager �SM� to handle page faults and has interfaces to request and

migrate page frames to and from di�erent segment managers� It uses a memory

market�MM� approach ��� to allocate page frames among segment managers� All

the operations and requests involve transferring control among di�erent address

spaces that huge IPC communication overhead is expected� In addition� the MM

��In their implementation� only the referenced and modi�ed bits �R�M� can be retrieved

	�

approach is complex in calculating the I
O cost and needs to be well tuned when

the system con�guration is changed� The system performance is not addressed

either� though the application access pattern knowledge can be used to improve

the system performance� The recent Cache Kernel ��� argues the �exibility of

existing micro kernel operating systems� User applications can have their own

speci�c Application Kernel �AK� to meet their speci�c requirements� The Cache

kernel and the Application kernel communicate via the memory�mapping IPC in

loading and unloading the kernel object descriptors� Context switching in the AK

is time�consuming� as it will call IPC functions many times and need to load and

unload many kernel object descriptors� Their design is adequate for embedded

systems � but not general purpose� memory�intensive applications�

Other developing systems� the SPIN ���� Exokernel �

� and VINO kernel �	���

have the ability to export the memory caching management to user applications�

Speci�c applications can dynamic load the executable object codes into the oper�

ating system kernel to tailor the system service to match their needs� The system

safety is based on the advanced compiling techniques and the software based fault

isolation techniques �	��� Though their approach will create least overhead in ex�

tending the system service� the compiling software techniques cannot be trusted

in detecting the dynamic misbehaved operations� To fetch a page frame from an

empty queue is one of the example� Dynamic capability�based mechanism can

be used to protect the kernel resource from misbehaved accesses� However� new

overhead will be also created by adding the capability�based safety mechanism�

The mechanism to prevent in�nite policy execution is not addressed in their de�

signs� The in�nite policy execution is hard to be detected at the compiling time

by existing software techniques�

Cao has introduced a two�level �le cache management policy ��� to employ

the application access pattern information to increase the �le system performance

that the results are shown in ���� However� their design omits the communication

techniques among objects in the system� and� instead� modi�es the �le system

	�

directly� Previous researches in network packet demultiplexing �
��
�� 	�� have

also used the policy interpretation approach� Applications can program their

�lter in the �lter language� and the system interprets the �lter policy and forwards

the packet to its destination� The popularity in Packet Filter implementations

also shows that the policy interpretation approach is simple to use� �exible enough

and little overhead�

� CONCLUDING REMARKS

Though many memory�intensive applications have designed their own bu�er

management� these applications are still su�ered from the unmatched kernel�

controlled memory caching management �	��� By extending the page frame man�

agement policies to user applications� the applications can have their own memory

caching management to match their access patterns� The application and the sys�

tem performance can be increased due to the application�speci�c memory caching

management�

The hipec project aims at both extending the page frame management pol�

icy to user applications and increasing the system throughput by integrating

the application information to global page frame management� Applications can

program their speci�c page frame management policy in hipec command set and

load them into the kernel� When any page fault or page replacement operation

happens� the operating system interprets the commands and performs the corre�

sponding memory management operations to match the access patterns of user

applications� The hipecmechanism is e�cient without expensive domain�crossing

and context switching overhead� In addition� the system safety is not compro�

mised since no object codes of applications can be inserted into the kernel� The

hipec command set itself can be treated as a portable interface and its command

set can be extended to meet future needs� Additional mechanisms are imple�

mented for guaranteeing the system safety� such as policy interpretation timeout

detection� dynamic and syntax check of hipec commands�

	�

Through the empirical evaluations� the hipec is proved to be e�cient� and

can increase the performance of applications up to many folds and the overall

system throughput� The experience� concept� design and implementation of the

hipec project would bene�t the research in the research of the �eld of application�

speci�c resource management�

References

�
� M� Accetta� R� Baron� W� Bolosky� D� Golub� R� Rashid� A� Tevanian and

M� Young� �Mach� A New Kernel Foundation for UNIX Development�� Pro�

ceedings of the ���� Summer USENIX Conference� Atlanta� Georgia� USA�

July
���� pp� ���

	�

�	� T� E� Anderson� B� N� Bershad� E� D� Lazowska and H� M� Levy� �Scheduler

Activations� E�ective Kernel Support for the User�Level Management of

Parallelism�� ACM Transactions on Computer and Systems�
���
�� �����

�
��	��

��� B� N� Bershad� C� Chambers� S� Eggers� C�Maeda� D� McNamee� P� Pardyak�

S� Savage� E� G� Sirer� �SPIN � An Extensible Microkernel for Application�

speci�c Operating System Services�� Technical Report ���	
�	
� University

of Washington�
����

��� P� Cao� E� W� Felten and K� Li� �Application�Controlled File Caching Poli�

cies�� Proceedings of the USENIX SUMMER ���� Technical Conference�

Boston� Massachusetts� USA� June
���� pp�
�
�
�	�

��� P� Cao� E� W� Felten and K� Li� �Implementation and Performance of

Application�Controlled File Caching�� Proceedings of the First Symposium on

Operating Systems Design and Implementation� Monterey� California� USA�

November
���� pp�
���
���

��� D� R� Cheriton and K� Harty� �A Market Approach to Operating System

Memory Allocation�� Technical Report� Stanford University�
��	�

	�

��� K� Harty and D� R� Cheriton� �Application�Controlled Physical Memory us�

ing External Page�Cache Management�� Proceedings of Fifth International

Conference on Architectural Support for Programming Languages and Oper�

ating Systems� Boston� Massachusetts� USA� October
��	� pp�
���
���

��� D� R� Cheriton and K� J� Duda� �A Caching Model of Operating System Ker�

nel Functionality�� Proceedings of the First Symposium on Operating Systems

Design and Implementation�Monterey� California� USA� November
���� pp�

���
���

��� H� T� Chou and D� J� DeWitt� �An Evaluation of Bu�er Management Strate�

gies for Relational DataBase Systems�� Proceedings of the ��th International

Conference on Very Large Data Bases� Stockholm� August
���� pp�
	��
�
�

�
�� R� P� Draves� �Page Replacement and Reference Bit Emulation in Mach��

Proceedings of the USENIX Mach Symposium� Monterey California� USA�

November
��
� pp� 	�
�	
	�

�

� D� R� Engler� M� F� Kaashoek� J� W� O�Toole Jr�� �The Operating System

Kernel as a Secure Programmable Machine�� ACM Operating Systems Re�

view� 	�� �
�� ����	 �
�����

�
	� Y� A� Khalidi and M� N� Nelson� �A Flexible External Paging Interface��

Proceedings of the USENIX Symposium on Microkernels and Other Kernel

Architectures� San Diego� California� USA� September
���� pp�
	��
���

�
�� K� Krueger� D� Loftesness� A� Vahdat and T� Anderson� �Tools for the Devel�

opment of Application�Speci�c Virtual Memory Management�� Proceedings

of the ACM Eigth Annual Conference On Object�Oriented Programming Sys�

tems� Languages� and Application� Washnigton� DC� USA� September
����

pp� ������

�
�� P� C� H� Lee� M� C� Chen and R� C� Chang� �hipec� High Performance Ex�

ternal Virtual Memory Caching�� Proceedings of the First Symposium on

	�

Operating Systems Design and Implementation� Monterey� California� USA�

November
���� pp�
���
���

�
�� P� C� H� Lee� M� C� Chen and R� C� Chang� �HiPEC User Manual
����

Technical Report CIS �� 	� 	�� National Chiao Tung University� Taiwan�

����

�
�� S� McCanne and V� Jacobson� �The BSD Packet Filter� A New Architecture

for User�level Packet Capture�� Proceedings of the Winter ���
 USENIX

Conference� San Diego� California� USA� January
���� pp� 	���	���

�
�� J� D� McDonald� �Particle Simulation in a Multiprocessor Environment��

Proceedings of AIAA
�th Thermophysics Conference� XX YY� June
��
�

pp� aa�bb�

�
�� D� McNamee and K� Armstrong� �Extending the Mach External Pager In�

terface to Accomodate User�Level Page Replacement Policies�� Proceedings

of the First USENIX Mach Workshop� Burlington� Vermont� USA� October

���� pp�
��	��

�
�� J� C� Mogul� R� F� Rashid and M� J� Accetta� �The Packet Filter� An E��

cient Mechanism for User�level Network Code�� Proceedings of th ��th ACM

Symposium on Operating Systems Principles� Austin� Texas� USA� Novem�

ber
���� pp� ����
�

�	�� D� Rotem and J� L� Zhao� �Bu�er Management for Video Database Systems��

Proceedings of the Eleventh Internalional Conference on Data Engineering�

Taipei� Taiwan� ROC� March�
���� pp� ��������

�	
� J� V� Sciver and R� F� Rashid� �Zone Garbage Collection�� Proceedings of the

First USENIX Mach Workshop� Burlington� Vermont� USA� October�
����

pp�
�
��

��

�		� S� Sechrest and Y� Park� �User�Level Physical Memory Management for

Mach�� Proceedings of the USENIX Mach Symposium� Monterey Californial�

USA� November
��
� pp�
���	���

�	�� M� Seltzer and Y� Endo and C� Small and K� A� Smith� �An Introduction to

the Architecture of the VINO Kernel�� Technical Report TR�
����� Harvard

University�
����

�	�� M� Stonebraker� �Operating System Support for Database Management��

Communications of the ACM� 	�� ���� �
	��
� �
��
��

�	�� R� Wahbe and S� Lucco and T� E� Anderson and S� L� Graham� �E�cient

Software�Based Fault Isolation�� Proceedings of the ��th ACM Symposium

on Operating System Principles� Asheviile� North Carolina� USA� November

���� pp� 	���	
��

�	�� M� Yuhara and B� N� Bershad� �E�cient Packet Demultiplexing for Multiple

Endpoints and Large Messages�� Proceedings of the ���� Winter USENIX

Conference� San Francisco� California� USA� January
���� pp�
���
���

�

